卡尔曼滤波算法(含详细推导)

合集下载

卡尔曼滤波及其算法实现

卡尔曼滤波及其算法实现

卡尔曼滤波及其算法实现一、卡尔曼滤波原理1.预测步骤:根据系统的动态模型,以当前时刻的状态估计值为输入,预测下一时刻的状态估计值,同时计算预测误差的协方差矩阵。

2.更新步骤:根据测量模型,将测量值与预测值进行比较,通过加权平均的方式获得更新后的状态估计值,同时计算更新后的状态估计误差的协方差矩阵。

通过不断交替进行预测和更新步骤,卡尔曼滤波可以逐渐优化状态估计值,提供对真实状态的更准确估计。

二、卡尔曼滤波算法实现1.初始化:初始化状态估计值和协方差矩阵。

通常将状态估计值初始化为系统的初始状态,协方差矩阵初始化为一个较大的对角矩阵。

2.预测步骤:通过动态模型预测下一时刻的状态估计值和协方差矩阵。

这可以通过以下几个步骤实现:a.预测状态估计值:使用系统的动态模型和当前时刻的状态估计值,进行状态演化预测。

b.预测误差协方差:使用系统的动态模型和当前时刻的协方差矩阵,计算状态估计误差的协方差矩阵。

c.状态类比噪声:加入过程噪声,以考虑由于系统建模不完备引入的不确定性。

3.更新步骤:根据测量模型,将测量值与预测值进行比较,通过加权平均的方式获得更新后的状态估计值和协方差矩阵。

这可以通过以下几个步骤实现:a.计算卡尔曼增益:使用预测误差协方差矩阵和测量模型的噪声协方差矩阵,计算卡尔曼增益。

卡尔曼增益表示预测误差与测量误差之间的权衡关系。

b.更新状态估计值:使用卡尔曼增益和测量偏差,通过加权平均的方式更新状态估计值。

c.更新误差协方差矩阵:使用卡尔曼增益和测量模型的噪声协方差矩阵,通过加权平均的方式更新预测误差的协方差矩阵。

通过不断交替进行预测和更新步骤,可以得到连续的状态估计值和协方差矩阵,用于对真实状态的估计。

总结:卡尔曼滤波是一种基于概率统计的动态系统估计算法,通过预测和更新步骤,逐渐优化对系统状态的估计。

实际应用中,还可以通过扩展卡尔曼滤波(Extended Kalman Filter)和无迹卡尔曼滤波(Unscented Kalman Filter)等方法来处理非线性系统和非高斯噪声,提高滤波的效果。

卡尔曼滤波算法(含详细推导)

卡尔曼滤波算法(含详细推导)

1、kalman滤波问题
E { v ( n ) v ( k )} 1
H 1

Q ( n ), n k 1 0 , n k
......( 3 )
E { v ( n ) v ( k )} 2
H 2

Q ( n ), n k 2 0 , n k
......( 4 )
1、kalman滤波问题
将式(27)代入式(24),便得到kalman增益的计算公式如下:
H 1 G ( n ) F ( n 1 , n ) K ( n , n 1 ) C ( n ) R ( n )......... ...( 28 )
式中R(n)是信息过程的相关矩阵,由式(10)定义。

(3)、Riccati方程
3、kalman滤波算法

由式(28)表示的kalman增益与预测状态误差的相关矩阵K(n,n-1)有关,为了最后 完成kalman自适应滤波算法,还需要再推导K(n,n-1)的递推公式。 考察状态向量的预测误差:

注意到 并利用状态方 E { v ( n )( k )} 0 , k 0 , 1 ,..., n , 1 程(1),易知下式对k=0,1,…,n成立:

3、kalman滤波算法
H E { x ( n 1 ) ( k )} E {[ F ( n 1 , n ) x ( n ) v ( n ) ( k )} 1
(2)、 kalman增益的计算
3、kalman滤波算法
为了完成kalman自适应滤波算法,需要进一步推导kalman增益的实际计 H E { x ( n 1 ) ( k )} 的具体 算公式。由定义式(24)知,只需要推导期望项 计算公式即可。 将新息过程的计算公式(13)代入式(22),不难得出:

