材料力学第9章梁的挠度和刚度计算

合集下载

第9章__梁的挠度和刚度计算

第9章__梁的挠度和刚度计算

第9章__梁的挠度和刚度计算在结构分析中,梁的挠度和刚度是非常重要的参数,它们能够帮助我们了解和评估梁的性能和稳定性。

本章主要介绍了梁的挠度和刚度的计算方法。

首先,我们需要了解梁的挠度是什么。

简单来说,梁的挠度指的是梁在承受荷载时的弯曲和垂直变形程度。

挠度大小反映了梁的柔软性和变形能力,对于结构工程来说,挠度必须在允许范围内,以保证结构的安全和稳定。

梁的挠度计算可以通过简化的工程解析方法或者数值计算方法来进行。

这里主要介绍两种常用的方法。

第一种方法是基于简化的工程解析方法,即梁的挠度计算公式。

根据梁的几何形状和受力情况,可以得到不同类型梁的挠度计算公式。

例如,对于简支梁,其挠度可以用以下公式计算:δ=(5*q*L^4)/(384*E*I)其中,δ是梁的最大挠度,q是梁的单位长度荷载,L是梁的长度,E是梁的弹性模量,I是梁的截面惯性矩。

对于其他类型的梁,如悬臂梁、连续梁等,也有相应的挠度计算公式。

通过这些公式可以得到梁的最大挠度。

第二种方法是使用数值计算方法,主要是有限元法。

有限元法是一种通过将结构分割成若干小单元,然后进行位移解和力学分析的方法。

通过有限元软件,可以模拟梁在荷载作用下的变形情况,并得到挠度的数值解。

此外,在梁的挠度计算中,还需要考虑梁的边界条件。

梁的边界条件决定了梁的约束程度,也会影响梁的挠度大小。

常见的边界条件包括简支、悬臂、固支等。

在梁的刚度计算中,主要考虑的是梁的弯曲刚度和剪切刚度。

弯曲刚度指的是梁在弯曲过程中对外力的抵抗能力,可以用弯矩-曲率关系来表示。

剪切刚度指的是梁在受剪力作用下的变形能力,可以用剪力-变形关系来表示。

梁的弯曲刚度和剪切刚度分别可以通过以下公式计算:弯曲刚度:EI=M/θ剪切刚度:GA=T/ϕ其中,E是梁的弹性模量,I是梁的截面惯性矩,G是梁的剪切模量,A是梁的横截面积,M是梁的弯矩,θ是梁的曲率,T是梁的剪力,ϕ是梁的剪应变。

通过计算弯曲刚度和剪切刚度,我们可以评估梁在荷载作用下的响应和变形情况,进一步判断结构的性能和稳定性。

材料力学梁的挠度和刚度计算课件

材料力学梁的挠度和刚度计算课件
桥梁刚度
桥梁刚度反映了桥梁结构抵抗变形的能力。刚度计算可以帮助工程师了解桥梁在不同载荷作用下的变形情况,从 而优化结构设计,提高桥梁的承载能力和稳定性。
梁的挠度和刚度在房屋建筑中的应用
房屋挠度
在房屋建筑中,挠度对建筑物的安全 性和稳定性具有重要影响。通过计算 和分析挠度,可以确保建筑物在使用 过程中不会发生过大的弯曲和变形, 从而保证居住者的安全。
泊松比与挠度
泊松比是衡量材料横向变形能力的 参数。泊松比越大,梁在受到压力 时横向变形越大,导致挠度增加。
剪切模量与刚度
剪切模量反映了材料抵抗剪切应力 的能力。剪切模量大的材料具有较 大的刚度,能够更好地抵抗变形。
材料的弹性模量对挠度和刚度的影响
01
弹性模量与挠度
弹性模量是衡量材料抵抗弹性变形能力的参数。弹性模量越大,梁在受
03
梁的挠度计算方法
挠度的计算公式
挠度计算公式:$y = frac{Fl^4}{48EI}$
$I$:梁的惯性矩 $E$:材料的弹性模量
$F$:施加在梁上的力 $l$:梁的长度
挠度的计算步骤
确定施加在梁上的力 $F$和梁的长度$l$。
将已知数值代入挠度 计算公式进行计算。
确定材料的弹性模量 $E$和梁的惯性矩$I$ 。
材料的泊松比对挠度和刚度的影响
泊松比与横向变形
泊松比描述了材料在受到压力时横向变形的程度。泊松比 越大,横向变形越明显,这可能对梁的挠度和刚度产生影 响。
泊松比与交叉应力
在分析梁的挠度和刚度时,需要考虑由于泊松比引起的交 叉应力效应。这种效应会影响梁的剪切力和弯矩分布,从 而影响挠度和刚度。
泊松比与材料非线性的考虑
梁的刚度定义
刚度

