4等离子体基础
等离子体物理:等离子体产生与性质

电离的粒子质量计算成分
点是受仪器性能和测量条件限制
• 探针诊断法:通过测量等离子体中探
• 探针诊断法:优点是测量精度高,缺
针的电压信号计算成分
点是受探针位置和形状影响
04
等离子体的稳定性与输运
性质
等离子体的稳定性及其影响因素
影响因素
• 电离程度:电离程度越高,等离子体越稳定
• 温度:温度越高,等离子体越稳定
激光诱导击穿法产生等离子体
01
02
激光诱导击穿法
应用
• 通过激光束聚焦在材料表面,产
• 等离子体加工:利用激光诱导击
生高温高压区,使材料电离
穿法产生等离子体
• 等离子体光谱分析:利用激光诱
温度高,能量密度大,可控性好
导击穿法产生的等离子体进行光谱分
析
化学放电法产生等离子体
影响因素
• 电离程度:电离程度越高,等离子体的电导率越高
• 温度:温度越高,等离子体的热导率越高
• 压力:压力越高,等离子体的扩散系数越低
等离子体与壁面的相互作用
01
相互作用
• 指等离子体与容器壁、电极等固体物表
面的相互作用
• 相互作用包括吸附、溅射和气体分子的
再结合等过程
02
影响
• 等离子体的能量损失:与壁面相互作用
等离子体密度的测量方法
测量方法
优缺点
• 吸收光谱法:通过测量等离子体对光
• 吸收光谱法:优点是测量精度高,缺
的吸收程度计算密度
点是受光谱仪分辨率限制
• 激光干涉法:通过测量等离子体的折
• 激光干涉法:优点是测量速度快,缺
射率变化计算密度
点是受激光源和探测器性能限制
等离子体物理基础

等离子体物理基础引言等离子体是一种由电子和离子组成的高度电离的气体态物质。
它在自然界中广泛存在,如太阳、闪电等,也可人工产生,如等离子体显示器、核聚变等。
本文将介绍等离子体的基本概念、性质和应用。
一、等离子体的基本概念等离子体是由气体在高温或高能量激发下电离而形成的。
在等离子体中,气体原子或分子中的电子被剥离,形成自由电子和正离子,从而使等离子体具有整体的电中性。
等离子体的电磁性质和输运性质与普通气体有很大的差异,因为等离子体中电子和离子的行为受到电磁场的影响。
二、等离子体的性质1. 电导性:等离子体具有良好的电导性,因为自由电子和正离子的存在使得电荷能够在等离子体中自由传导。
这也是等离子体广泛应用于电子器件和电磁场控制的原因之一。
2. 等离子体的辐射:等离子体在高能量激发下会释放能量并辐射出光线。
这种辐射现象被广泛应用于等离子体显示器、激光器等领域。
3. 等离子体的热力学性质:由于等离子体的高度电离特性,其热力学性质与普通气体有所不同。
等离子体的温度定义也与普通气体不同,常用电子温度和离子温度来描述等离子体的热力学状态。
三、等离子体的应用1. 等离子体显示器:等离子体显示器利用等离子体在电场作用下发射出的光来显示图像。
由于等离子体显示器具有高亮度和快速响应的特点,被广泛应用于电视、电子游戏等领域。
2. 核聚变:等离子体在高温和高压条件下能够实现核聚变反应,这是太阳和恒星等天体能源的来源。
人们通过研究等离子体物理,试图在地球上实现核聚变技术,以解决能源危机问题。
3. 等离子体医学应用:等离子体在医学领域也有广泛应用,如等离子体刀用于手术切割和止血,等离子体杀菌用于消毒和灭菌等。
结论等离子体物理是一个复杂而有趣的研究领域,涉及到物质的高度电离状态和与电磁场的相互作用。
等离子体在许多领域都有重要的应用,包括电子器件、能源研究和医学领域。
深入研究等离子体物理,对于推动科学技术的发展和解决实际问题具有重要意义。
等离子发光球原理

