比例的应用练习及标准答案

合集下载

小学奥数教程:比例应用题(二)全国通用(含答案)

小学奥数教程:比例应用题(二)全国通用(含答案)

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;④ x a y b =,y c z d= ⇒ x ac z bd =;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad. 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 知识点拨 教学目标比例应用题(二)四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。

(1)以AB为轴,将三角形ABC旋转一周能形成________。

(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。

(3)在适当的位置按1∶2的比画出长方形缩小后的图形。

3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。

若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。

(1)按3∶1的比画出图形A放大后得到的图形B。

(2)按1∶2的比画出图形B缩小后得到的图形C。

我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。

5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。

(单位:分米)12.根据图中提供的信息,完成下列问题。

(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。

(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。

广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。

乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。

比的应用专项练习150题(有答案过程)ok

比的应用专项练习150题(有答案过程)ok

比的应用专项练习150题(有答案)1.五年级(1)班的男女生人数比是3:5,其中男生比女生少12人,五级(1)班共有学生多少人?2.我们中华人民共和国国旗的长与宽的比为3:2.如果国旗的宽为80厘米,那么它的长是多少厘米?3.一种消毒水是把消毒液和水按2:5的比例配成的,180克的消毒水中放入了多少克的水?4.某手机超市门口放着一个按20:1的比例制作的手机模型,已知手机模型的高度是180cm,手机的实际高度是多少?5.果园里桃树棵数与梨树棵数的比是5:7,桃树比梨树少18棵.桃树与梨树各多少棵?6.食堂有面粉450千克,面粉和大米的重量比是5:3,大米和面粉各有多少千克?7.一种农药是用药液和水按1:1500配制而成.现在有6千克药液,可以配制这种农药几千克?8.某工厂的男职工与全长职工人数的比是4:7,全厂有职工364人,这个厂男、女职工各有多少人?9.甲、乙两数的平均数是56,甲与乙的比是4:3,甲、乙各是多少?10.甲、乙两车同时从A、B两地相对开出,在离中点60千米处相遇.相遇时,甲车与乙车行驶的路程比是3:5,A、B两地相距多少千米?11.修路队修一条路,已修长度和未修长度的比是2:3,再修50千米刚好到达中点,这条路全长多少千米?12.红布比蓝布多18m,红布与蓝布的比是7:5,两种布各有多少米?13.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3:4,乙同学原来有积蓄多少元?14.某班学生人数在40和50之间,男、女生人数的比是6:5,这个班男生比女生多多少人?15.加工一批零件,第一天完成的个数与未完成的个数的比是1:2,如果再加工120个,就可以完成这批零件的一半,这批零件共有几个?16.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?17.新光村1989年旱田与水田的比是5:3,去年将2800公亩旱田改成水田后,旱田与水田的比是1:2,新光村共有水旱田多少公亩?18.修路工人修一条路,已修和未修的长度比是5:10,如果再修390米,已修和未修的长度比是2:3,这条路有多长?19.一种农药,纯药液与水重量比是1:800,20克纯药液要加水多少克?如果加水560千克,需要多少千克纯药液?20.六(1)班女生与男生人数的比是2:3,后来又转来4名女生,这时女生与全班人数的比是5:11,六(1)班现有女生多少人?21.某校五(2)班共有学生49人,男女生人数的比是3:4,这个班的男生有多少人?22.六(1)班在回收废电池活动中,共收集了84节废电池,六(1)班和六(2)班收集废电池的个数比是7:5,求六(2)班收集废电池多少节?23.鞋厂生产皮鞋,十月份生产双数与九月份的比是5:4.十月份生产2000双,九月份生产多少双?24.某校参加数学竞赛的男生与女生的人数比是6:5,后来又增加了5名女生,这时女生人数是男生人数的.原来参加数学竞赛的女生有多少人?25.甲乙两仓库水泥袋数的比是3:4,乙仓库比甲仓库多150袋,乙仓库有水泥多少袋?26.月饼馅是用豆沙和白糖合成的,豆沙和白糖的比是2:1,现在白糖450克,需要豆沙多少千克?27.苏宁电器有电视机460台,第一天卖出100台,剩下的两天卖完,已知第二天卖出的台数和第三天卖出的台数比是5:4,第二天比第三天多卖出多少台?28.在城乡小学生“手拉手活动”中,建国小学共捐出图书1620本,其中故事书和连环画数量的比是5:4.两种书各是多少本?29.小明读一本书,已经读了全书的,如果再读15页,则读过的页数与未读的页数的比是2:3,这本书有多少页?30.甲、乙两个仓库存储粮食的质量比是8:7,如果从甲仓库运出存粮的,乙仓库运进8吨,这时乙仓库比甲仓库存粮多15吨,那么原来甲、乙两仓库各存粮多少吨?31.学校食堂2010年前两个月用煤吨数比是3:5,如果一月份用煤吨,二月份用煤多少吨?32.汽车以每小时45千米的速度从甲地开往乙地,40分钟后,已知已行的路程与余下的路程比是1:2,问甲、乙两地相距多少千米?33.皮球和足球一共有91个,皮球和足球的比是2:5,皮球比足球少多少个?34.