工程力学第九章

工程力学第九章

下一页 返回
9.4

梁的弯曲变形与刚度
2.
挠度和转角
(1) 挠度 是指梁轴线上的一点在垂直于轴线方向上的位移, 通常用y表示。

一般规定向上的挠度为正,向上的挠度为负。它的单位是mm。 (2) 转角 是指梁的各截面相对原来位置转过的角度,用θ 表
示。

一般规定,逆时针方向的转角为正,顺时针的转角为负。它 的单位是弧度(rad)或度(º)。
远的边缘处。其计算公式为
max

(2) 梁的正应力强度条件为
M max y max M max Iz Wz
M max ≤[σ ] Wz
下一页 返回
max




max
* FQ S z
(3) 梁横截面上的切应力与切应力强度条件 对矩形截面梁,横截面上的切应力计算公式为 其最大切应力在截面的中性轴上,计算公式为 梁的切应力强度条件为τ max≤[τ ]
上一页 返回
9.2


梁弯曲时正应力强度计算
梁弯曲时正应力强度计算
9.2
为了保证梁在载荷作用下能够正常工作,必须使梁具备足够 的强度。也就是说,梁的最大正应力值不得超过梁材料在单 向受力状态(轴向拉、压情况)下的许用应力值[σ ],即 M max max ≤[σ ] (9.10) Wz 式(9.10)就是梁弯曲时的正应力强度条件。需要指出的是, 式(9.10)只适用于许用拉应力[σ l]和许用压应力[σ y]相等 的材料。如果两者不相等(例如铸铁等脆性材料),为保证梁 的受拉部分和受压部分都能正常工作,应该按拉伸式
上一页 下一页 返回
My Iz
(9.4)

九、 材料力学位移分析(2)

九、 材料力学位移分析(2)
课堂练习P265,习题9-20
5、梁的刚度计算
解:1、作强度设计
[ ]; W ql 2 1 M max 10103 4 2 40kNm; 4 4 40103 4 3 W 4 10 m ; 100106 单个槽钢W 2 10 4 m 3 200cm3 ;
22a槽钢满足刚度要求。
课外练习:9-18;9-19;
6、简单的静不定问题
关于静不定的基本概念
求解静不定问题的基本方法
拉压静不定问题
扭转静不定问题 简单的静不定梁 静不定结构的特性
6、简单的静不定问题
关于静不定的基本概念
静定问题与静定结构——未知力(内力或外力)个数等于独立的平衡方程数 静不定问题与静不定结构——未知力个数多于独立的平衡方程数
对转角的限制 轴的类型 滑动轴承 向心轴承 向心球面轴承 圆柱滚子轴承 圆锥滚子轴承 安装齿轮的轴 许用转角[θ]/rad
0.001 0.005 0.005 0.0025 0.0025 0.001
5、梁的刚度计算
例题9-10、图示钢制圆轴,已知
20kN C
2000
Fp=20kN,E=206GPa,轴承B 处的
4、铝杆应力:σ =FNA/AA=128.8MPa 5、铝杆长度:l =300+0.936-0.552=300.38mm;
6、简单的静不定问题
扭转静不定问题 例题9-15、两端固定的圆轴受力如图,已知Mx,GIp,l, 求A、B两端的约束力。
y
x Mx z A l C l Mx D l B
6、简单的静不定问题
解:1、轴受力如图,由平衡方程:
M
x
0;
M x 4 M x M x M x 3 0;

《材料力学》第9章压杆稳定习题解[整理]

《材料力学》第9章压杆稳定习题解[整理]

第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式。

试分析当分别取图b,c,d 所示坐标系及挠曲22l EIP cr π=线形状时,压杆在作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得公cr F cr F 式又是否相同。

解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。

因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是。

(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw -=,显然,这微分方程与(a )的微分方程不同。

)("x M EIw =临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。

因此,以上四种情形的临界力具有相同的公式,即:。

22l EIP cr π=[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)?解:压杆能承受的临界压力为:。

由这公式可知,对于材料和截面相同的压22).(l EI P cr μπ=杆,它们能承受的压力与 原压相的相当长度的平方成反比,其中,为与约束情况有l μμ关的长度系数。

(a )ml 551=⨯=μ(b )ml 9.477.0=⨯=μ(c )ml 5.495.0=⨯=μ(d )ml 422=⨯=μ(e )ml 881=⨯=μ(f )(下段);(上段)m l 5.357.0=⨯=μm l 5.255.0=⨯=μ故图e 所示杆最小,图f 所示杆最大。

