2019年内蒙古兴安盟中考数学试题及参考答案(word解析版)

合集下载

内蒙古兴安盟中考数学试卷

内蒙古兴安盟中考数学试卷

内蒙古兴安盟中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·海曙模拟) 实数-2016的绝对值是().A . 2016B . ﹣2016C . ±2016D .2. (2分)如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A .B .C .D .3. (2分)下列计算正确的是()A .B .C .D .4. (2分) (2019九下·建湖期中) 如图,点A,B,C在半径为9的⊙O上,OA∥BC,∠OAB=70°,则弧AC 的长为()A .B .C .D .5. (2分) (2017九下·张掖期中) 已知圆柱体体积V(m3)一定,则它的底面积Y(m2)与高x(m)之间的函数图象大致为()A .B .C .D .6. (2分) (2017九上·灯塔期中) 如图,中,两点分别在边上,且∥ ,如果,,则()A . 3B . 4C . 9D . 127. (2分)(2018·滨州) 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A .B .C .D .8. (2分)下面是某同学在一次数学测验中,解答的填空题,其中答对的是()A . 若x2=5 ,则x=B . 若x2=,则x=C . x2+x-m=0的一根为-1,则m=0D . 以上都不对9. (2分) (2019九上·龙湖期末) 在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A . 12个B . 14个C . 18个D . 28个10. (2分)(2020·温州模拟) 如图,直线y=-x与反比例函数y= 的图象交于A,B两点,过点B作BD∥x 轴,交y轴于点D,直线AD交反比例函数y= 的图象于另一点C,则的值为()A . 1:3B . 1:2C . 2:7D . 3:10二、填空题 (共8题;共8分)11. (1分)(2017·深圳模拟) 将4x2﹣4分解因式得________.12. (1分) (2016七上·连州期末) 某年我国的粮食总产量约为8920000000吨,这个数用科学记数法表示为________吨.13. (1分) (2019八上·闵行月考) 计算:()2016 ·(- )2017 =________14. (1分)甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数,方差S甲2<S乙2 ,则成绩较稳定的同学是________(填“甲”或“乙”).15. (1分)(2018·海陵模拟) 已知一个圆锥形的零件的母线长为5cm,底面半径为3cm,则这个圆锥形的零件的侧面积为________ cm2 .(用π表示).16. (1分)如图,菱形的周长为,对角线与相交于点,,,垂足为,则 ________.17. (1分)(2019·高新模拟) 如图,在△ABC中,∠ACB=90°.按以下步骤作图,分别以点A和点B为圆心,大于的长为半径作圆弧,两弧交于点E和点F;作直线EF交AB于点D;连结CD,若AC=8,BC=6,则CD的长为________.18. (1分) (2017八下·红桥期中) 在平面直角坐标系中,点A,B,C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在平面直角坐标系内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是________.三、解答题 (共8题;共68分)19. (5分)先化简,再求• 的值,其中x= .20. (6分) (2017九上·鄞州月考) 已知一个口袋中装有4个只有颜色不同的球,其中3个白球,1个黑球.(1)求从中随机抽取出一个黑球的概率是多少;(2)若从口袋中摸出一个球,记下颜色后不放回,再摸出一个球。

内蒙古呼伦贝尔市2019年中考数学试题含答案(word版)

内蒙古呼伦贝尔市2019年中考数学试题含答案(word版)

姓名考号试卷类型A2019年呼伦贝尔市初中毕业生学业考试数学温馨提示:1.本试卷共6页,满分120分.考试时间120分钟.2.答卷前务必将自己的姓名、考号、座位号、试卷类型(A或B)涂写在答题卡上;选择题答案选出后,请用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色字迹签字笔直接答在答题卡上.在试卷上作答无效.3.请将姓名与考号填写在本试卷相应位置上.4.考试结束,将试卷、答题卡和草纸一并交回.一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.13-的倒数是A.3 B.3-C.13-D.132.用3个相同的立方块搭成的几何体如图所示,它的主视图是3.下列各式计算正确的是A.532x x x-=B.336()mn mn=C.222)(baba+=+D.624p p p÷=(0)p≠4.在正方形、等腰三角形、矩形、菱形中,既是中心对称图形又是轴对称图形的有A.1个B.2个C.3个D.4个5.下列事件是随机事件的是A.通常情况温度降到0℃以下,纯净的水结冰;B.随意翻到一本书的某页,这页的页码是偶数;C.度量三角形的内角和,结果是360°;D.测量某天的最低气温,结果为-180℃.6.如图,已知AB∥CD,∠2=120°,则∠1的度数是A.30°B.60°C.120°D.150°7.一个多边形的每个内角均为108°,则这个多边形是A B C D正面6题图21DCBA15题图O DCB AA .七边形B .六边形C .五边形D .四边形8.九年级某班十名同学进行定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为 A .4,5B .5,4C .4,4D .5,59.将点A (-2,-3)向右平移3个单位长度得到点B ,则点B 所处的象限是A .第一象限B .第二象限C .第三象限D .第四象限10.一元二次方程220x x --=的解是A .1221x x ==,B .1221x x =-=,C .1221x x ==-,D .1221x x =-=-,11.如图,在水平地面上,由点A 测得旗杆BC 顶点C 的仰角为60°,点A 到旗杆的距离AB=12米,则旗杆的高度为 A .63米 B .6米C .123米D .12米12.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是A .34π B .38π C .32π D .316π二、填空题(本题5个小题,每小题3分,共15分)13.在函数324y x =-中,自变量x 的取值范围是 .14.分解因式:293025a a -+= .15.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,6AC =,则OD = .16.用一个圆心角为120︒,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为 . 17.一组等式:22221223++=,22222367++=,2222341213++=,2222452021++=……请观察它们的构成规律,用你发现的规律写出第9个等式 .三、解答题(本题4个小题,每小题6分,共24分)18.计算:201()122tan 60(3)2π--+︒+-19.先化简,再求值:211(1)22x x x -+÷--,其中3x = 60°11题图CBA12题图20.把形状、大小、质地完全相同的4张卡片分别标上数字-1、-4、0、2,将这4张卡片放入不透明的盒子中搅匀.求下列事件的概率:(1)从中随机抽取一张卡片,卡片上的数字是负数;(2)先从盒子中随机抽取一张卡片不放回,再随机抽取一张,两张卡片上的数字之积为0(用列表法或树形图).21.如图,在平面直角坐标系中,已知一次函数y kx b=+的图象经过点A (1,0),与反比例函数my x=(x >0)的图象相交于点B (2,1).(1)求m 的值和一次函数y kx b =+的解析式;(2)结合所给图象直接写出:当x >0时,不等式kx b +>mx的解集.四、(本题7分)22.某中学九(2)班同学为了了解2019年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求被调查的家庭中,用水量不超过15吨的家庭占总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?五、(本题7分)23.从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么月均用水量x (吨) 频数 频率 0﹤x ≤5 6 0.12 5﹤x ≤100.2410﹤x ≤15 16 0.32 15﹤x ≤20 10 0.20 20﹤x ≤25 4 25﹤x ≤30 20.04yx121题图OB A12月均用水量(吨)频数5 10 15 20 25 301612 8 4 0DCFE F图2图1DCAO(E)ABO B从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?六、(本题8分)24.如图,在ABC ∆中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且1,2,3ME AM AE ===.(1)求证:BC 是⊙O 的切线; (2)求⊙O 的半径.七、(本题10分)25.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w (元)与每件涨价x (元)之间的函数关系式; (2)求销售单价为多少元时,该商品每天的销售利润最大; (3)商场的营销部在调控价格方面,提出了A ,B 两种营销方案.方案A :每件商品涨价不超过5元; 方案B :每件商品的利润至少为16元. 请比较哪种方案的最大利润更高,并说明理由.八、(本题13分)26.以AB 为直径作半圆O ,AB =10,点C 是该半圆上一动点,连接AC 、BC ,延长BC 至点D ,使DC =BC ,过点D 作DE ⊥AB 于点E ,交AC 于点F ,在点C 运动过程中:(1)如图1,当点E 与点O 重合时,连接OC ,试判断COB ∆的形状,并证明你的结论; (2)如图2,当DE =8时,求线段EF 的长; (3)当点E 在线段OA上时,是否存在以点E 、O 、F 为顶点的三角形与ABC ∆相似?若存在,请求出此时线段OE的长;若不存在,请说明理由.NAB CM E O24题图2019年呼伦贝尔市初中毕业生学业考试数学答案及评分标准试卷类型A一、选择题(每小题3分,共36分)试卷类型B一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 910 11 12答案ADCBACBDA D DC二、填空题(每小题3分,共15分)13.2≠x 14.2(35)a -15.316.38π17.22229190109=++三、解答题(每小题6分,共24分)18.解:原式132324++-=…………(4分) 5=…………(6分) 19.解:原式2)1)(1()212(--+÷-+-=x x x x x…………(2分))1)(1(221-+-⨯--=x x x x x…………(3分)11+=x …………(4分)当3=x 时 原式41131=+=…………(6分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCDCBBCADCCB20.解:(1)设抽到卡片上的数字是负数记为事件A ,则21()42P A == …………(2分)(2)依题意列表(树形图)如下:…………(4分)故所有等可能结果有12种,其中两张卡片上的数字之积是0的结果有6种,设两张卡片上的数字之积是0为事件B ,则61()122P B == …………(6分)21.解:(1) 反比例函数)0(>=x xmy 的图象经过点B (2,1) 12m∴=∴2=m…………(1分)又 一次函数b kx y +=的图象经过A (1,0), B (2,1)∴⎩⎨⎧+=+=bk bk 210…………(3分)解得:⎩⎨⎧-==11b k∴一次函数的解析式为:1y x =-…………(4分) (2)2>x…………(6分)四、(本题满分7分)22.解:(1)-1 -4 0 2 1-4-24- 4 0 -8 0 0 0 0 2-2-8月均用水量x 吨 x x 频数频率 0﹤x ≤5 6 0.12 5﹤x ≤10 12 0.24 10﹤x ≤15 16 0.32 15﹤x ≤20 10 0.20 20﹤x ≤25 4 0.08 25﹤x ≤3020.04 -8-2-84-20004积第二张-1-122-1200000-4-4-420-4-1第一张第一张 第二张…………(3分)(2)%68%10024101612616126=⨯+++++++答:被调查的家庭中,用水量不超过15吨的家庭占总数的百分比是68%…………(5分)(3)120100024101612624=⨯++++++(户)答:该小区月均用水量超过20吨的家庭大约有120户. …………(7分) 五、(本题满分7分)23.解:设甲地到乙地上坡路x 米,下坡路y 米. …………(1分)根据题意,得25501002050100xy y x ⎧+=⎪⎪⎨⎪+=⎪⎩ …………(5分)解得1000500x y =⎧⎨=⎩ …………(6分)答:甲地到乙地上坡路1000米,下坡路500米. …………(7分)六、(本题满分8分)24.(1)证明:∵在AME ∆中=AM 2 ,ME =1,3=AE∴222AE ME AM +=, ∴AME ∆是直角三角形 ∴︒=∠90AEM…………(2分)又 MN ∥BC ∴︒=∠90ABC…………(3分)∴BC AB ⊥ 又 AB 是直径 ∴BC 是⊙O 的切线…………(4分)(2)解:连接OM ,设⊙O 的半径是r…………(5分)在OEM Rt ∆中 3OE r =- …………(6分) ∴222(3)1r r =-+ …………(7分) ∴233r =…………(8分)七、(本题满分10分)24题图O E M CBAN25.解:(1)根据题意得:(2520)(25010)w x x =+--…………(2分)即:)250(1250200102≤≤++-=x x x w或210(10)2250(025)w x x =--+≤≤ …………(3分) (2) 010<-,抛物线开口向下,二次函数有最大值 当10)10(22002=-⨯-=-=a b x 时,销售利润最大此时销售单价为:10+25=35(元)答: 销售单价为35元时,该商品每天的销售利润最大.…………(5分)(3)由(2)可知,抛物线对称轴是直线10=x ,开口向下,对称轴左侧w 随x 的增大而增大,对称轴右侧w 随x 的增大而减小 方案A :根据题意得, 5≤x ∴50≤≤x 当5=x 时,利润最大最大利润为2000125052005102=+⨯+⨯-=w (元)………(7分)方案B :根据题意得,162025≥-+x∴11≥x ∴2511≤≤x∴当x =11时,利润最大最大利润为224012501120011102=+⨯+⨯-=w (元)……(9分) 20002240>∴综上所述,方案B 最大利润更高 …………(10分)八、(本题满分13分)26.(1)答:COB ∆是等边三角形 …………(1分) 证明: AB DE ⊥∴︒=∠90DOB又 DC BC =∴BC OC =…………(2分)∴OB BC OC == ∴COB ∆是等边三角形…………(3分) (2)解:连接AD…………(4分)AB 为圆O 的直径 ∴︒=∠90ACB又 DC BC =F图1DCO(E)ABBO A图2EFCD∴10==AB AD∴68102222=-=-=DE AD AE ∴4EB =…………(5分)又 ︒=∠+∠︒=∠+∠90,90BDE B BAC B ∴BDE BAC ∠=∠ ∴AEF ∆∽DEB ∆ …………(6分) ∴DE AEEB EF =…………(7分)∴864=EF ∴3=EF …………(8分)(3)答;存在当OEF ∆和ABC ∆相似时 ①如图3,若FOE CAB ∠=∠ 则AF OF = 又 AB DE ⊥ ∴252===OA AE OE …………(10分)②如图4,若CBA EOF ∠=∠ 则OF ∥BD∴21=BC OF ………(11分) ∴41=BD OF ∴41==BD OF BE OE …………(12分) ∴415=+OE OE∴35=OE综上所述:OE 的长为25或35 …………(13分)。