学校有大、小两个会议室,面积分别为150m2和100m2.六(1)班按会议室面积的比来分配打扫任务,打扫小会议室的人有14人,打扫大会议室的有多少人?35.城关中学共有学生1323人,已知男生人数与女生人数的比是25:24,男女生各有多少人?36.货车和客车分别同时从甲乙两地相向而行,在距中点6千米处相遇.已知货车和客车行的路程比是2:3.甲乙两地相距多少千米?37.王大伯计划640平方米的塑料大棚内种黄瓜和西红柿,种植面积的比是5:3,两种蔬菜各种了多少平方米?38.甲乙两个建筑队原有水泥的重量比是3:2,当甲队给乙队54吨水泥后,甲乙两队水泥的重量相等.甲队原来有多少吨水泥?39.甲、乙两根绳子,甲比乙长35米,已知乙与甲的绳长比为3:8.这两根绳子各有多少米?40.小华看一本书,已经看的与总页数的比是1:3,再看15页,则正好看完全书的.这本书共有多少页?41.工程队修一条路,上半月修好的米数与全长的比是1:5.如果再修360米,就正好修了这条路的一半.这条路全长多少米?42.甲、乙两班共有学生104人,如果两班各转走2人,则甲、乙两班学生人数比是11:9.原来两班各有学生多少人?43.甲乙两数的和是120,把甲的给乙,甲、乙的比是2:3,求原来的甲是多少?44.有一批水泥,第一天运走40吨,第二天运走42吨,这时剩下的水泥和运走的水泥的比是3:2,这批水泥共有多少吨?45.学校举办运动会,参加赛跑的人数和参加跳远的人数的比是8:3.参加跳远的人数比赛跑人数少30人,参加赛跑的有多少人?46.表比钟每小时快30秒,钟每小时比标准时慢30秒.问表是快还是慢?一昼夜相差多少秒?47.甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比是5:4.求甲、乙、丙三人所有的图书数之比.48.一本故事书有126页,已看页数与未看页数的比是4:5,这本故事书还剩多少页没看?49.一批儿童读物,按6:8分给甲、乙两个班.分完后发现,乙班比甲班多分得30本.这批儿童读物有多少本?50.小伟和小英给希望工程捐款的钱数比是7:8,两人共捐款75元.小伟和小英各捐款多少元?51.甲、乙两个长方形周长之比为5:12,甲的长与宽的比是3:2,乙的长与宽的比是7:5,求甲与乙的面积比?52.希望小学参加植树活动,把任务按2:3:4分配给四、五、六三个年级,已知六年级比四年级多植树84棵,这次任务三个年级共植树多少棵?53.小雅读一本名著,第一天读了一部分后,已读的页数与未读页数的比是5:7,第二天又读了92页,这时已读的页数是未读页数的4倍.第一天读了多少页?54.一条路,修了4天后,已修部分与剩下部分的比是2:3,如果再修75米,就能到达终点,这条路全长多少米?55.童乐幼儿园共有150本图书,其中的40%分给大班,剩下的图书按4:5分给小班和中班,小班和中班各分到多少本?56.两个车轮滚过同一段距离,甲车轮转了60圈,乙车轮转的圈数是甲车轮的,已知甲车轮的直径是50cm,那么乙车轮的直径是多少厘米?57.甲乙两个仓库共有水泥84吨.如果从甲仓库运出16吨水泥放入乙仓库,那么甲仓库和乙仓库的水泥数量比是4:3.甲仓库原来有水泥多少吨?58.甲、乙两车分别从A、B两站同时相对开出,甲车与乙车的速度比是3:2.甲车行驶6小时到达B站,乙车行驶多少小时可以到A站?59.甲厂有工人910人,乙厂有工人790人.从这两个厂抽调同样多的工人去参加植树活动,两个厂剩下的人数比是17:14.这两个厂被调去植树的工人分别有多少人?60.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?61.小明家果园里有三种树共319棵,其中杏树和苹果树的比是2:3,梨树是苹果树的,求出这三种树各有多少棵?62.一块合金内,铜和锌的比是2:3,现在再加入6克锌,共得新合金36克.求新合金中锌的重量.63.有甲乙两堆货.已知甲堆比乙堆多18吨,如果乙堆运走它的90%,就和甲堆运走的数量相等.这时乙堆和甲堆的货的数量比是1:3,两堆各运走货多少吨?64.已知一个直角三角形的两个锐角的度数比是1﹕4,这个三角形中最小的那个角是多少度?65.修一条路,已修米数是未修米数的,如果再修50米,这时已修米数与未修米数的比是7:3,这条路全长多少米?66.生产一批零件,师傅独做要10小时完成,徒弟每小时可以做40个.现在师徒二人一起做,完成任务时,师徒两人生产零件数量的比是3:2.这批零件一共有多少个?67.六年一班的男生与女生的人数比是8:7,又转来2名男生后,男生与女生的人数比是9:7.六年一班原来有多少人?68.在一次植树活动中,六年级与五年级植树棵数的比是8:5,已知五年级比六年级少植树21棵,两个年级一共植树多少棵?69.甲、乙两个班人数的比为6:5,甲班给乙班3人,乙班仍然比甲班少1人,求甲班有多少人?70.有一块长方形菜地,长比宽多60米,长与宽的比是5:3;菜地里的芹菜、萝卜和白菜的占地面积比是2:3:4.芹菜占地多少平方米,萝卜占地多少平方米,白菜占地多少平方米?71.把一批化肥分给甲、乙、丙三个村子,甲村分得总数的,其余按2:3的比例分给乙、丙两村,已知丙村分得18吨.这批化肥有多少吨?72.在一道减法算式中,被减数、减数、差的和是280,减数与差的比是5:2,求减数是多少?73.一块长方形地,量得它的周长是48米,长和宽的比是5:3.这块长方形地的面积是多少平方米?74.李师傅加工一批零件,第一天完成的个数与零件总数的比是1:4,如果再加工20个,就可以完成这批零件的一半,这批零件共有多少个?75.一批零件,已加工的个数与未加工的个数比是1:3,再加工150个,这时,已加工的与未加工的个数比是1:2,这批零件有多少个?76.小明买钢笔用去总钱数的,买书用去6元,这时用去的钱数和剩下钱数的比是5﹕4,他还剩多少钱?77.甲、乙两袋糖的质量比是4:1,从甲袋中取出13千克糖放入乙袋,这时两袋糖的质量比是7:5.求两袋糖的质量之和?78.黄明和张亮都积攒了一些零用钱,他们所积攒的钱数的比是9:5,在献爱心活动中,黄明捐了48元钱,张亮捐了20元钱,这时他们的剩余钱数相等,黄明原来有多少钱?79.学校合唱组有80人,美术组的人数是与合唱组的比是3:5,科技组的人数与美术组的2:3.科技组有多少人?80.某工程队俢一段路,第一天俢完全程的,第二天比第一天多修60米,这时已修的路程与剩下的路程的比是3:2,这段路共多少米?81.小林和小宁进行长跑比赛,两人同时从起点出发,当小林到达终点时,小宁离终点还有400米,已知小宁和小林的速度的比是4:5,两人进行的是多少米的比赛?82.