卡尔曼滤波器算法

卡尔曼滤波器算法

卡尔曼滤波器算法卡尔曼滤波器算法是一种常见的数据处理算法,它能够通过对数据进行滤波,去除噪声和干扰,提高数据质量,广泛应用于各个领域。

本文将对卡尔曼滤波器算法进行详细介绍,包括其原理、应用场景以及实现方法。

一、卡尔曼滤波器算法的原理卡尔曼滤波器算法的原理是基于贝叶斯概率理论和线性系统理论的。

其核心思想是通过对系统状态的不断测量和预测,根据预测值和实际值之间的误差来调整状态估计值,从而获得更准确的状态估计结果。

具体来说,卡尔曼滤波器算法可以分为两个步骤:预测和更新。

1. 预测步骤在预测步骤中,通过上一时刻的状态估计值和状态转移矩阵对当前时刻的状态进行预测。

状态转移矩阵是描述系统状态变化的数学模型,可以根据实际情况进行定义。

2. 更新步骤在更新步骤中,通过测量值和状态预测值之间的误差,计算出卡尔曼增益,从而根据卡尔曼增益调整状态估计值。

卡尔曼增益是一个比例系数,它的大小取决于预测误差和测量误差的比例。

二、卡尔曼滤波器算法的应用场景卡尔曼滤波器算法具有广泛的应用场景,下面列举几个常见的应用场景:1. 飞机导航系统在飞机导航系统中,卡尔曼滤波器算法可以通过对飞机的位置、速度和姿态等参数进行滤波,提高导航的准确性和精度。

2. 机器人控制系统在机器人控制系统中,卡尔曼滤波器算法可以通过对机器人的位置、速度、姿态和力量等参数进行滤波,提高机器人的控制精度和稳定性。

3. 多传感器融合系统在多传感器融合系统中,卡尔曼滤波器算法可以通过对多个传感器的数据进行滤波和融合,提高数据质量和精度。

三、卡尔曼滤波器算法的实现方法卡尔曼滤波器算法的实现方法具有一定的复杂性,下面介绍一般的实现步骤:1. 定义状态向量和状态转移矩阵根据实际情况,定义状态向量和状态转移矩阵,描述系统状态的变化规律。

2. 定义测量向量和观测矩阵根据实际情况,定义测量向量和观测矩阵,描述传感器测量数据与状态向量之间的联系。

3. 计算预测值和预测误差协方差矩阵根据状态向量、状态转移矩阵和误差协方差矩阵,计算预测值和预测误差协方差矩阵。

卡尔曼滤波方程的推导

卡尔曼滤波方程的推导

Kalman 增益推导: Kalman 滤波器是一个最小均方误差估计器,先验状态误差估计可表示为
ˆ ( k | k ),我们最小化这个矢量幅度平方的期望值 E X (k ) X ˆ (k | k ) 2 , X (k ) X

这等价于最小化后验估计协方差矩阵 P(k | k ) 的迹,通过展开合并 P(k | k ) 公式, 可得:
E[W (k )] 0或E[W (k )] W T E[W (k )W ( j )] Q(k ) kj E[V (k )] 0或E[V (k )] V T E[V (k )V ( j )] R(k ) kj
式(2)
1 (k j ) 其中 kj ,这里 Q(k ) 0 是激励噪声的一个 n n 维的协 0 ( k j )
我们通过式(11)求导的方式求得 P(k | k ) 的极值点:
tr ( P(k | k )) 2[ H (k ) P(k | k 1)]T 2 K (k ) S (k ) 0 ( K (k )) 注:这里协方差矩阵式对称矩阵 K (k ) P(k | k 1) H T (k ) S 1 (k )
1、 随机线性离散系统的状态方程和观测方程为:
X (k ) (k , k 1) X (k 1) B(k , k 1)U (k 1) (k , k 1)W (k 1) Z (k ) H (k ) X (k ) V (k )
式(1)
式中状态向量 X (k ) R n ,观测矢量 Z (k ) R m ,随机过程噪声 W (k ) R r ,随 机观测噪声 V (k ) R m ,状态转移矩阵 (k , k 1) R nn ,过程噪声输入矩阵