内蒙古自治区2019年初三毕业考试考试数学试卷及答案

内蒙古自治区2019年初三毕业考试考试数学试卷及答案

2019年内蒙古自治区初三毕业考试考试数学试卷及答案数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-= A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形; (3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3 ∴CD=5-3=2 四、解答题(二) 20.(1)(2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得: ⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得:2500)70(4030≤-+x x 解得:x ≥30∴A 型号的最少要30台 五、解答题(三)23.(1)∵AB=3BD,AB=3 ∴BD=1 ∴D 点坐标为(1,1) 代入xk y =得:k=1(2)联立y=3x 与xy 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--= 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MD ME HE ⋅=2 ∴NH=MDMENE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅)=)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。

2019-2020学年内蒙古呼伦贝尔市、兴安盟中考数学模拟试卷(有标准答案)

2019-2020学年内蒙古呼伦贝尔市、兴安盟中考数学模拟试卷(有标准答案)

内蒙古呼伦贝尔市、兴安盟中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣ D.22.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x53.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查4.下列几何体中,主视图是矩形的是()A. B.C.D.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3156.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.210.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m211.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x= .14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有秒.15.不等式组的解集是.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.19.解方程:.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.四、(本题7分)22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF ⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.内蒙古呼伦贝尔市、兴安盟中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣ D.2【考点】倒数.【分析】直接根据倒数的定义求解.【解答】解:﹣的倒数为﹣2.故选:A.【点评】本题考查了倒数的定义:a的倒数为(a≠0).2.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【考点】全面调查与抽样调查.【分析】卫生死角、审核书稿中的错别字、八名同学的身高情况应该全面调查,而中学生人数较多,对其睡眠情况的调查应该是抽样调查.【解答】解:A、对某小区的卫生死角适合全面调查,所以此选项错误;B、审核书稿中的错别字应该全面调查,所以此选项错误;C、对八名同学的身高情况应该全面调查,所以此选项错误;D、对中学生目前的睡眠情况应该抽样调查,所以此选项正确;故选D.【点评】本题考查了全面调查和抽样调查,统计调查的方法有全面调查(即普查)和抽样调查两种,一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.4.下列几何体中,主视图是矩形的是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据主视图的概念找出各几何体的主视图.【解答】解:A、圆锥的主视图为等腰三角形;B、圆柱的主视图为矩形;C、三棱柱的主视图为中间有一实线的矩形;D、球体的主视图为圆;故选:B.【点评】本题考查了简单几何体的三视图,主视图为从物体正面看到的视图.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.【解答】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.【点评】本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化﹣平移,解题的关键是明确题意,找出所求点需要的条件.7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°【考点】等腰三角形的性质;平行线的性质.【分析】根据AD∥BC可得出∠C=∠1=70°,再根据AB=AC即可得出∠B=∠C=70°,结合三角形的内角和为180°,即可算出∠BAC的大小.【解答】解:∵AD∥BC,∴∠C=∠1=70°,∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=40°.故选A.【点评】本题考查了等腰三角形的性质以及平行线的性质,解题的关键是找出∠B=∠C=70°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.【考点】算术平均数.【分析】根据平均数的公式,求解即可.用所有数据的和除以(a+b+c).【解答】解:由题意知,a个x1的和为ax1,b个x2的和为bx2,c个x3的和为cx3,数据总共有a+b+c个,∴这个样本的平均数=,故选:B.【点评】本题考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【考点】二次根式的性质与化简.【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时, =0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质: =|a|.10.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2C.80m2D.40m2【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2),然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2).每小时绿化面积为100÷2=50(m2).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.11.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣【考点】二次函数图象与几何变换.【专题】推理填空题.【分析】根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式是多少即可.【解答】解:将抛物线y=﹣x2向下平移1个单位长度,得到的抛物线的解析式是:y=﹣x2﹣1,再向左平移1个单位长度,得到的抛物线的解析式是:y=﹣(x+1)2﹣1=﹣x2﹣x﹣.故选:A.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选:C.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x= x(y﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再根据完全平方公式进行二次分解.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.故答案为:x(y﹣2)2.【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有 3.1536×107秒.【考点】科学记数法—表示较大的数.【分析】先求出365×8.64×104=3153.6×104秒,然后再根据科学记数法的表示方法整理即可.大于10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:365×8.64×104=3 153.6×104=3.153 6×107秒.故答案为3.153 6×107秒.【点评】本题考查用科学记数法表示较大的数.科学记数法在实际生活中有着广泛的应用,给我们记数带来方便,考查科学记数法就是考查我们应用数学的能力.15.不等式组的解集是x>3 .【考点】解一元一次不等式组.【专题】规律型;方程思想.【分析】分别解出题中两个不等式组的解,然后根据口诀求出x的交集,就是不等式组的解集.【解答】解:由(1)得,x>2由(2)得,x>3所以解集是:x>3.【点评】此题主要考查了一元一次不等式组的解法,比较简单.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为9 cm.【考点】圆锥的计算.【分析】根据扇形的公式结合扇形的半径及扇形的面积可得出扇形的弧长,再利用圆的周长公式即可得出帽子的底面半径.【解答】解:∵扇形的半径为36cm,面积为324πcm2,∴扇形的弧长L===18π,==9cm.∴帽子的底面半径R1故答案为:9.【点评】本题考查了圆锥的计算、扇形的面积以及圆的周长,解题的关键是熟练的运用扇形的弧长以及圆的周长公式.本题属于基础题,难度不大,解决该题型题目时,根据圆锥的制作过程找出圆锥的底面周长等于扇形的弧长是关键.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.【考点】旋转的性质.【分析】在Rt△ABC中,由勾股定理求得AB=5,由旋转的性质可知AD=A′D,设AD=A′D=BE=x,则DE=5﹣2x,根据旋转90°可证△A′DE∽△ACB,利用相似比求x,再求△A′DE的面积.【解答】解:Rt△ABC中,由勾股定理求AB==5,由旋转的性质,设AD=A′D=BE=x,则DE=5﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=,∴S=DE×A′D=×(5﹣2×)×=,△A′DE故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理及旋转的性质.关键是根据旋转的性质得出相似三角形,利用相似比求解.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.【考点】分母有理化;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】先计算特殊角的三角函数值、分母有理化、零指数幂以及负整数指数幂,然后计算加减法.【解答】解:原式=3×﹣+1+4,=5.【点评】本题综合考查了分母有理化、零指数幂以及负整数指数幂等知识点,熟记计算法则即可解题,属于基础题.19.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.【点评】本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.【考点】解直角三角形.【专题】计算题.【分析】根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.【解答】解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.【考点】列表法与树状图法;点的坐标.【专题】计算题.【分析】(1)树状图展示所有6种等可能的结果数,(2)根据点在x轴上的坐标特征确定点Q在x轴上的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有6种等可能的结果数,它们为(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.四、(本题7分)22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF ⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;(3)利用样本中优和良的天数所占比例乘以一年(365天)即可求出达到优和良的总天数.【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年(365天)达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.【考点】切线的判定.【分析】(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.【解答】(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,∵OE=10.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴=,∴BC=2OE=20,即BC的长是20.【点评】本题考查了切线的判定与性质.解答(2)题时,也可以根据三角形中位线定理来求线段BC的长度.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质.【分析】(1)对于抛物线解析式,令y=0求出x的值,确定出A与B坐标,令x=0求出y的值确定出C的做准备,进而求出对称轴即可;(2)①根据B与C坐标,利用待定系数法确定出直线BC解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;②连接BF,设直线PF与x轴交于点M,求出OB的长,三角形BCF面积等于三角形BFP面积加上三角形CFP 面积,列出S关于m的二次函数解析式,利用二次函数性质确定出S取得最大值时m的值即可.【解答】解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,∵0<m<3,∴yF >yP,∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF +S△CPF=PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),则当m=时,S取得最大值.【点评】此题属于二次函数综合题,涉及的知识有:抛物线与坐标轴的交点,二次函数的图象与性质,待定系数法确定一次函数解析式,坐标与图形性质,熟练掌握二次函数性质是解本题的关键.。

内蒙古呼伦贝尔市、兴安盟2019届中考数学模拟试卷(解析版)

内蒙古呼伦贝尔市、兴安盟2019届中考数学模拟试卷(解析版)