小明看一本故事书,已看的页数与未看页数的比是4:5,再看15页,就看了这本书的一半.这本书一共多少页?83.一个长方形的周长是64分米,长是宽的,这个长方形长和宽分别是多少分米?84.植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?85.在一次考试中,小强的语文和数学的平均分是90分,语文、数学两科分数的比是8:7,小强语文和数学各考了多少分?86.甲乙两个仓库存粮吨数的比为4:3,从甲仓库取出45吨运往乙仓库后,甲乙两仓库存粮吨数的比是7:9,那么原来两仓库各存粮多少吨?87.一个商场总营业额11.5万元,甲乙柜营业额比为3:2,乙丙柜营业额比为3:4,求甲柜营业额.88.两块重量相等的锡铁合金,一块合金中锡与铁的比是1:5,另一块合金中锡与铁的比是2:7,如果把两块合金融成一块,那么新融成的合金中锡与铁的比是多少?89.灰太狼和喜羊羊相隔10米,灰太狼每跑三步的距离等于喜羊羊跑四步的距离.喜羊羊跑五步的时间和灰太狼跑四步的时间相等.问跑多少米后灰太狼会追上喜羊羊.90.甲乙两个工程队的人数之比为5:2,从甲队跳出4人给乙队,此时甲队人数是乙队的两倍,问甲队有多少人?121.淘气做口算题,做完最后一题时做对的题数与做错的题数的比是4:1,经过检查修改后,有3道题被淘气改对了,这时淘气做对了总题数的,淘气还有几道题做错了?122.甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入一大瓶子混合,这时酒精与水的体积比是多少?123.学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能多的平均分给每位小朋友,余下的苹果、饼干、糖的数量之比是1:2:3.问:学前班有多少位小朋友?124.小明看一本书,第一天读了一部分,已读的和未读的页数比是2:7,第二天读了68页,已读的和未读的页数比是4:5.这本书共有多少页?125.学校把植树任务按3:5分配给四、五两个年级.五年级栽了108棵,超过了原分配任务的,四年级原来要植树多少棵?126.甲、乙、丙三种物品共重450千克,甲与乙的质量比是5:4,乙与丙的质量比是2:3,甲物品重多少千克?127.甲袋中有红球120个、蓝球40个,乙袋中有红球360个、蓝球80个,要使两袋中红球所占的百分数一样,应从甲袋中取多少个蓝球与乙袋中的红球进行等量交换?128.甲、乙、丙三人共有钱2280元,甲、乙两人钱数的比是2:7,乙、丙两人钱数的比是3:7.三人各有钱多少元?129.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1:9,需加多少克盐或蒸发多少克水?130.甲乙两人原有存款钱数的比是5:3,如果甲拿出1200元给乙,那么甲乙两人存款钱数的比就是3:2.原来甲有存款多少元?131.元旦将至,学校举行大合唱比赛,六年级参加大合唱比赛的人数要求在40﹣50人之间,男、女生人数的比是4:5,请你确定参加比赛的男生、女生人数各多少人?132.某车间原有男工人数是女工的,后来又调入2名女工,现在女工人数与男工人数的比是5:6,这个车间原有男工多少人?133.甲、乙、丙3人原有彩球数的比是9:4:2,甲给了丙24个彩球,乙也给了丙几个彩球,现在甲、乙、丙3人彩球数的比变为2:1:1.乙给了丙多少个彩球?135.六一班男生人数与女生人数比是4:5,已知女生比男生多3人,男女生各多少人?136.两个书架共有书260本,甲书架借出的本数与剩下的本数比为1:3,乙书架借出的本数与剩下的本数比是2:3,已知两个书架借出的本数一样多,原来两个书架各有书多少本?137.某化工厂第一、二、三车间人数的比为8:12:21,第一车间人数比第二车间人数少80人,三个车间各有多少人?138.水池里立着两根木桩,它们露出水面部分的长度比是10:1,当水面下降20厘米后,露出水面部分的长度比变成了5:2,求较短的一根木桩原来露出水面的部分是多少厘米?139.一个工厂有三个车间,第一车间与第二车间人数的比是2:3,第三车间与全厂职工总人数的比是1:3,已知第一车间比第二车间少200人,这个工厂一共有多少人?140.甲、乙两人身上的钱数的比量4:3,甲给乙10元后,这时乙人的钱占两人总钱的,现在乙人有多少钱.141.合唱团男、女生人数之比为5:3,如果男、女生各增加40名,则人数之比为5:4,原各有多少名?142.甲、乙两车同时从相距324千米的两地相对开出,3.6小时相遇.甲、乙两车速度的比是4:5,求乙车的速度.143.三种动物赛跑,已知兔子的速度是狐狸的2分之3倍,松鼠的速度与兔子的比是1:2,松鼠每分钟比狐狸每分钟少跑15米.狐狸每分跑多少米?144.开学初,六(1)班和六(2)班学生人数比是8:7,后来从六(1)班调出3名同学到六(2)班,这时两个班学生人数正好相等.开学初两个班各有多少人?145.甲乙两个学生放学回家,甲要比乙多走的路,而乙走的时间比甲少,甲、乙两个学生回家的速度比是多少?146.甲、乙两班学生在3月份做好事的件数比是7:5,已知甲班学生比乙班学生多做好事98件,问甲、乙两班学生在3月份共做好事多少件?148.用192厘米的铁丝做一个长方体的框架.长、宽、高的比是7:5:4.这个长方体框架的体积是多少?149.张家和李家本月的收入之比为8:5,本月开支的钱数比为8:3,月底张家结余240元,李家结余270元,问本月每家各收入多少元?150.数学奥林匹克学校某次入学考试,参加考试的男生与女生的人数之比为4:3,结果录取了91人,其中男生与女生的人数之比为8:5,在没有录取的学生中,男生与女生的人数之比为3:4,那么参加考试的学生共有多少人?参考答案:1.12÷(5﹣3)×(5+3),=12÷2×8=48(人).答:五级(1)班共有学生48人2.因为国旗的长与宽的比为3:2,所以国旗的长是宽的,国旗的长是:80×=120(厘米),答:它的长是120厘米3.180×=(克);答:180克的消毒水中放入了克的水.4.180÷20=9(cm);答:手机的实际高度是9cm5.一份是:18÷(7﹣5)=18÷2=9(棵),桃树的棵数:9×5=45(棵),梨树的棵数:9×7=63(棵),答:桃树有45棵,梨树有63棵6.一份数的千克数:450÷5=90(千克),大米的千克数:90×3=270(千克).答:大米有270千克,面粉有450千克7.6×(1+1500),=6×1501,=9006(千克);答:可以配制这种农药9006千克.8.(1)364×=208(人),(2)364﹣208=156(人),答:这个厂男职工有208人,女职工有156人9.