kalman滤波器算法原理

kalman滤波器算法原理

卡尔曼滤波总结假设条件:系统的状态由图1所给出的模型决定。

假定),1(k k+Φ,),1(k k+Γ,)0(P 和)(k Q 是已知的,并且是确定性的。

而观测模型由图2给出,其中)1(+kH 和)(k R 也是已知的,并且是确定性的。

它们可以写为,1,0),(),1()(),1()1(=+Γ++Φ=+k k w k k k x k k k x 状态方程)1()1()1()1(++++=+k v k x k H k z 量测方程)1(+k w激励)1(+k图1 一个离散-时间线性系统的状态方程和输出方程的矢量结构图观测转移矩阵 )1(+k xv (k+1)矢量求和激励)1(+k观测矢量 观测误差新状态矢量图2 观测模型的矢量结构图卡尔曼滤波算法:滤波估计由Kalman 所给出的最优线性滤波估计)1|1(ˆ++k k x是由下面的递归矩阵公式决定的,即,0)0|0(ˆ)]|(ˆ),1()1()1()[1()|(ˆ),1()1|1(≥=+Φ+-++++Φ=++k xk k xk k k H k z k K k k xk k k k x 初始条件这里)1(+kK 称为卡尔曼增益卡尔曼增益卡尔曼增益的表达式为,1,0,)]1()1()|1()1([)1()|1()1(1=+++++⨯++=+-k k R k H k k P k H k H k k P k K TT其中)|1(k kP +表示单步预测误差协方差矩阵。

单步预测误差协方差矩阵(单步性能)1,0)0()0|0(),1()(),1(),1()|(),1()|1(==+Γ+Γ++Φ+Φ=+k P P k k k Q k k k k k k P k k k k P TT,初始条件滤波误差的误差协方差矩阵(协方差递归形式)1,0),|1()]1()1([)1|1(=+++-=+k k k P k H k K I k k P +性能评价(系统状态的卡尔曼滤波估计的协方差矩阵)1,0],))1|1(ˆ)1(ˆ))(1|1(ˆ)1([()1|1(=++-+++-+=+k k k x k x k k xk x E k k P T+11|11|----Γ+Φ=k k k k k k kW XXkkk k V XH Z +=式中:k X —— 是一个1⨯n 维矢量,称为k t 时刻的状态矢量。

卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)

卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)

卡尔曼滤波详解一维卡尔曼滤波实例解析(五个公式以及各个参数的意义)一、问题描述假设我们有一个一维系统,我们想要估计这个系统的状态x。

我们可以通过一维传感器获得关于这个系统的观测z,但是这个观测会存在误差。

二、基本原理三、基本公式1.状态预测:我们首先假设系统可以通过一个线性方程来描述:x(k)=Ax(k-1)+B(u(k))+w(k),其中x(k)代表系统在时刻k的真实状态,A是系统的状态转移矩阵,B是外部输入的影响矩阵,u(k)是外部输入,w(k)是系统状态预测过程中的噪声。

2.状态协方差预测:卡尔曼滤波同时也需要估计状态的不确定性,即状态协方差。

协方差可以通过以下公式进行预测:P(k)=AP(k-1)A^T+Q(k-1),其中P(k)代表状态协方差矩阵,Q(k-1)是协方差预测过程中的噪声。

3.观测预测:将状态的估计值带入观测模型中,可以预测观测值:z^(k)=Hx^(k),其中z^(k)代表预测的观测值,x^(k)代表状态的估计值,H是观测模型矩阵。