2019年内蒙古呼伦贝尔市、兴安盟中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣D.22.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x53.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查4.下列几何体中,主视图是矩形的是()A. B.C.D.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 6.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.210.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2 C.80m2 D.40m211.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x=.14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有秒.15.不等式组的解集是.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.19.解方程:.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.四、(本题7分)22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.2019年内蒙古呼伦贝尔市、兴安盟中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣的倒数为()A.﹣2 B.C.﹣D.2【考点】倒数.【分析】直接根据倒数的定义求解.【解答】解:﹣的倒数为﹣2.故选:A.【点评】本题考查了倒数的定义:a的倒数为(a≠0).2.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查【考点】全面调查与抽样调查.【分析】卫生死角、审核书稿中的错别字、八名同学的身高情况应该全面调查,而中学生人数较多,对其睡眠情况的调查应该是抽样调查.【解答】解:A、对某小区的卫生死角适合全面调查,所以此选项错误;B、审核书稿中的错别字应该全面调查,所以此选项错误;C、对八名同学的身高情况应该全面调查,所以此选项错误;D、对中学生目前的睡眠情况应该抽样调查,所以此选项正确;故选D.【点评】本题考查了全面调查和抽样调查,统计调查的方法有全面调查(即普查)和抽样调查两种,一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.4.下列几何体中,主视图是矩形的是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据主视图的概念找出各几何体的主视图.【解答】解:A、圆锥的主视图为等腰三角形;B、圆柱的主视图为矩形;C、三棱柱的主视图为中间有一实线的矩形;D、球体的主视图为圆;故选:B.【点评】本题考查了简单几何体的三视图,主视图为从物体正面看到的视图.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6.将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.【解答】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选D.【点评】本题考查关于x轴、y轴对称的点的坐标、坐标与图形的变化﹣平移,解题的关键是明确题意,找出所求点需要的条件.7.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°【考点】等腰三角形的性质;平行线的性质.【分析】根据AD∥BC可得出∠C=∠1=70°,再根据AB=AC即可得出∠B=∠C=70°,结合三角形的内角和为180°,即可算出∠BAC的大小.【解答】解:∵AD∥BC,∴∠C=∠1=70°,∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=40°.故选A.【点评】本题考查了等腰三角形的性质以及平行线的性质,解题的关键是找出∠B=∠C=70°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.8.从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.B.C.D.【考点】算术平均数.【分析】根据平均数的公式,求解即可.用所有数据的和除以(a+b+c).【解答】解:由题意知,a个x1的和为ax1,b个x2的和为bx2,c个x3的和为cx3,数据总共有a+b+c 个,∴这个样本的平均数=,故选:B.【点评】本题考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【考点】二次根式的性质与化简.【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.10.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.100m2B.50m2 C.80m2 D.40m2【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2),然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100(m2).每小时绿化面积为100÷2=50(m2).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.11.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣【考点】二次函数图象与几何变换.【专题】推理填空题.【分析】根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式是多少即可.【解答】解:将抛物线y=﹣x2向下平移1个单位长度,得到的抛物线的解析式是:y=﹣x2﹣1,再向左平移1个单位长度,得到的抛物线的解析式是:y=﹣(x+1)2﹣1=﹣x2﹣x﹣.故选:A.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD 中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=4.故线段BQ的长为4.故选:C.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.二、填空题(本题5个小题,每小题3分,共15分)13.因式分解:xy2﹣4xy+4x=x(y﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再根据完全平方公式进行二次分解.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.故答案为:x(y﹣2)2.【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用完全平方公式进行二次分解,分解要彻底.14.一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有 3.1536×107秒.【考点】科学记数法—表示较大的数.【分析】先求出365×8.64×104=3153.6×104秒,然后再根据科学记数法的表示方法整理即可.大于10时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:365×8.64×104=3 153.6×104=3.153 6×107秒.故答案为3.153 6×107秒.【点评】本题考查用科学记数法表示较大的数.科学记数法在实际生活中有着广泛的应用,给我们记数带来方便,考查科学记数法就是考查我们应用数学的能力.15.不等式组的解集是x>3.【考点】解一元一次不等式组.【专题】规律型;方程思想.【分析】分别解出题中两个不等式组的解,然后根据口诀求出x的交集,就是不等式组的解集.【解答】解:由(1)得,x>2由(2)得,x>3所以解集是:x>3.【点评】此题主要考查了一元一次不等式组的解法,比较简单.16.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为9cm.【考点】圆锥的计算.【分析】根据扇形的公式结合扇形的半径及扇形的面积可得出扇形的弧长,再利用圆的周长公式即可得出帽子的底面半径.【解答】解:∵扇形的半径为36cm,面积为324πcm2,∴扇形的弧长L===18π,∴帽子的底面半径R1==9cm.故答案为:9.【点评】本题考查了圆锥的计算、扇形的面积以及圆的周长,解题的关键是熟练的运用扇形的弧长以及圆的周长公式.本题属于基础题,难度不大,解决该题型题目时,根据圆锥的制作过程找出圆锥的底面周长等于扇形的弧长是关键.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.【考点】旋转的性质.【分析】在Rt△ABC中,由勾股定理求得AB=5,由旋转的性质可知AD=A′D,设AD=A′D=BE=x,则DE=5﹣2x,根据旋转90°可证△A′DE∽△ACB,利用相似比求x,再求△A′DE的面积.【解答】解:Rt△ABC中,由勾股定理求AB==5,由旋转的性质,设AD=A′D=BE=x,则DE=5﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=,∴S△A′DE=DE×A′D=×(5﹣2×)×=,故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理及旋转的性质.关键是根据旋转的性质得出相似三角形,利用相似比求解.三、解答题(本题4个小题,每小题6分,共24分)18.计算:3tan30°﹣+(2016+π)0+(﹣)﹣2.【考点】分母有理化;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】先计算特殊角的三角函数值、分母有理化、零指数幂以及负整数指数幂,然后计算加减法.【解答】解:原式=3×﹣+1+4,=5.【点评】本题综合考查了分母有理化、零指数幂以及负整数指数幂等知识点,熟记计算法则即可解题,属于基础题.19.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.【点评】本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.20.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.【考点】解直角三角形.【专题】计算题.【分析】根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.【解答】解:∵在直角△ABD 中,tan ∠BAD==,∴BD=AD •tan ∠BAD=12×=9,∴CD=BC ﹣BD=14﹣9=5,∴AC===13,∴sinC==. 【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.21.有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点Q 的坐标(x ,y ) (1)写出先Q 所有可能的坐标;(2)求点Q 在x 轴上的概率.【考点】列表法与树状图法;点的坐标.【专题】计算题.【分析】(1)树状图展示所有6种等可能的结果数,(2)根据点在x 轴上的坐标特征确定点Q 在x 轴上的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有6种等可能的结果数,它们为(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)点Q 在x 轴上的结果数为2,所以点Q 在x 轴上的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.四、(本题7分)22.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE ,已知:∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF ⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.五、(本题7分)23.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;(3)利用样本中优和良的天数所占比例乘以一年(365天)即可求出达到优和良的总天数.【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年(365天)达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.六、(本题8分)24.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.【考点】切线的判定.【分析】(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.【解答】(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,∵OE=10.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴=,∴BC=2OE=20,即BC的长是20.【点评】本题考查了切线的判定与性质.解答(2)题时,也可以根据三角形中位线定理来求线段BC的长度.七、(本题10分)25.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.八、(本题13分)26.如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质.【分析】(1)对于抛物线解析式,令y=0求出x的值,确定出A与B坐标,令x=0求出y的值确定出C的做准备,进而求出对称轴即可;(2)①根据B与C坐标,利用待定系数法确定出直线BC解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;②连接BF,设直线PF与x轴交于点M,求出OB的长,三角形BCF面积等于三角形BFP面积加上三角形CFP面积,列出S关于m的二次函数解析式,利用二次函数性质确定出S取得最大值时m 的值即可.【解答】解:(1)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),当x=m时,y=﹣m+3,∴P(m,﹣m+3),令y=﹣x2+2x+3中x=1,得到y=4,∴D(1,4),当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,∵0<m<3,∴y F>y P,∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),则当m=2时,四边形PEDF为平行四边形;②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF=PF•BM+PF•OM=PF(BM+OM)=PF•OB,∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),则当m=时,S取得最大值.【点评】此题属于二次函数综合题,涉及的知识有:抛物线与坐标轴的交点,二次函数的图象与性质,待定系数法确定一次函数解析式,坐标与图形性质,熟练掌握二次函数性质是解本题的关键.。