甲数:56×2÷(4+3)×4,=112÷7×4,=16×4,=64,乙数:56×2÷(3+4)×3,=112÷7×3,=16×3,=48,答:甲是64,乙是4810.(60×2)÷(5﹣3)×(5+3),=120÷2×8,=480(千米);答:A、B两地相距480千米11.50÷(﹣),=50÷,=500(千米),答:这条路全长500米12.一份是:18÷(7﹣5),=18÷2,=9(米),红布:9×7=63(米),蓝布:9×5=45(米),答:红布有63米,蓝布有45米13.(27﹣15)÷+15,=12÷+15,=12×+15,=16+15,=31(元),答:乙同学原来有积蓄31元14.解:男女生比例为6:5,所以班内人数总数一定为5+6=11的倍数,而40到50之间11的倍数只有44,所以班里有44人.男生有:44×=24(人);女生有:44﹣24=20(人),24﹣20=4(人).答:这个班男生比女生多4人15.解:120÷(﹣),=120÷=720(个);答:这批零件共有720个16.315÷(3+4)×(4﹣3),=315÷7×1 =45(本);答:五年级比六年级少借45本17.解:2800÷(﹣),=2800÷,=9600(公亩),答:新光村共有水旱田9600公亩.18.解:390÷(﹣),=390÷(﹣),=390÷=390×15=5850(米);答:这条路有5850米长19.(1)设需要加水x克.1:800=20:x,x=800×20,x=16000,(2)设需要用y千克药液.1:800=y:560,800y=560,800y÷800=560÷800,y=0.7.答:20克药液要加水16000克.如果用560千克水,需要用0.7千克药液20.解:设原来六(1)班的总人数为x人,x=(1﹣)×(x+4),x=×(x+4),x=x+,x ﹣x=,x=,x=40;40×+4,=16+4,=20(人);答:六(1)班现有女生20人21.全班总份数:4+3=7(份);男生人数:49÷7×3=21(人)答:这个班男生有21人.22.84÷7×5,=12×5,=60(节);答:六(2)班收集废电池60节.23.解:2000×=1600(双);答:九月份生产1600双24.解:原来男生有:5÷()=5=90(人);女生人数:90×=75(人)答:原来参加数学竞赛的女生有75人25.150÷(4﹣3)×4=60026.解:设需要豆沙x千克,则x:450=2:1,x=450×2,x=900;答:需要豆沙900千克27.(460﹣100)÷(5+4)×(5﹣4),=360÷9×1,=40(台),答:第二天比第三天多卖出40台28.故事书有:1620×=900(本);连环画有:1620﹣900=720(本);答:故事书有900本,连环画有720本.29.15÷(),=15,=100(页);答:这本书有100页30.×=,=,﹣=,(15﹣8)÷=105(吨);105×=56(吨),105×=49(吨);答:原来甲仓库存粮56吨,乙仓库存粮49吨31.÷3×5=×5,=(吨);答:二月份用煤吨32.40分钟=小时,45×=30(千米),30=30×3=90(千米),答:甲、乙两地相距90千米33.91÷(2+5)×(5﹣2),=91÷7×3,=13×3,=39(个);答:皮球比足球少39个34.设打扫大会议室的有x人,100:14=150:x,100x=14×150,x=,x=21,答:打扫大会议室的有21人35.一份是:1323÷(25+24),=1323÷49,=27(人);男生的人数:27×25=675(人),女生的人数:27×24=648(人),答:男生有675人,女生有648人36.全程路程份数:2+3=6,货车行的路程占全程的:2÷5=,甲乙两地相距:6÷(﹣),=6÷,=60(千米);答:甲乙两地相距60千米37.黄瓜的面积:640×=400(平方米);西红柿的面积:640×=240(平方米).答:黄瓜种了400平方米,西红柿种了240平方米38.54×2÷(3﹣2)×3,=108÷1×3,=324(吨);答:甲队原来有324吨水泥39.35÷(8﹣3),=35÷5,=7(米);8×7=56(米),3×7=21(米);答:甲绳子长56米,乙绳子长21米40.10÷(﹣),=10,=60(页),答:这本书共有60页41.360÷(﹣),=360×,=1200(米);答:这条路全长1200米.42.(104﹣2×2)=100(人),100×=55(人),100×=45(人),甲班:55+2=57(人),乙班:45+2=47(人);答:原来甲班有57人,原来乙班有47人43.设原来的甲是x,(1﹣)x:(120﹣x)+x=2:3,x×3=(120﹣x)×2,2x=240﹣x,2x+x=240,x=240,x=72;答:原来的甲是7244.(40+42)÷,=82÷,=82×,=205(吨);答:这批水泥共有205吨45.8+3=11,30÷()×,=30÷,=30××,=48(人);或:30÷(8﹣3)×8,=30÷5×8,=6×8,=48(人);答:参加赛跑的有48人46.(1)钟一昼夜走了:30×24=720(秒),720秒=0.2小时,24﹣0.2=23.8(小时).(2)表23.8小时多走:30×23.8=714(秒).在24小时内,钟比标准时间慢了720秒,表比钟快了714秒,所以表慢了.一昼夜相差:720﹣714=6(秒)答:表慢了,一昼夜相差6秒47.设乙有5x本书,则甲有5x﹣18本书,丙有4x本书,则有5x+5x﹣18+4x=108,14x=108+18,14x=126,x=9;甲有图书:5×9﹣18=27(本),已有图书:5×9=45(本),丙有图书:4×9=36(本);所以图书数量比为:27:45:36=3:5:4;答:甲、乙、丙三人所有的图书数之比3:5:4 48.126×=70(页),答:这本故事书还剩70页没看49.30÷(﹣),=30,=210(本);答:这批儿童读物有210本50.75×=35(元),75×=40(元),答:小伟捐款35元,小英捐款40元.51.假设甲的长和宽分别为6厘米和4厘米,乙的长和宽分别为14厘米和10厘米,则甲的面积为:6×4=24(平方厘米),乙的面积是:14×10=140(平方厘米),所以甲的面积:乙的面积=24:140=6:35,答:甲与乙的面积比是6:3552.84÷(4﹣2)×(2+3+4)=42×9=378(棵);答:这次任务三个年级共植树378棵.53.92÷(﹣)×,=92÷×,=192(页);答:第一天读了192页.54.75=75=125(米).