等离子发光球原理《等离子发光球原理》1. 引言嘿,你有没有见过那种超级酷炫的等离子发光球呢?就是一摸它,里面的光线就会跟着你的手跑的那种神奇玩意儿。
今天呀,咱们就来一起探索等离子发光球背后的原理,让你把这个看似神秘的东西搞得明明白白的。
在这篇文章里呢,我们会先讲讲它的基本概念和理论背景,再深入分析它的运行机制,然后看看它在生活和高级领域的应用,还会聊聊大家对它的常见误解,以及一些相关的趣味知识,最后再做个总结和对未来的展望。
2. 核心原理2.1基本概念与理论背景等离子体呢,说白了就是物质的第四种状态。
咱们都知道物质有固态、液态和气态这三种常见状态吧。
当物质被加热到很高的温度或者受到很强的电场作用的时候,原子就会被电离,也就是电子会从原子中跑出来,这样就形成了等离子体。
等离子体这个概念最早可以追溯到19世纪,科学家们在研究气体放电现象的时候发现了这种特殊的物质状态。
随着科学技术的不断发展,人们对等离子体的认识也越来越深入。
等离子发光球里的等离子体就是利用了气体放电的原理来产生的。
这里面的气体一般是像氖气、氩气之类的惰性气体,这些气体比较稳定,但是在一定的条件下也能被电离。
2.2运行机制与过程分析想象一下,等离子发光球就像一个小小的舞台。
首先呢,在这个发光球里面有一个中心电极,周围充满了刚才说的那些惰性气体。
当我们给这个电极加上高电压的时候,就像是在舞台上打开了一盏超级亮的聚光灯。
这个高电压会让气体分子里的电子获得足够的能量,就好像是给这些电子打了一针“强心剂”。
这些被激发的电子就会从原子中跑出来,这个时候原子就被电离了,形成了等离子体。
这就好比一群原本排着整齐队伍的士兵(原子),突然有一些士兵(电子)脱离了队伍,开始自由活动了。
这些自由的电子在电场的作用下会加速运动,当它们和其他原子或者离子碰撞的时候呢,就会把自己的能量传递出去。
其中一部分能量就会以光的形式释放出来,就像舞台上的演员开始表演,发出耀眼的光芒。
3-chap-2等离子体导论之四

Max( ee , p en
则中性粒子的作用可以忽略,体系处于等离子 体状态。 有大量中性粒子存在的情况往往是低温等离子 体,通常我们可以用库仑碰撞频率来估计。带 电粒子之间的库仑碰撞截面很大,在常规情况 下,当电离度为0.1%时,实际上就可以忽略中 性粒子的作用。 当电离度更小时,电离气体仍然具备一些等离 子体的性质,但需要考虑中性粒子的影响。直 到中性粒子的碰撞频率大大超越库仑碰撞频率 和等离子体频率时,体系的等离子体特征消失, 这种微弱电离的气体不再是等离子体。
补充2:
等离子体研究过程中常常会使用一些条 件对等离子体进行简化.
1、经典条件 2、稀薄条件
1、经典条件 一般等离子体可以用经典理论(非量子理论)
来处理,但是必须满足一定的条件:粒子的德 布罗意波长远小于粒子之间的平均间距! 粒子德布罗意波长
h h p m
d n 1/ 3
kT 1/ 2 ( ) m
等离子体概述
等离子体概述
① 等离子体的形成及碰撞 ② 等离子体的准电中性 ③ 徳拜屏蔽及等离子体屏蔽 ④ 等离子体鞘层及电位
⑤ 等离子作振荡
⑥ 等离子体中的基本参数
⑦ 等离子体判据
2
徳拜屏蔽
电子的德拜长度: 离子的德拜长度:
D (
0 KTi
ni e 2
)1/ 2
德拜势 徳拜屏蔽λD的物理意义:
补充1:关于部分电离等离子体
对于部分电离气体,体系中除带电粒子外,还存在着中性粒 子。当带电粒子与中性粒子之间的相互作用强度同带电粒 子之间的相互作用相比可以忽略时,带电粒子的运动行为就 与中性粒子的存在基本无关,同完全电离气体构成的等离子 体相近,这种情况下的部分电离气体仍然是等离子体。 带电粒子与中性粒子之间的相互作用形式只有近距离碰撞这 一种形式,可以用碰撞频率ν en表示其相互作用的强弱程度。 带电粒子之间的相互作用则可以分成两体的库仑碰撞和集体 相互作用两部分,我们可以用库仑碰撞频率ν ee和等离子体 频率ω p来表征这两种作用的大小。因此,如果有,
等离子体物理学的基础理论

等离子体物理学的基础理论等离子体物理学是研究等离子体(plasma)的性质和行为的学科,它是物质的第四态,与固体、液体和气体不同。
等离子体是由带正电的离子和带负电的电子组成的,处于电磁场中被激发并具有自由电荷和磁场行为。
等离子体物理学的研究既有基础理论,也涉及实验和应用。
本文将重点探讨等离子体物理学的基础理论。
在等离子体物理学中,基础理论主要包括冷等离子体(cold plasma)理论和热等离子体(hot plasma)理论。
冷等离子体理论适用于低温和低密度的等离子体,而热等离子体理论适用于高温和高密度的等离子体。
在冷等离子体理论中,最基本的概念是等离子体的Debye长度和Debye屏蔽。
Debye长度是描述等离子体中电子和离子相互作用范围的物理量,而Debye屏蔽是指等离子体中电荷之间的相互作用被周围的电子和离子屏蔽的现象。
热等离子体理论中,最基本的概念是等离子体的等离子体频率和等离子体束缚频率。
等离子体频率是指等离子体中的电子在电磁场中振荡的频率,而束缚频率是指等离子体中的离子在电磁场中束缚和振荡的频率。
等离子体物理学的基础理论还包括等离子体的平衡状态和非平衡态的描述。
平衡态下,等离子体的性质可以由麦克斯韦方程组和波动方程来描述。
非平衡态下,等离子体存在非热粒子尾部,需要引入玻尔兹曼方程和输运方程来描述。
等离子体物理学的基础理论还涉及电磁波在等离子体中的传播和耗散。
等离子体中存在很多种类的电磁波,如电磁波、等离子体波和浸泡波等。
这些波的传播和耗散特性对等离子体的性质和行为有着重要影响。
除了上述基础理论外,等离子体物理学还涉及等离子体的稳定性和不稳定性的研究。
等离子体在不同条件下会出现各种各样的不稳定现象,如Rayleigh-Taylor不稳定、Kelvin-Helmholtz不稳定和本德不稳定等。
这些不稳定性的研究对于等离子体物理学及其应用具有重要意义。
综上所述,等离子体物理学的基础理论涵盖了冷等离子体和热等离子体的理论、等离子体的Debye长度和Debye屏蔽、等离子体的等离子体频率和束缚频率、等离子体的平衡态和非平衡态的描述、电磁波在等离子体中的传播和耗散、以及等离子体的稳定性和不稳定性。
04 等离子体原子发射光谱