cr F cr F[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。

试问两杆的临界力是否均为2min2).2(l EI P cr π=为什么并由此判断压杆长因数是否可能大于2。

梁的刚度分析

梁的刚度分析

挠曲线: y f x 任一点的斜率与转角之间的关系为: 由于: 极其微小

dy tg dx
tg
dy f ' x dx
——转角方程
物理意义: 反应了挠度与转角之间的关系,即挠曲线上任意一点处切 线的斜率等于该点处横截面的转角。 结论:由转角方程我们可看出:梁上某点处横截面的转角等于 f ' x 在该点处的大小。研究梁的变形的关键在于提出 挠曲线方程 y f x 。
C , A EIZ
(5) (6)
即:一次常数C表示原点的转角与抗弯刚度的乘积 二次常数D表示原点的挠度与抗弯刚度的乘积
从上面可看出:把原点取在简支梁的铰支座上时,二次积分常数 D=0, 这正是因为原点是铰支座,而铰支座处的 挠度为零。 注:这一点可作为一个标准来检验上面积分常数的正确与否,并 且对其它类型的梁也成立。 例2.图示一悬臂梁,自由端受一集中力P作用,求自由端B处的 挠度和转角。 解:建立坐标系如图: (1)求支反力
(4)求结果:
x=0时, x=L/2时,
1 PL2 PL2 A y EI Z 16 16EI Z
' A
PL3 yC 48EI Z
思考题:
图示一简支梁,在梁中点处作用一个集中力偶Me,求梁跨中 点C处的挠度与铰支座A点处的转角及连杆支座B点处的转角。并 求梁上最大挠度值。
Me
A
1 M x K x x EI Z
又:
1 x
(b)
1 y
y
3 2 2
1 M x y x EIZ
1 y M x x 1 EIZ
——挠曲线近似微分方程 (9-3)

材料力学-第9章 能量法

材料力学-第9章 能量法

材料力学里的虚功原理: 变形体受力处于平衡状态时,外力在虚位移上所作的功 (外力虚功)等于内力在虚变形上作的功(内力虚功)
外力q在虚位移 上作功
q

=
应力 在虚应变 上作用 * 若外力虚功不等于内力虚功,则外力作功未完全转化为结构 应变能,受力不平衡
材料力学-第9章 能量法
§9-3 虚功原理、内力虚功
材料力学-第9章 能量法
§9-1 功与应变能的基本概念
轴向拉压
dx
对于拉伸和压缩杆件,微段的应变能为
FN
FN
dVε
1 FN d 2
Vε=
dx+dδ
l 1 l 1 l 1 F 1 FN d FN dx FN dx FN N dx 0 2 0 2 0 2 0 2 E EA l
材料力学-第9章 能量法
§9-2 互等定理
思考题:
根据功的互等定理和位移互等定理对下列结构完成等式
?=?
材料力学-第9章 能量法
§9-2 互等定理
思考题:
根据功的互等定理和位移互等定理对下列结构完成等式
?=?
材料力学-第9章 能量法
§9-2 互等定理
思考题:
根据功的互等定理和位移互等定理对下列结构完成等式
?=?
材料力学-第9章 能量法
§9-2 互等定理
例题
A
Me
B
l
图示静不定梁,承受弯矩作用。利用功的互等 定理确定B端的支反力。设弯曲刚度EI为常数。
材料力学-第9章 能量法
§9-2 互定理
解:
Me A B FR M e
将支座B解除,代以支反力FR

将力偶Me和支反力FR作为一组力, 另外施加力F作为第二组力

第9章-梁的弯曲变形与刚度计算

第9章-梁的弯曲变形与刚度计算

y
M
M
M<0 w’’<0
O O
x
曲线向下凸 时: w’’>0, M>0
因此, M与w’’的正负号相同。 y
M
M
w
M (x)
(1 w2 )32 EI
M>0 w’’>0
x
w
(1
w2
)
3 2
M (x) EI
由于挠曲线是一条非常平坦的曲线, w'2远比1小, 可以略去不计, 于是上式可写成
w M (x) EI
转角(): 横截面 y
绕中性轴(即Z轴)转 A 过的角度(或角位 移), 称为该截面 的 转 角 (Slope rotation angle) 。
F CBx
w(挠度)
C1
(转角)
9.1 工程实际中的弯曲变形问题
挠度和转角符号的规定:
挠度:在图示坐标系中, 向上为正, 向下为负。
转角: 逆时针转向为正,顺时针转向为负。
在这种情况下, 梁在几项载荷 (如集中力、集中力 偶或分布力)同时作用下某一横截面的挠度和转角, 就 分别等于每项载荷单独作用下该截面的挠度和转角的 叠加。此即为叠加原理。
例1:一抗弯刚度为EI的简支梁受荷载如图所示。
试按叠加原理求梁跨中点的挠度wC 和支座处横
截面的转角A ,B 。
q Me
解:将梁上荷载分为两项 A
C
B
简单的荷载。
l
wC wCq wCM
5ql4 M el2 384EI 16EI
A Aq AM
ql3 M el 24EI 3EI
B
Bq BM
ql3 M el 24EI 6EI
例2:试利用叠加法, 求图示抗弯刚度为EI的简支
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档