答:这条路全长125米55.设小班分到4x本,则中班分到5x本,根据题意可得:4x+5x=150×(1﹣40%),x=10,4x=4×10=40,5x=5×10=50,答:小班分到40本,中班分到50本56.60×=50(圈),3.14×50×60÷(3.14×50),=942÷157,=60(cm);答:乙车轮的直径是60厘米57.84×,=84×,=48(吨),48+16=64(吨);答:甲仓库原来有水泥64吨58.6÷2×3=9(小时);答:乙车行驶9小时可以到A站59.设抽调x工人去参加植树活动,(910﹣x):(790﹣x)=17:14,(910﹣x)×14=(790﹣x)×17,910×14﹣14x=790×17﹣17x,12740﹣14x=13430﹣17x,12740﹣14x﹣12740+17x=13430﹣17x﹣12740+17x,17x﹣14x=13430﹣12740,3x=690,x=230;答:甲厂被调去植树的工人有230人,乙厂被调去植树的工人有230人60.设加进去的水量为x升,则会有(8+x):(13+x)=5:7,(8+x)×7=(13+x)×5,56+7x=65+5x,2x=9,x=4.5;答:加进去的水量为4.5升61.设苹果树有x 棵,杏树有x 棵,梨树的棵数是x 棵,x+x+x=319,x=319,x=319,x=319×,x=132,杏树:x=×132=88(棵),梨树:x=×132=99(棵),答:苹果树有132棵;杏树有88棵;梨树有99棵62.36﹣6=30(克),2+3=5(份),其中锌占总份数的,30×=18(克),18+6=24(克).答:新合金中锌的重量是24克63.设乙原有x吨,则甲有x+18吨,(1﹣90%)x:(x+18﹣90%x)=1:3,0.1x+18=0.3x,0.2x=18,x=90,90×90%=81(吨)答:两堆各运走81吨货物64.90×=18(度)答:这个三角形中最小的那个角是18度65.÷(1+)=,50÷(﹣)=300(米);答:全长300米66.因为,师徒两人生产零件数量的比是3:2.所以师徒两人生产效率的比是3:2,即单独生产一批零件,师徒两人时间比是2:3,那么师傅独做要10小时完成,徒弟完成要用的时间是:10×=15(小时),这批零件一共有:15×40=600(个),答:这批零件一共有600个67.女生的人数:2÷(﹣),=2,=14(人),六年一班原来有的人数:14÷7×(8+7),=2×15,=30(人),答:六年一班原来有30人68.21÷=21÷=91(棵);答:两个年级一共植树91棵69.(3×2+1)÷(6﹣5)×6,=7÷1×6,=42(人),答:甲班有42人70.60÷(5﹣3)=30(米),长:30×5=150(米),宽:30×3=90(米),面积:150×90=13500(平方米),芹菜占地面积:13500×=3000(平方米),萝卜占地面积:13500×=4500(平方米),白菜占地面积:13500×=6000(平方米),答:芹菜占地3000平方米,萝卜占地4500平方米,白菜占地6000平方米71.18÷3×(2+3)÷(1﹣),=30×,=40(吨);答:这批化肥有40吨72.被减数(差加减数)是:280÷2=140,减数与差的总份数:5+2=7份,减数:140×=100;答:减数是10073.长+宽为:48÷2=24(米);长为:24×=15(米);宽为:24×=9(米);面积为:15×9=135(平方米);答:这块长方形地的面积是135平方米74.20÷(﹣),=20÷,=80(个)75.150÷(﹣),=150÷,=1800(个),答:这批零件有1800个76.6÷(﹣),=6÷,=6×,=27(元);27×=12(元);答:他还剩12元钱77.13÷(),=13÷(),=13×,=60(千克);答:两袋糖的质量之和是60千克78.设每一份为x元,由题意得,9x﹣48=5x﹣20,4x=28,x=7;黄明原来的钱数:9×7=63(元).答:黄明原来有63元钱79.解:80÷5×3×,=16×3×,=32(人);答:科技组有32人80.3+2=5(份),60÷(﹣﹣),=60÷,=60×10,=600(米);答;这段路共600米81.400÷(1﹣),=400÷,=2000(米);答:两人进行的是2000米的比赛.82.15÷(﹣)=15÷=270(页);答:这本书一共270页83.64÷2=32(分米),5+3=8,32×=20(分米),32×=12(分米);答:这个长方形长和宽分别是20分米和12分米84.设四年级的人数为x,则六年级的人数为(x+80),五年级的人数为(x+80)×,x+x+80+(x+80)×=720,2x+80+x+=720,2x+x=720﹣80﹣,x=,x=220;220+80=300(人),300×=200(人);答:四年级参加植树的有220人,五年级有200人,六年级有300人85.90×2=180(分),8+7=15,180×=96(分),180×=84(分);答:小强语文考了96分,数学考了84分86.45÷(﹣),=45÷,=336(吨);答:两个仓库原来共存粮336吨87.甲:乙=3:2=9:6,乙:丙=3:4=6:8,则甲:乙:丙=9:6:8,则甲柜营业额:11.5×=11.5×=4.5(万元);答:甲柜营业额为4.5万元.88.(+):(+),=:,=7:29;答:新融成的合金中锡与铁的比是7:2989.根据题目条件有,灰太狼每跑3步的距离=喜羊羊跑4步的距离,所以灰太狼每跑1步的距离=喜羊羊跑步的距离.因为喜羊羊跑5步的时间=灰太狼跑4步的时间,知道灰太狼跑1步的时间=喜洋洋跑步的时间,由此可以求出灰太狼的速度:喜洋洋的速度=:=,设跑x上米后灰太狼会追上喜羊羊,x:(x﹣10)=16:15,16x﹣160=15x,x=160,答:跑160米后灰太狼会追上喜羊羊90.4÷(﹣)×,=4÷×,=60(人).答:甲队有60人91.12÷(﹣25%),=12÷(﹣),=12÷,=80(页);答:这本漫画预计80页92.360÷3=120(千米),乙车的速度占甲、乙速度和的几分之几:5÷(7+5)=,120×=50(千米);答:乙车的速度是50千米93.60×(1﹣)×,=60××,=15(人),60×(1﹣)×,=60××,=20(人),答:一年级有15人,二年级有20人94.120÷(﹣),=120÷,=800(页).答:这本书有800页95.52:48:50,=26:24:25;300÷(26+24+25)×26,=4×26,=104(本);。