2019中 考数学(A)

2019中 考数学(A)

试卷类型A2017年呼伦贝尔市、兴安盟初中毕业生学业考试数 学温馨提示:1.本试卷共6页,满分120分.考试时间120分钟.2.答卷前务必将自己的姓名、考号、座位号、试卷类型(A 或B )涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色字迹签字笔直接答在答题卡上.在试卷上作答无效.3.请将姓名与考号填写在本试卷相应位置上. 4.考试结束,将试卷、答题卡和草纸一并交回.一、选择题(下列各题的四个选项中只有一个正确. 共12小题,每小题3分,共36分)1.2的相反数是 A .2B . 2-C . 2±D .2-2.某几何体的三视图如图所示,则该几何体是A .圆柱 B. 圆锥 C. 三棱锥 D. 三棱柱 3.下列各式计算正确的是 A .243x x x =+B . ()862a a a -=⋅-C .()23)(y y y =-÷- (y ≠0) D.c b a c b a 64232)=( 4.下列长度的三条线段能组成锐角三角形的是A .6,8,8B .6,8,10C .6,8,12D .6,8,145.纳米技术是一种高新技术,纳米是非常小的长度单位,1纳米等于0.000000001米,将1纳米用科学记数法表示为A .7-10米B .8-10米C .9-10米D .10-10米6.如图,在⊙O 中,OA ⊥BC,∠AOB=48°,D 为⊙O 上一点,则∠ADC 的度数是A .24°B .42°C .48°D .12°7.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:鞋店老板比较关注哪种尺码的鞋最畅销,也就是关注卖出鞋的尺码组成一组数据的A. 平均数B. 中位数C. 众数D. 方差8.一元二次方程018162=+-x x 的根的情况是A. 有两个不相等的实数根B.没有实数根C. 只有一个实数根D.有两个相等的实数根 9.下列命题正确的是A. 对角线互相垂直的四边形是菱形B .对角线互相垂直的平行四边形是正方形C .对角线相等的四边形是矩形D .对角线相等的菱形是正方形10.甲、乙两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行 ,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知甲比乙的速度快. 设甲每分钟跑x 米,乙每分钟跑y 米,根据题意,列出方程组正确的是A BC D11.下列关于反比例函数xy 3-=的说法正确的是 ⎩⎨⎧=-=+4003003004006060y x y x ⎩⎨⎧=-=+40055400y x y x ⎩⎨⎧=-=+40055400x y y x ⎩⎨⎧=-=+4003003004006060x y y x 6题图DCBAOA. y 随x 的增大而增大B. 函数图象过点(2,23) C .图象位于第一、第三象限 D. x ﹥0时,y 随x 的增大而增大 12.如图,在Rt △ABC 中,∠C = 90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE + DE 的最小值为 A .548B .524 C . 5D .512二、填空题(本题5个小题,每小题3分,共15分)13.分解因式:=-a a 823 .14.如图,以正六边形ABCDEF 的中心为坐标原点建立平面直角坐标系,顶点C 、F 在x 轴上,顶点A 的坐标为),(31,则顶点D 的坐标为 .15.计算:45°39′+ 65°41′= .16.一组数据5,2,x ,6,4的平均数是4,这组数据的方差是 .17.如图,下列各图中的三个数之间具有相同规律.依此规律用含m,n 的代数式表示y ,则y = .……三、解答题(本题4个小题,每小题6分,共24分) 18.计算:2-14.3--2-5-2-55)()(π+19.先化简,再求值:()()()b a b a b a a -+--2,其中 21=a ,1-=b421341856407870ynm DEA CB14题图20.如图,在平面直角坐标系中,抛物线的顶点为A (1,- 4),且与x 轴交于B 、C 两点,点B 的坐标为(3,0). (1)写出C 点的坐标,并求出抛物线的解析式; (2)观察图象直接写出函数值为正数时,自变量的取值范围.21. 甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9. 芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF 的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点A 按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A 按顺时针连跳4个边长,跳到点E ,再从点E 顺时针连跳7个边长,跳到点F.分别求出芳芳、明明跳回起点A 的概率,并指出游戏规则是否公平.四、(本题7分)22.如图,在平行四边形ABCD 中,AD ﹥AB.(1)作∠BAD 的平分线交BC 于点E ,在AD 边上截取AF = AB ,连接EF (要求:尺规作图,保留作图痕迹,不写作法);(2)判断四边形ABEF 的形状,并说明理由. 五、(本题7分)23.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.21题图C x20题图22题图DCB A男生身高直方图 女生身高扇形图 根据图表中提供的信息,回答下列问题:(1)在样本中,男生身高的中位数落在 组(填组别序号),女生身高在B 组的有 人;(2)在样本中,身高在170≤x <175之间的共有 人,人数最多的是 组(填组别序号)(3)已知该校共有男生500人,女生480人,请估计身高在160≤x <170之间的学生有多少人? 六、(本题8分)24. 如图,AB 是⊙O 的直径,CD 切⊙O 于点D ,且BD ∥OC, 连接AC.(1)求证:AC 是⊙O 的切线;(2)若AB = OC = 4,求图中阴影部分的面积(结果保留根D10%C 35%BE5% A20%A EC B 身高/cm24题图OD CBA号和π) 七、(本题10分)25.某车行经销的A 型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%.(1)求今年A 型车每辆售价多少元?(2)该车行计划7月份用不超过4. 3万元的资金新进一批A 型车和B 型车共50辆,应如何进货才能使这批车售完后获利最多? 今年A ,B 两种型号车的进价和售价如下表:八、(本题13分)26.如图1,在△ABC 中,∠ACB=90°,∠B=30°,AC = 4,D 是AB 的中点,EF 是△ACD 的中位线,矩形EFGH 的顶点都在△ACD 的边上. (1)求线段EF 、FG 的长;(2)如图2,将矩形EFGH 沿AB 向右平移,点F 落在BC 上时停止移动,设矩形移动的距离为x ,矩形与△CBD 重叠部分的面积为S ,求出S 关于x 的函数解析式;(3)如图3,矩形EFGH 平移停止后,再绕点G 按顺时针方向旋转,当点H 落在CD 边上时停止旋转,此时矩形记作E 1F 1GH 1,设旋转角为α,求cos α的值.图3图2A B CD EFG H 图1。