4.观测残差:观测残差即观测值与预测观测值之间的差异:y(k)=z(k)-z^(k),其中y(k)代表观测残差。

5.状态更新:基于观测残差,我们可以通过以下公式更新状态的估计值:x(k)=x^(k)+K(k)y(k),其中K(k)代表卡尔曼增益。

卡尔曼增益可以通过以下公式计算:K(k)=P(k)H^T(HP(k)H^T+R)^-1,其中R为观测噪声的方差。

四、参数含义1.状态转移矩阵A:描述系统状态k与状态k-1之间的转移关系。

2.外部输入矩阵B:外部输入对系统状态的影响矩阵。

3.外部输入u(k):外部输入,可以是控制信号或者测量噪声。

4.状态预测噪声w(k):在状态预测过程中引入的噪声。

5.状态协方差矩阵P:表示状态估计的不确定性,协方差矩阵的对角线上的元素越大,状态的不确定性越大。

6.状态协方差预测噪声Q(k):在状态协方差预测过程中引入的噪声。

卡尔曼滤波算法含详细推导.ppt

卡尔曼滤波算法含详细推导.ppt
动态系统在时间n的状态到n+1的状态之间的转移,应为已知。
而M 1向量 v为1(过n)程噪声向量,它描述状态转移中间的
加性噪声或误差。
1、kalman滤波问题
(1)、观测方程
y(n)C (n)x(n)v2(n)....2 .)....(
式中,N 1向量y(n)表示动态系统在时间n的观测向量; N M矩阵C(n)称为观测矩阵(描述状态经过其作用,
卡尔曼滤波算法及 推导
1、kalman滤波问题
考虑一离散时间的动态系统,它由描述状态向量的过程方程 和描述观测向量的观测方程共同表示。
(1)、过程方程
x (n 1 ) F (n 1 ,n )x (n ) v 1 (n )...1 )....
式中,M 1向量x(n)表示系统在离散时间n的状态向量,它是 不可观测的;M M矩阵F(n+1,n)成为状态转移矩阵,描述
变成可预测的),要求也是已知的;v2(n)表示观测噪声向 量,其维数与观测向量的相同。过程方程也称为状态方程, 为了分析的方便,通常假定过程噪声v1(n)和观测噪声v2(n) 均为零均值的白噪声过程,它们的相关矩阵分别为:
1、kalman滤波问题
E { v 1 (n )v 1 H (k ) }Q 0 ,1 n ( n k )n , k ..3 .)...(
K (n ,n 1 ) E { e (n ,n 1 )e H (n ,n 1 )}................1 ..) ....( 7 ..
表示(一步)预测状态误差的相关矩阵
3、kalman滤波算法
由上一节的的新息过程的相关知识和信息后,即可转入 kalman滤波算法的核心问题的讨论:如何利用新息过程估计 状态向量的预测?最自然的方法是用新息过程序列a(1),…a(n) 的线性组合直接构造状态向量的一布预测:

卡尔曼滤波算法

卡尔曼滤波算法

卡尔曼滤波器不断的把covariance递归, 从而估算出最优的温度值。其运
行的很快,而且它只保留了上一时刻的covarian2c02e1/3。/28
12
三:卡尔曼滤波引例
2021/3/28
13
四:卡尔曼滤波算法数学推导
引入一个离散控制过程的系统。 该系统可用一个线性随机微分方程来描述:
X(k)=F X(k-1)+B U(k)+W(k) 加上系统的测量值:
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(c)有反馈式分布融合系统
融合中心到各传感器有反 馈通道,提高各传感器状态 估计和预测精度。
2021/3/28
27
五:卡尔曼滤波的典型应用—多传感器数据融合处理
• 卡尔曼滤波器源于他的博士论文和1960年 发表的论文《A New Approach to Linear Filtering and Prediction Problems》 (线性滤波与预测问题的新方法)。
卡尔曼将状态变量引入虑波理论,提出了递推滤波算法,建 立了后来被自动控制界称道的“卡尔曼滤波”。
25
五:卡尔曼滤波的典型应用—多传感器数据融合处理
数据融合的模型: (a)集中式融合系统;
(b)无反馈式分布融合系统;
(c)有反馈式分布融合系统; (d)有反馈的全并行系统
(b)无反馈式分布融合系统
各传感器分别滤波,将
各局部状态估计送给 融合中心进行融合,最 后给出融合结果。
2021/3/28
26
四:卡尔曼滤波算法数学推导
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档