比的应用题及答案

比的应用题及答案

比的应用题及答案篇一:比和比例综合练习题及答案比和比例练习题一、填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的()(),乙数占甲、乙两数和的。

甲、()()()。

()乙两数的比是3:2,甲数是乙数的()倍,乙数是甲数的2. 某班男生人数与女生人数的比是3,女生人数与男生人数的比是(),男生人数4和女生人数的比是()。

女生人数是总人数的比是()。

3. 如果7x=8y,那么x:y=():()。

4. 一根绳长2米,把它平均剪成5段,每段长是()()米,每段是这根绳子的。

()()5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是(),这个比的比值的意义是()。

6. 一个正方形的周长是7. 8米,它的面积是()平方米。

591吨大豆可榨油吨,1吨大豆可榨油()吨,要榨1吨油需大豆()吨。

83228. 甲数的等于乙数的,甲数与乙数的比是()。

359. 把甲数的()()1给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多。

()()7()1,甲数与乙数比是()。

乙数比甲数少。

()410. 甲数比乙数多11. 在6 :5 = 1.2中,6是比的(),5是比的(),1.2是比的()。

在4 :7 =48 :84中,4和84是比例的(),7和48是比例的()。

12. 4 :5 = 24÷()= ():1513. 一种盐水是由盐和水按1 :30 的重量配制而成的。

其中,盐的重量占盐水的(—),水的重量占盐水的(—)。

图上距离3厘米表示实际距离180千米,这幅图的比例尺是()。

一幅地图的比例尺是图上6厘米表示实际距离()千米。

实际距离150千米在图上要画()厘米。

14. 12的约数有(),选择其中的四个约数,把它们组成一个比例是()。

写出两个比值是8的比()、()。

二、判断1.由两个比组成的式子叫做比例。

()2.正方形的面积一定,它的边长和边长不成比例。

()3.如果8A = 9B那么B :A = 8 :9 ()4.15:16和6 :5能组成比例。

小学奥数:比例应用题(二).专项练习及答案解析

小学奥数:比例应用题(二).专项练习及答案解析

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有: 一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例① x a y b = ⇒ y b x a =; x y a b=; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;L ④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的c a等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的知识点拨教学目标比例应用题(二)元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)1、一条路已修了500米,是未修的2/5,求这条路一共有多长?解答:已修的是未修的2/5,那就是说是已修的是全长的2/7。