呼伦贝尔、兴安盟中考数学试题及答.doc

呼伦贝尔、兴安盟中考数学试题及答.doc

2015呼伦贝尔、兴安盟中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2014-2020年内蒙古兴安盟中考数学试题汇编(含参考答案与解析)

2014-2020年内蒙古兴安盟中考数学试题汇编(含参考答案与解析)

2014—2020年内蒙古兴安盟中考数学试题汇编(含参考答案与解析)1、2014年内蒙古兴安盟中考数学试题及参考答案与解析 (2)2、2015年内蒙古兴安盟中考数学试题及参考答案与解析 (23)3、2016年内蒙古兴安盟中考数学试题及参考答案与解析 (42)4、2017年内蒙古兴安盟中考数学试题及参考答案与解析 (59)5、2018年内蒙古兴安盟中考数学试题及参考答案与解析 (82)6、2019年内蒙古兴安盟中考数学试题及参考答案与解析 (104)7、2020年内蒙古兴安盟中考数学试题及参考答案与解析 (125)2014年内蒙古兴安盟中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分) 1.下列四个数中最小的数是( ) A .3 B .-3 C .13- D .02.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109 B .0.21×109 C .2.1×108 D .21×107312a -,则( )A .a <12 B .a≤12 C .a >12 D .a≥124.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .5.一组数据﹣2、0、﹣3、﹣2、﹣3、1、x 的众数是﹣3,则这组数据的中位数是( ) A .﹣3 B .﹣2 C .1 D .06.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为( )A .2πB .6πC .7πD .8π 7.若方程()23312mm m x +++=-是一元一次方程,则m 的值是( )A .-2或-1B .﹣1C .-2D .无法确定8.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF=2,则PE 的长为( )A B .2 C . D .39.关于x 的一元二次方程(a+1)x 2﹣4x ﹣1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >﹣5B .a >﹣5且a≠﹣1C .a <﹣5D .a≥﹣5且a≠﹣110.如图,在△OAB 中,C 是AB 的中点,反比例函数ky x=(x >0)在第一象限的图象经过A 、C 两点,若△OAB 面积为6,则k 的值为( )A .2B .4C .8D .16二、填空题(本大题共6小题,每小题3分,共18分) 11.分解因式ab 3-ab= . 12.已知实数x 满足13x x+=,则221x x +=的值为 .13.从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k 值,则所得的直线不经过第三象限的概率是 .14.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种三分之一,结果提前4天完成任务,原计划每天种 棵树.15.如图,已知正方形ABCD 的边长为1,以顶点A 、B 为圆心,1为半径的两弧交于点E ,以顶点C 、D 为圆心,1为半径的两弧交于点F ,则EF 的长为 .16.已知如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,△APD 中AP 边上的高为 .三、解答题(本大题共10小题,满分72分)17.(5分)计算:)11tan 6012-⎛⎫-︒-+ ⎪⎝⎭.18.(5分)如图,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90° (1)画出旋转之后的△AB′C′;(2)求线段AC 旋转过程中扫过的扇形的面积.19.(5分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B处,那么tan∠ABP的值为多少?20.(5分)17.如图,一次函数y=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数kyx图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.21.(5分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠E=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.22.(8分)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数.23.(8分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.24.(9分)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数1yx=-图象上的概率.25.(10分)已知一次函数y=x+1的图象和二次函数y=x2+bx+c的图象都经过A、B两点,且点A 在y轴上,B点的纵坐标为5.(1)求这个二次函数的解析式;(2)将此二次函数图象的顶点记作点P,求△ABP的面积;(3)已知点C、D在射线AB上,且D点的横坐标比C点的横坐标大2,点E、F在这个二次函数图象上,且CE、DF与y轴平行,当CF∥ED时,求C点坐标.26.(12分)已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(﹣1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中最小的数是()A.3 B.-3 C.13-D.0【知识考点】有理数大小比较.【思路分析】找出四个数中最小的数即可.【解答过程】解:∵13033--<<<,∴-3是四个数中最小的数.故选:B.【总结归纳】此题考查了有理数大小比较,将各数正确按照从小到大顺序排列是解本题的关键.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将210000000用科学记数法表示为:2.1×108.故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.312a-,则()A.a<12B.a≤12C.a>12D.a≥12【知识考点】二次根式的性质与化简.【思路分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.12a=-,∴1﹣2a≥0,解得a≤12.故选:B.【总结归纳】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.4.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【知识考点】一次函数图象与系数的关系.【思路分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答过程】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选:A.【总结归纳】本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.5.一组数据﹣2、0、﹣3、﹣2、﹣3、1、x的众数是﹣3,则这组数据的中位数是()A .﹣3B .﹣2C .1D .0 【知识考点】中位数;众数.【思路分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个. 【解答过程】解:∵﹣2、0、﹣3、﹣2、﹣3、1、x 的众数是﹣3, ∴x=﹣3,先对这组数据按从小到大的顺序重新排序﹣3、﹣3、﹣3、﹣2、﹣2、0、1位于最中间的数是﹣2, ∴这组数的中位数是﹣2. 故选B .【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为( )A .2πB .6πC .7πD .8π【知识考点】由三视图判断几何体;圆柱的计算.【思路分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积. 【解答过程】解:∵正视图和俯视图是矩形,左视图为圆形, ∴可得这个立体图形是圆柱, ∴这个立体图形的侧面积是2π×3=6π, 底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π; 故选:D .【总结归纳】此题考查了由三视图判断几何体,根据三视图的特点描绘出图形是解题的关键,掌握好圆柱体积公式=底面积×高. 7.若方程()23312mm m x +++=-是一元一次方程,则m 的值是( )A .-2或-1B .﹣1C .-2D .无法确定 【知识考点】一元一次方程的定义;解一元二次方程.【思路分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0). 【解答过程】解:由()23312mm m x +++=-是一元一次方程,得210331m m m +≠⎧⎨++=⎩, 解得m=-2, 故选:C .【总结归纳】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF=2,则PE 的长为( )A B .2 C . D .3【知识考点】等边三角形的性质;线段垂直平分线的性质;含30度角的直角三角形;勾股定理. 【思路分析】先根据△ABC 是等边三角形P 是∠ABC 的平分线可知∠EBP=∠QBF=30°,再根据BF=2,FQ ⊥BP 可得出BQ 的长,再由BP=2BQ 可求出BP 的长,在Rt △BEF 中,根据∠EBP=30°即可求出PE 的长.【解答过程】解:∵△ABC 是等边三角形P 是∠ABC 的平分线, ∴∠EBP=∠QBF=30°,∵BF=2,QF 为线段BP 的垂直平分线, ∴∠FQB=90°, ∴BQ=BF•cos30°=2×=,∴BP=2BQ=2,在Rt △BEP 中,∵∠EBP=30°, ∴PE=BP=. 故选:A .【总结归纳】本题考查的是等边三角形的性质、角平分线的性质及直角三角形的性质,熟知等边三角形的三个内角都是60°是解答此题的关键.9.关于x 的一元二次方程(a+1)x 2﹣4x ﹣1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >﹣5B .a >﹣5且a≠﹣1C .a <﹣5D .a≥﹣5且a≠﹣1【知识考点】根的判别式;一元二次方程的定义.【思路分析】在与一元二次方程有关的求值问题中,方程x 2﹣x+a=0有两个不相等的实数根,方程必须满足△=b 2﹣4ac >0,即可求得.【解答过程】解:x 的一元二次方程(a+1)x 2﹣4x ﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=16+4a+4>0,解得a>﹣5∵a+1≠0∴a≠﹣1.故选:B.【总结归纳】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.如图,在△OAB中,C是AB的中点,反比例函数kyx(x>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为()A.2 B.4 C.8 D.16【知识考点】反比例函数系数k的几何意义;三角形中位线定理.【思路分析】分别过点A、点C作OB的垂线,垂足分别为点M、点N,根据C是AB的中点得到CN为△AMB的中位线,然后设MN=NB=a,CN=b,AM=2b,根据OM•AM=ON•CN,得到OM=a,最后根据面积=3a•2b÷2=3ab=6求得ab=2从而求得k=a•2b=2ab=4.【解答过程】解:分别过点A、点C作OB的垂线,垂足分别为点M、点N,如图,∵点C为AB的中点,CN∥AM,∴CN为△AMB的中位线,∴MN=NB=a,CN=b,AM=2b,又∵OM•AM=ON•CN∴OM=a∴这样面积=3a•2b÷2=3ab=6,∴ab=2,∴k=a•2b=2ab=4,故选:B.【总结归纳】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,解题的关键是正确的作出辅助线.二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式ab3-ab= .【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答过程】解:原式=ab(b2-1)=ab(b+1)(b-1),故答案为:ab(b+1)(b-1).【总结归纳】本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.12.