列式为:500÷2/7=1750(米)答:略。

2、一桶油用去1/5后连桶重14千克,用去1/3后连桶重12千克,求桶重多少千克?油重多少千克?分析与解答:用去油1/5后连桶重14千克,用去1/3后连桶重12千克,那就是说这桶油的1/3比1/5多2千克,也就是说1/3—1/5=2/15就是2千克。

那么这桶油重可以列式求出来:(14-12)÷(1/3—1/5)=2÷2/15=15(千克)那么桶重就是14-15×(1—1/5)=2(千克)或者12-15×(1—1/3)=2(千克)答:略。

3、修一条水渠,已修了4天,平均每天修35米,已修的比剩下的少全长的30%,这条水渠全长多少米?分析与解答:已修四天,每天修35米,则已修的是35×4=140米。

已修的比剩下的少全长的30%,那就是说,如果去掉这30%,剩下的和已修的刚好相等。

于是就有:(100%—30%)÷2=35%,这35%就是已修的。

到这儿就很好算了。

列式:35×4÷[(100%—30%)÷2]=140÷35%=400 (米)列方程为:解:设这条路全长为X米,则X—35×4—35×4=30%X 或(X—30%X)÷2=35×4答:略。

4、师傅和徒弟合做200个零件,师傅做的1/4比徒弟做的1/5多14个,求徒弟做了多少个?分析:师傅做的1/4比徒弟做的1/5多14个,那就是说,师傅做的4/4比徒弟做的4/5多14×4=56(个)。

这样题就变成了“师傅和徒弟合做200个零件,师傅做的比徒弟做的4/5多56个,求徒弟做了多少个?”这已是一个和倍问题了。

六年级比例应用题练习

六年级比例应用题练习

六年级比例应用题练习(一)姓名成绩1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?4我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?5一辆汽车从甲地开往乙地,3.5小时行了全程的5∕9照这样计算,行完全程要几小时?6、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?7、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?8、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?9、小明读一本书,每天读12页,8天可以读完。

如果每天多读4页,几天可以读完?10、小华看一本240页的小说,4天看了64页,照这样计算,看完这本书还需多少天?11、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?12、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?13、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?14、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?15学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?16、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?17、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。

六年级【小升初】小学数学专题课程《比和比例问题》(含答案)

六年级【小升初】小学数学专题课程《比和比例问题》(含答案)

16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。

在计算中,要注意各种量的单位要统一。

二、按比例分配的应用题把一个数量按照一定的比分配成几部分。

按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。

关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。

三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。

四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。

2.设未知数为x,并注明单位名称。

3.根据比值(一定)或积(一定)建立比例式,并解比例。

4.检验,写答语。

考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。

一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。

要分的总数是390,总份数是42+45+43=130。

其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。

【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和按比例分配的应用
1填空:
(1)( )( )=比例尺,图上距离=( )○( ),实际距离=( )○( )。

(2)常用的比例尺有( )和( )两种。

(3)在比例尺是1∶300的图上,1厘米代表实际距离( )厘米,就是图上距离是实际距离的( )( )
,实际距离是图上距离的( )倍。

(4)线段比例尺
表示图上1厘米的距离代表实际距离( )
千米,转化成数字比例尺是( )。

(5)图上5厘米的距离,表示实际距离150千米。

这幅图的比例尺是( )。

2将线段比例尺
改写成数字比例尺。

3在一幅地图上,相距65千米的A 、B 两城用5厘米表示,这幅地图的比例尺是多少? 4在比例尺1∶800000的地图上,量得两所中学的距离是15厘米。

试问两所中学间的实际距离应是多少千米?
5在比例尺是1
25000000的中国地图上,量得北京到杭州的距离是5 cm ,那么北京到杭州
的实际距离是多少?
6有一个长方形操场,长200 m ,宽150 m ,按1∶5000的比例尺画在纸上,长,宽各画多少厘米?
7下图是按1
500的比例尺画出的图形。

你能想办法计算出它的实际面积是多少吗?(测量
时取整厘米数)
8判断(对的打“√”,错的打“×”)
(1)把实际长度扩大500倍以后,画在图纸上,比例尺是500∶1。

( ) (2)有一幅平面图,用5厘米表示400米,这幅平面图的比例尺是1
80。

( )
(3)学校操场长200米,画在平面图上是20厘米,那么这幅平面图的比例尺是1∶400。

( )
(4)任何图纸上的图上距离都小于实际距离。

( )
(5)0.8∶4和5∶25可以组成比例。

( )
9填表。

图上距离实际距离比例尺
2.4 cm 1∶6000000
18 cm 540 km
64 m 1∶5000000
10在一幅平面图上,4厘米表示实际距离是40米,求这幅平面图的比例尺。

11在比例尺是9∶1的精密零件图上,量得零件的长是36毫米,零件的实际长度是多少毫米?
12在1
100
的平面图上,量得一间教室长8 cm,宽6 cm,这间教室的面积是多少平方米?
13量一量下图中从小明家到学校,到东站,到商店的图上距离。

再根据线段比例尺算出它们各自的实际距离。

14在比例尺是1
1000
的长方形操场平面图上,量得操场的长度是15 cm,宽是12 cm,如果这个操场按5∶4划出篮球区和排球区,你知道排球区的面积是多少吗?
15填一填。