已知实数x满足13xx+=,则221xx+=的值为.【知识考点】完全平方公式.【思路分析】将x+=3两边平方,然后移项即可得出答案.【解答过程】解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.【总结归纳】此题考查了完全平方公式的知识,掌握完全平方公式的展开式的形式是解答此题的关键,属于基础题.13.从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过第三象限的概率是.【知识考点】概率公式;一次函数图象与系数的关系.【思路分析】由于y=kx+1,所以当直线不经过第三象限时k<0,由于一共有3个数,其中小于0的数有2个,容易得出事件A的概率为23.【解答过程】解:∵y=kx+1,当直线不经过第三象限时k<0,其中3个数中小于0的数有2个,因此概率为23.故答案为:23.【总结归纳】本题考查一次函数的性质和等可能事件概率的计算.用到的知识点为:概率=所求情况数与总情况数之比.当一次函数y=kx+b不经过第三象限时k<0.14.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种三分之一,结果提前4天完成任务,原计划每天种棵树.【知识考点】分式方程的应用.【思路分析】根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.【解答过程】解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.所以原计划每天种30棵树,故答案为:30.【总结归纳】此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.15.如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为.【知识考点】正方形的性质;全等三角形的判定与性质;勾股定理.【思路分析】连接AE,BE,DF,CF,可证明三角形AEB是等边三角形,利用等边三角形的性质和勾股定理即可求出边AB上的高线,同理可求出CD边上的高线,进而求出EF的长.【解答过程】解:连接AE,BE,DF,CF.∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,∴AB=AE=BE,∴△AEB是等边三角形,∴边AB上的高线为EN=,延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,则EM=1﹣EN=1﹣,∴NF=EM=1﹣,∴EF=1﹣EM﹣NF=﹣1.故答案为:﹣1.【总结归纳】本题考查了正方形的性质和等边三角形的判定和性质以及勾股定理的运用,解题的关键是添加辅助线构造等边三角形,利用等边三角形的性质解答即可.16.已知如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中AP边上的高为.【知识考点】轴对称﹣最短路线问题;直角梯形.【思路分析】要求△APD 中边AP 上的高,根据三角形的面积,由勾股定理即可得解. 【解答过程】解:过点D 作DE ⊥BC 于E ,∵AD ∥BC ,AB ⊥BC , ∴四边形ABED 是矩形, ∴BE=AD=2, ∵BC=CD=5, ∴EC=3, ∴AB=DE=4,延长AB 到A′,使得A′B=AB ,连接A′D 交BC 于P ,此时PA+PD 最小, ∴△A′PB ≌△DPE , ∴BP=EP , ∴PA=PD , ∴BP=AD=1, ∴AP=,在△APD 中,由面积公式可得 △APD 中边AP 上的高=2×4÷=.故答案为:.【总结归纳】此题综合性较强,考查了梯形一般辅助线的作法、勾股定理、三角形的面积计算等知识点.三、解答题(本大题共10小题,满分72分)17.(5分)计算:)11tan 6012-⎛⎫-︒-+ ⎪⎝⎭.【知识考点】实数的运算;负整数指数幂;特殊角的锐角三角函数值;零指数幂.【思路分析】首先利用负整数指数幂的定义,特殊角的三角函数值,零指数幂的定义,化简二次根式等知识化简各部分,然后进行实数的运算即可.【解答过程】解:原式21=-+1=【总结归纳】本题主要考查了实数的运算,正确化简各部分是解答本题的关键.18.(5分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.【知识考点】作图﹣旋转变换;扇形面积的计算.【思路分析】(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可;(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【解答过程】解:(1)△AB′C′如图所示;(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积==π.【总结归纳】本题考查了利用旋转变换作图,扇形面积的计算,是基础题,熟练掌握网格结构,准确找出对应点的位置是解题的关键.19.(5分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B处,那么tan∠ABP的值为多少?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意作出图形后知道北偏东30°与北偏西60°成直角,利用正切的定义求值即可.【解答过程】解:如图,∵灯塔A位于客轮P的北偏东30°方向,且相距20海里.∴PA=20∵客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,∴∠APB=90°BP=60×=40∴tan∠ABP===【总结归纳】本题考查了解直角三角形的应用,解题的关键是根据实际问题整理出直角三角形并利用正切的定义求值.20.(5分)17.如图,一次函数y=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数kyx图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.【知识考点】反比例函数综合题.【思路分析】(1)首先根据一次函数解析式算出M点的坐标,再把M点的坐标代入反比例函数解析式即可;(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C,根据一次函数解析式表示出B点坐标,再利用△OMB的面积=×BO×MC算出面积,再利用勾股定理算出MO的长,再次利用三角形的面积公式可得OM•h,根据前面算的三角形面积可算出h的值.【解答过程】解:(1)∵一次函数y=﹣x﹣1过M(﹣2,m),∴m=1,∴M(﹣2,1)把M(﹣2,1)代入y=得:k=﹣2,∴反比列函数为y=﹣;(2)设点B到直线OM的距离为h,过M点作MC⊥y轴,垂足为C.∵一次函数y=﹣x﹣1与y轴交于点B,∴点B的坐标是(0,﹣1).S△OMB=×1×2=1,在Rt△OMC中,OM===,∵S△OMB=OM•h=1,∴h==.即:点B到直线OM的距离为.【总结归纳】此题主要考查了反比例函数与一次函数的综合应用,关键是熟练掌握三角形的面积公式,并能灵活运用.21.(5分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O 的另一个交点为E,连接AC,CE.(1)求证:∠E=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.【知识考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【思路分析】(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x﹣2)2+x2=42,解此方程即可求得CB的长,继而求得CE的长.【解答过程】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;又∵∠E=∠B,∴∠E=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.【总结归纳】此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度适中,注意掌握方程思想与数形结合思想的应用.22.(8分)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数.【知识考点】条形统计图;扇形统计图.【思路分析】(1)用1.5﹣2小时的频数除以其所占的百分比即可求得抽样调查的人数;(2)根据圆心角的度数求出每个小组的频数即可补全统计图;(3)用人数除以总人数乘以周角即可求得圆心角的度数.【解答过程】解:(1)观察统计图知:用车时间在1.5~2小时的有30个,其圆心角为54°,故抽查的总人数为30÷=200个;(2)用车时间在0.5~1小时的有200×=60个;用车时间在2~2.5小时的有200﹣60﹣30﹣90=20个,统计图为:中位数落在1﹣1.5小时这一小组内.(3)用车时间在1~1.5小时的部分对应的扇形圆心角的度数为×360°=162°.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.【知识考点】一元二次方程的应用.【思路分析】(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.【解答过程】解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.【总结归纳】本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.24.(9分)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数1yx=-图象上的概率.【知识考点】列表法与树状图法;绝对值;反比例函数图象上点的坐标特征.【思路分析】(1)根据题意列表,然后根据列表求得所有可能的结果与|m+n|>1的情况,根据概率公式求解即可.(2)根据(1)中的表格,即可求得点(m,n)落在函数y=﹣图象上的情况,由概率公式即可求得答案.【解答过程】解:(1)表格如下:转盘乙转盘甲﹣1 0 1 2﹣1 (﹣1,﹣1)(﹣1,0)(﹣1,1)(﹣1,2)﹣(﹣,﹣1)(﹣,0)(﹣,1)(﹣,2)1 (1,﹣1)(1,0)(1,1)(1,2)由表格可知,所有等可能的结果有12种,其中|m+n|>1的情况有5种,所以|m+n|>1的概率为P1=;(2)点(m,n)在函数y=﹣上的概率为P2==.【总结归纳】此题为反比例函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.反比例函数上的点的横纵坐标的积为反比例函数的比例系数.第二象限点的符号为(﹣,+).25.(10分)已知一次函数y=x+1的图象和二次函数y=x2+bx+c的图象都经过A、B两点,且点A 在y轴上,B点的纵坐标为5.(1)求这个二次函数的解析式;(2)将此二次函数图象的顶点记作点P,求△ABP的面积;(3)已知点C、D在射线AB上,且D点的横坐标比C点的横坐标大2,点E、F在这个二次函数图象上,且CE、DF与y轴平行,当CF∥ED时,求C点坐标.【知识考点】二次函数综合题.【思路分析】(1)利用一次函数结合A、B两点的特点,求出A、B两点的坐标,然后将A、B的坐标代入y=x2+bx+c,即可组成方程组求出b、c的值,从而得到二次函数的解析式;(2)画出二次函数图象,画出一次函数AB的图象,将△APB转化为△APG和△PGB两个三角形的面积的和来解答;(3)设C点横坐标为a,据题意此推知C点坐标为(a,a+1),D点坐标为(a+2,a+3),E点坐标为(a,a2﹣3a+1),F点坐标为(a+2,a2+a﹣1),得到CE=﹣a2+4a,DF=a2﹣4,根据CE∥DF,CF∥ED,得出四边形CEDF是平行四边形,根据平行四边形的性质,求出﹣a2+4a=a2﹣4,或﹣a2+4a=﹣a2+4求出a的值,从而得到C点坐标.【解答过程】解:(1)如图1,A点坐标为(0,1),将y=5代入y=x+1,得x=4,∴B点坐标为(4,5),将A、B两点坐标代入y=x2+bx+c,解得,∴二次函数解析式为y=x2﹣3x+1.(2)y=x2﹣3x+()2﹣()2+1=(x﹣)2﹣,P点坐标为(,),抛物线对称轴与直线AB的交点记作点G,则点G(,),∴PG=,∴.(3)如图2,设C点横坐标为a,则C点坐标为(a,a+1),D点坐标为(a+2,a+3),E点坐标为(a,a2﹣3a+1),F点坐标为(a+2,a2+a﹣1),由题意,得CE=﹣a2+4a,DF=a2﹣4,∵且CE、DF与y轴平行,∴CE∥DF,又∵CF∥ED,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年内蒙古兴安盟中考数学试题及参考答案与解析(满分120分,考试时间120分钟)一、选择题(下列各题的四个选项中只有一个正确。

本题共12小题,每小题3分,共36分)1.在实数﹣3,,0,﹣1中,最小的数是()A.﹣3 B.0 C.﹣1 D.2.下列各式计算正确的是()A.2x3•3x3=6x9B.(﹣ab)4÷(﹣ab)2=﹣a2b2C.3x2+4x2=7x2D.(a+b)2=a2+b2 3.点A(4,﹣2)关于x轴的对称点的坐标为()A.(4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)4.如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD5.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形6.为了鼓励学生加强体育锻炼,学校在制定奖励方案前进行问卷调查,设置“赞成、反对、无所谓”三种意见,从全校2000名学生中随机抽取100名学生进行调查,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.600 B.800 C.1400 D.16807.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个8.下列命题正确的是()A.概率是1%的事件在一次试验中一定不会发生B.要了解某公司生产的100万只灯泡的使用寿命,可以采用全面调查的方式C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的成绩更稳定D.随意翻到一本书的某页,页码是奇数是随机事件9.如图,BD是△ABC的角平分线,DE是BC的垂直平分线,∠BAC=90°,AD=3,则CD的长为()A.3B.6 C.5 D.410.甲、乙两人分别从距目的地6千米和10千米的两地同时出发,乙的速度是甲的1.2倍,结果甲比乙早到20分钟.设甲的速度为x千米/时.根据题意,列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=11.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.812.如图,△ABC中,AC=BC=3,AB=2,将它沿AB翻折得到△ABD,点P、E、F分别为线段AB、AD、DB上的动点,则PE+PF的最小值是()A.B.C.D.二、填空题(本题共5个小题,每小题3分,共15分)13.函数y=自变量的取值范围是.14.太阳的半径大约为696000千米,将696000用科学记数表示为.15.若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.16.在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是.(结果保留π)17.下列图形都是由同样大小的菱形按照一定规律组成的,其中第①个图形中共有3个菱形,第②个图形中共有7个菱形,第③个图形中共有13个菱形……按此规律排列下去,第个图形中菱形的个数为10101个.三、解答题(本题共4个小题,每小题6分,共24分)18.(6分)计算:﹣|﹣2|+(1﹣cos45°)+(﹣)﹣2.19.(6分)先化简,再求值:•﹣(+1),其中x=﹣6.20.(6分)如图,海中有一个小岛A,它周围8海里内有暗礁.渔船跟踪鱼群由西向东航行,在B 点测得小岛A在北偏东60°方向上,航行10海里到达C点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?21.(6分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).22.(7分)如图,在△ABC中,BD、CE分别是AC、AB上的中线,BD与CE相交于点O.(1)利用尺规作图取线段CO的中点.(保留作图痕迹,不写作法);(2)猜想CO与OE的长度有什么关系,并说明理由.五、(本题7分)23.(7分)某商场统计了每个营业员在某月的销售额,绘制了如下统计图.解答下列问题:(1)设营业员的月销售额为x(单位:万元).商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25时为称职,当x≥25时为优秀.试求出基本称职、称职两个层次营业员人数所占百分比,并补全扇形图;(2)根据(1)中规定,所有称职和优秀的营业员月销售额的中位数为,众数为;(3)为了调动营业员的积极性,商场制定月销售额奖励标准,凡达到或超过这个标准的受到奖励.如果要使称职和优秀的营业员半数左右能获奖,奖励标准应定为多少万元?简述理由.六、(本题8分)24.(8分)如图,△ACE内接于⊙O,AB是⊙O的直径,弦CD⊥AB于点H,交AE于点F,过点E作EG∥AC,分别交CD、AB的延长线于点G、M.(1)求证:△ECF∽△GCE;(2)若tan G=,AH=3,求⊙O半径.25.(10分)某书店在“读书节”之前,图书按标价销售,在“读书节”期间制定了活动计划.(1)“读书节”之前小明发现:购买5本A图书和8本B图书共花279元,购买10本A图书比购买6本B图书多花162元,请求出A、B图书的标价;(2)“读书节”期间书店计划用不超过3680元购进A、B图书共200本,且A图书不少于50本,A、B两种图书进价分别为24元、16元;销售时准备A图书每本降价1.5元,B图书价格不变,那么书店如何进货才能使利润最大?八、(本题13分)26.(13分)如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC 重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与解析一、选择题(下列各题的四个选项中只有一个正确。