(1)科学课中用到的显微镜是将物体( )。

建楼房时所设计的图纸上将物体( )。

(说明:括号中填“放大”或“缩小”)
(2)分别举出生活中一个将物体放大的例子和缩小的例子。

放大的:( );缩小的:( )。

(3)将图形放大或缩小时,图形的形状( ),图形的大小( )。

(填“不变”或“改变”)
(4)将一个五边形按3∶1放大时,就将它的( )条边同时( )到原来的( )倍。

16按2∶1画出正方形放大后的图形。

17
(1)图中( )号图形是①号长方形放大后的图形,它是按( )∶()的比放大的。

(2)图中( )号图形是①号长方形缩小后的图形,它是按( )∶()的比缩小的。

18按2∶1的比画出正方形放大后的图形,再按1∶2的比画出长方形缩小后的图形。

19量一量下图中从学校到汽车站、广场、书店的图上距离,再根据线段比例尺计算出它们的实际距离。

(测量时取整数)
20根据已知条件列出数量关系式,再判断比例关系。

(1)每袋面粉的重量一定,面粉的总重量和袋数。

(2)每天修路的米数一定,天数和总米数。

(3)铺一段煤气管道,参加的人数和所需时间。

21应用正确的比例关系解决实际问题。

(1)一辆汽车从工厂到工地,每小时行驶35千米,2小时可以到达。

如果要4小时到达,每小时需要行驶多少千米?
(2)如果10千克菜籽可以榨6.5千克菜油,那么用这种菜籽360千克,可以榨油多少千克?
(3)用一批纸装订作业本,计划每本50页,可以装订120本,实际每本30页,实际装订了多少本?
(4)用面积是36平方分米的方砖铺地,138块正好铺完,如果改用边长是3分米的方砖
铺,需要多少块?
22红红的身高是1.5 m ,站在太阳下她的影子长度是4.5 m 。

如果在同一时间,同一地点量得一幢楼房的影子长度是48 m ,那么这幢楼房的实际高度是多少?
23在抗击“非典”活动中,某制药厂配制84消毒液,药液与水的比是3∶500,现用1.5千克的药液,可以配制84消毒液多少千克?
24玩具厂要生产2080套玩具,前3天生产480套。

照这样计算,完成其余部分任务还需要多少天?
25修一条公路,计划每天修25米,15天可以完成,实际每天比计划多修了1
5。

实际多
少天完成任务?
26王师傅5小时加工零件135个,照这样计算,再工作3小时,一共可以加工零件多少个?
27小明的新家要用方瓷砖铺地,需用面积是6平方分米的方砖1200块,如果改用面积是9平方分米的方砖来铺地,需要多少块?
28一辆汽车从甲城开往乙城,每小时行56千米,5小时到达。

回去时因装满货物,车速每小时比原来慢6千米,这辆汽车几小时才能回到甲城?
1、在一幅比例尺是1∶2000000的地图上,量得甲、乙两地的距离是30厘米,如果在另一幅地图上量得甲、乙两地的距离是10 cm ,则另一幅地图的比例尺是多少?
2、育英小学教学楼的地基是长方形,长60 m ,宽20 m 。

要把地基的平面图画在长5分米,宽3分米的纸上,选用什么比例尺比较合适?图上长方形的长和宽各是多少?
3、下面是一个直径为2 cm 的圆。

请你在这个圆中画一个小圆,使得大圆和小圆的周长比是4∶1。

4、园林绿化队要栽一批树苗。

第一天栽了总数的1
8,第二天栽了136棵,这时剩下的与
已栽的棵数比是3∶5,这批树苗一共有多少棵?
5、某部队原定在一定的时间内以一定的速度行军180千米,后来改变计划加快行军速度,平均每天行军55千米。

这样在相同的时间内,比原计划多行了40千米。

原定每天行军多少千米?
6、一个玻璃瓶内原有盐水中盐是水的1
11,当再加入15克盐后,盐占盐水的
1
9。

瓶内原
有盐水多少克?
7、育英小学六(2)班在一次数学测试中,平均成绩是92,其中男、女生各自的平均成绩分别是90.5和93.8,这个班的男女生人数的比是多少?
8、A、B两种商品原来的价格之比为7∶3。

现在如果将它们的价格都分别上涨70元,新的价格之比为7∶4,这两种商品原来的价格各是多少元?
参考答案
轻松起步 1.略 2.略
3.65千米=65000米 5∶65000=1∶13000
4.15÷1
800000=12000000(厘米)=120(千米)
5.5÷1
25000000
=1250(千米)
6.200 m =20000 cm 150 m =15000 cm
长:20000×15000=4(cm) 宽:15000×1
5000
=3(cm)
7.略
8.(1)√ (2)× (3)× (4)× (5)√ 9.略
10.1∶1000 11.36÷9=4(毫米)
12.48平方米 7.8000 m 2
13.略 14.略
15.(1)放大 缩小 (2)略 (3)不变 改变 (4)五 扩大 3 16.略
17.(1)⑤ 3∶2 (2)③ 1∶2 18.略 19.略 20.略
21.(1)17.5千米 (2)234千克 (3)200本 (4)552块 22.16 m
23.251.5千克
24.10天 25.12.5天 26.216个 27.800块 28.5.6小时 快乐提升
1.30÷12000000=60000000(cm) 1060000000=1
6000000
2. 不唯一 3.略
4.136÷(53+5-1
8
)=272(棵)
5.(180+40)÷55=4(天) 180÷4=45(千米)
6.15÷(19-1-111)=440(克) 440×1
11
=40(克) 440+40=480(克)
7.解:设男生x 人,女生y 人,比是x ∶y ,90.5x +93.8y =92(x +y ) 8y =1.5x ,则x ∶y =6∶5
8.解:设A 种商品原价x 元,则B 为3
7
x 元,
x +7037
x +70=74 x =210(元) 210×3
7=90(元)。

相关文档
最新文档