本题共12小题,每小题3分,共36分)1.在实数﹣3,,0,﹣1中,最小的数是()A.﹣3 B.0 C.﹣1 D.【知识考点】算术平方根;实数大小比较.【思路分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解题过程】解:∵﹣3<﹣1<0<,∴在实数﹣3,,0,﹣1中,最小的数是﹣3.故选:A.【总结归纳】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列各式计算正确的是()A.2x3•3x3=6x9B.(﹣ab)4÷(﹣ab)2=﹣a2b2C.3x2+4x2=7x2D.(a+b)2=a2+b2【知识考点】整式的混合运算.【思路分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解题过程】解:2x3•3x3=6x6,故选项A错误;(﹣ab)4÷(﹣ab)2=a2b2,故选项B错误;3x2+4x2=7x2,故选项C正确;(a+b)2=a2+2ab+b2,故选项D错误;故选:C.【总结归纳】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.3.点A(4,﹣2)关于x轴的对称点的坐标为()A.(4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】直接利用关于x轴对称点的性质,横坐标相等,纵坐标互为相反数,进而得出答案.【解题过程】解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.【总结归纳】此题主要考查了关于x轴对称点的性质,利用横纵坐标关系得出是解题关键.4.如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD【知识考点】全等三角形的判定.【思路分析】根据全等三角形的判定定理判断.【解题过程】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.【总结归纳】本题考查的是全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形【知识考点】多边形内角与外角.【思路分析】根据多边形的内角和公式(n﹣2)•180°和外角和定理列出方程,然后求解即可.【解题过程】解:设多边形的边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:D.【总结归纳】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.6.为了鼓励学生加强体育锻炼,学校在制定奖励方案前进行问卷调查,设置“赞成、反对、无所谓”三种意见,从全校2000名学生中随机抽取100名学生进行调查,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.600 B.800 C.1400 D.1680【知识考点】用样本估计总体.【思路分析】用总人数乘以样本中持“赞成”意见的学生人数占把被调查人数的比例即可得.【解题过程】解:估计全校持“赞成”意见的学生人数约为2000×=1400(人),故选:C.【总结归纳】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.7.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个【知识考点】由三视图判断几何体.【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解题过程】解:综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选:B.【总结归纳】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.下列命题正确的是()A.概率是1%的事件在一次试验中一定不会发生B.要了解某公司生产的100万只灯泡的使用寿命,可以采用全面调查的方式C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的成绩更稳定D.随意翻到一本书的某页,页码是奇数是随机事件【知识考点】全面调查与抽样调查;算术平均数;方差;随机事件;概率的意义.【思路分析】根据随机事件、方差、普查和抽样调查等知识逐个判断即可.【解题过程】解:概率为1%的事件再一次试验中也可能发生,只是可能性很小,因此选项A不符合题意;把100万只灯泡采取全面调查,一是没有必要,二是破坏性较强,不容易完成,因此选项B不符合题意;方差小的稳定,因此选项C不符合题意;随意翻到一本数的某页,页码可能是奇数、也可能是偶数,因此选项D符合题意;故选:D.【总结归纳】考查普查、抽样调查、随机事件、概率以及方差等知识,掌握这些概念的意义是正确判断的前提.9.如图,BD是△ABC的角平分线,DE是BC的垂直平分线,∠BAC=90°,AD=3,则CD的长为()A.3B.6 C.5 D.4【知识考点】角平分线的性质;线段垂直平分线的性质;含30度角的直角三角形.【思路分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解题过程】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∵DA⊥BA,DE⊥BC,∴DE=AD=3,∴CD=2ED=2AD=6,故选:B.【总结归纳】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.10.甲、乙两人分别从距目的地6千米和10千米的两地同时出发,乙的速度是甲的1.2倍,结果甲比乙早到20分钟.设甲的速度为x千米/时.根据题意,列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【知识考点】由实际问题抽象出分式方程.【思路分析】设甲的速度为x千米/时,则乙的速度为1.2x千米/时,根据时间=路程÷速度结合甲比乙提前20分钟到达目的地,即可得出关于x的分式方程,此题得解.【解题过程】解:设甲的速度为x千米/时,则乙的速度为1.2x千米/时,根据题意得:﹣=.故选:D.【总结归纳】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.11.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.8【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质.【思路分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【解题过程】解:∵反比例函数y=,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:C.【总结归纳】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.12.如图,△ABC中,AC=BC=3,AB=2,将它沿AB翻折得到△ABD,点P、E、F分别为线段AB、AD、DB上的动点,则PE+PF的最小值是()A.B.C.D.【知识考点】等腰三角形的性质;轴对称﹣最短路线问题;翻折变换(折叠问题).【思路分析】首先证明四边四边形ABCD是菱形,作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,求出ME即可.【解题过程】解:作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,此时P′E′+P′F=ME′,过点A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH==2,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小为.故选:C.【总结归纳】本题考查翻折变换,等腰三角形的性质,轴对称﹣最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分)13.函数y=自变量的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的意义和分式的意义可知:x﹣3>0,可求x的范围.【解题过程】解:根据题意得:x﹣3>0,解得:x>3,故答案为:x>3.【总结归纳】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.太阳的半径大约为696000千米,将696000用科学记数表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将696000用科学记数法表示为6.96×105.故答案为:6.96×105.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.【知识考点】抛物线与x轴的交点.【思路分析】根据抛物线y=﹣x2﹣6x+m与x轴没有交点,可知当y=0时,0=﹣x2﹣6x+m,△<0,从而可以求得m的取值范围.【解题过程】解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.【总结归纳】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.16.在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是.(结果保留π)【知识考点】点、线、面、体;MP:圆锥的计算.【思路分析】作CD⊥AB于D,如图,利用勾股定理计算出AB=5,再根据面积法计算出CD=,由于把Rt△ABC沿斜边AB所在直线旋转一周,所得几何体为两个圆锥,它们的底面为以D点为圆心,DC为半径的圆,所以利用扇形的面积公式计算两个圆锥的侧面积即可.【解题过程】解:作CD⊥AB于D,如图,∵∠C=90°,AC=3,BC=4,∴AB==5,∵×CD×AB=×AC×BC,∴CD==,把Rt△ABC沿斜边AB所在直线旋转一周,所得几何体为两个圆锥,它们的底面为以D点为圆心,DC为半径的圆,∴这个几何体的侧面积=×2π××3+×2π××4=π.故答案为π.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.下列图形都是由同样大小的菱形按照一定规律组成的,其中第①个图形中共有3个菱形,第②个图形中共有7个菱形,第③个图形中共有13个菱形……按此规律排列下去,第个图形中菱形的个数为10101个.【知识考点】规律型:图形的变化类.【思路分析】根据题目中的图形,可以写出前几个图形中菱形的个数,从而可以发现菱形个数的变化特点,写出第n个图形中菱形的个数,然后令第n个图形的菱形个数等于10101,求得n的值,即可得到第多少个图形中菱形的个数为10101个,本题得以解决.【解题过程】解:由图可知,第①个图形中共有2+1=3个菱形,第②个图形中共有3+22=7个菱形,第③个图形中共有4+32=13个菱形,…,则第n个图形中共有(n+1)+n2=(n2+n+1)个菱形,当n2+n+1=10101时,得n1=100,n2=﹣101(舍去),故答案为:100.【总结归纳】本题考查图形的变化类,解答本题的关键是明确题意,发现菱形个数的变化特点,求出第多少个图形中菱形的个数为10101个.三、解答题(本题共4个小题,每小题6分,共24分)18.(6分)计算:﹣|﹣2|+(1﹣cos45°)+(﹣)﹣2.【知识考点】负整数指数幂;分母有理化;特殊角的三角函数值.【思路分析】原式利用分母有理化法则,绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.【解题过程】解:原式=﹣(2﹣)+1﹣+9=﹣2++1﹣+9=8+.【总结归纳】此题考查了分母有理化,负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:•﹣(+1),其中x=﹣6.【知识考点】分式的化简求值.【思路分析】根据分式的加减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解题过程】解:•﹣(+1)===,当x=﹣6时,原式==.【总结归纳】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)如图,海中有一个小岛A,它周围8海里内有暗礁.渔船跟踪鱼群由西向东航行,在B 点测得小岛A在北偏东60°方向上,航行10海里到达C点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过点A作AD⊥BC于点D,根据正弦的定义求出AD,判断即可.【解题过程】解:过点A作AD⊥BC于点D,由题意知:∠MBA=60°,∠NCA=30°.∴∠ABC=30°,∠ACD=60°∴∠CAB=30°.∴∠ABC=∠CAB.∴在△ABC中,AC=BC=10.在Rt△CAD中,AD=AC•sin∠ACD=10×=.∵>8∴渔船不改变航线继续航行,没有触礁危险.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21.(6分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).【知识考点】轴对称图形;中心对称图形;概率公式;列表法与树状图法;游戏公平性.【思路分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据已知列表,求得摸出两张牌面图形的形状,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.【解题过程】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.【总结归纳】本题考查的是游戏公平性的判断,以及概率.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.四、(本题7分)22.(7分)如图,在△ABC中,BD、CE分别是AC、AB上的中线,BD与CE相交于点O.(1)利用尺规作图取线段CO的中点.(保留作图痕迹,不写作法);(2)猜想CO与OE的长度有什么关系,并说明理由.【知识考点】三角形的重心;线段垂直平分线的性质;作图—基本作图.【思路分析】(1)作OC的垂直平分线得到OC的中点G;(2)利用DE为△ABC的中位线,则DE∥BC,DE=BC,然后根据平行线分线段成比例可得到CO=2OE.【解题过程】解:(1)如图,点G即为所求;(2)CO=2OE.理由:连接DE.如图,∵BD、CE分别是AC、AB上的中线,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴==,∴CO=2OE.【总结归纳】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了基本作图.五、(本题7分)23.(7分)某商场统计了每个营业员在某月的销售额,绘制了如下统计图.解答下列问题:(1)设营业员的月销售额为x(单位:万元).商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25时为称职,当x≥25时为优秀.试求出基本称职、称职两个层次营业员人数所占百分比,并补全扇形图;(2)根据(1)中规定,所有称职和优秀的营业员月销售额的中位数为,众数为;(3)为了调动营业员的积极性,商场制定月销售额奖励标准,凡达到或超过这个标准的受到奖励.如果要使称职和优秀的营业员半数左右能获奖,奖励标准应定为多少万元?简述理由.【知识考点】扇形统计图;条形统计图;中位数;众数.【思路分析】(1)根据百分比=,求出基本称职和称职所占的百分比,从而补全扇形图;(2)根据中位数、众数的定义计算即可;(3)根据中位数确定奖励标准即可.【解题过程】解:(1)由图知:共有营业员30人,其中基本称职、称职分别有6人、18人.所占百分比分别为:×100%=20%;×100%=60%,补全扇形图如图所示:(2)把这些数从小到大排列,则中位数是=21(万元),众数是20万元;故答案为:21,20;(3)奖励标准应定为21万元.理由:根据中位数意义,要使称职和优秀的员工中有半数左右能获奖,应该以这些员工的月销售额中位数为标准.【总结归纳】本题考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、(本题8分)24.(8分)如图,△ACE内接于⊙O,AB是⊙O的直径,弦CD⊥AB于点H,交AE于点F,过点E作EG∥AC,分别交CD、AB的延长线于点G、M.(1)求证:△ECF∽△GCE;(2)若tan G=,AH=3,求⊙O半径.【知识考点】垂径定理;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质;解直角三角形.【思路分析】(1)根据题意易证∠ACD=∠AEC,∠AEC=∠G,然后根据相似三角形的性质与判定即可求出答案.(2)连接OC,设OC=r,根据勾股定理以及锐角三角函数的定义即可列出方程求出r的值.【解题过程】解:(1)∵AB为⊙O直径,CD⊥AB∴=,∴∠ACD=∠AEC,∵EG∥AC,∴∠G=∠ACD,∴∠AEC=∠G,又∵∠ECF=∠GCE∴△ECF∽△GCE,(2)连接OC,设OC=r,∵∠G=∠ACH,∴,在Rt△AHC中,∴,在Rt△HOC中,OH2+HC2=OC2∴,∴【总结归纳】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定、勾股定理,本题属于中等题型.七、(本题10分)25.(10分)某书店在“读书节”之前,图书按标价销售,在“读书节”期间制定了活动计划.(1)“读书节”之前小明发现:购买5本A图书和8本B图书共花279元,购买10本A图书比购买6本B图书多花162元,请求出A、B图书的标价;(2)“读书节”期间书店计划用不超过3680元购进A、B图书共200本,且A图书不少于50本,A、B两种图书进价分别为24元、16元;销售时准备A图书每本降价1.5元,B图书价格不变,那么书店如何进货才能使利润最大?。

相关文档
最新文档