ICP光谱仪的发展
后全谱直读时代 全谱直读 单道+多通道 多通道 单道扫描 摄谱仪
全谱直读 开机即用
中阶梯光栅+固体检测器
凹面光栅+光电倍增管 直读,但不能同时测量背景,不是全谱 平面光栅+光电倍增管 直读,但不能同时测量背景,不是全谱
平面光栅+相板 (1970)
全谱,但不能直读
19
3. AES特点 1)多元素检测(multi-element); 2)分析速度快: 多元素检测; 可直接进样; 固、液样品均可 3)选择性好:Nb与Ta;Zr与Ha,Rare-elements; 4)检出限低:10-0.1µg/g(µg/mL); ICP-AES可达ng/mL级; 5)准确度高:一般5-10%,ICP可达1%以下; 6) 所需试样量少; 7) ICP-AES性能优越:线性范围宽(linear range) 4~6数量 级,可测高、中、低不同含量试样;
研究范围
稀薄气体状态的 原子
14
2.原子光谱的发展历史
物质燃烧会发光,火药是我国四大发明之一 焰火—— 物质原子的发年代
Kirchhoff G.R. Bunsen R.W. 《利用光谱观察的化学分析》 奠定原子发射光谱定性分析基础
利用分光镜研究盐和盐溶液在火焰中加热时所产生的特征光辐射,从而发现了Rb (铷)和Cs(铯)两元素
美国瓦里安技术中国有限公司(VARIAN)
技术参数 1.波长范围:175785nm波长连续覆 盖,完全无断点 2.RF发生器频率: 40.68MHz 3.信号稳定性: ≤1%RSD 4.杂散光: 〈2.0ppm As 5.完成EPA 22个元 素系列测定时间小于 5分钟
6
7
等离子体技术

360等离子体技术一、等离子体含有足够数量的自由带电粒子,有较大的电导率,其运动主要受电磁力支配的物质状态。
等离子体由带正电的离子和带负电的电子,也可能还有一些中性的原子和分子所组成。
等离子体在宏观上一般是电中性的,即它所含有的正电荷和负电荷几乎处处相等。
由于带电粒子之间的作用主要是长程的库仑力,每个粒子都同时和周围很多粒子发生作用,因此等离子体在运动过程中一般表现出明显的集体行为。
等离子体的性质不同于固体、液体和气体,常称为物质的第四态。
闪电、极光等是地球上的天然等离子体的辐射现象。
电弧、日光灯中发光的电离气体,以及实验室中的高温电离气体等是人造的等离子体。
在地球以外,如围绕地球的电离层、太阳及其他恒星、太阳风、很多种星际物质,都是等离子体。
天然的等离子体在地球上虽不多见,但在宇宙间却是物质存在的主要形式,它占宇宙间物质总量的绝大部分。
几种典型的等离子体的电子数密度和温度的范围可见图1各种等离子体的参量范围。
二、等离子体物理学研究等离子体的形成、性质和运动规律的一门学科。
宇宙间的物质绝大部分处于等离子体状态。
天体物理学和空间物理学所研究的对象中,如太阳耀斑、日冕、日珥、太阳黑子、太阳风、地球电离层、极光以及一般恒星、星云、脉冲星等等,都涉及等离子体。
处于等离子状态的轻核,在聚变过程中释放了大量的能量,因此,这个过程的实现,将为人类开发取之不尽的能源。
要利用这种能量,必须解决等离子体的约束、加热等物理问题。
所以,等离子体物理学是天体物理学、空间物理学和受控热核聚变研究的实验与理论基础。
此外,低温等离子体的多项技术应用,如磁流体发电、等离子体冶炼、等离子体化工、气体放电型的电子器件,以及火箭推进剂等研究,也都离不开等离子体物理学。
金属及半导体中电子气的运动规律,也与等离子体物理有联系。
1、发展简史19世纪以来对气体放电的研究;19世纪中叶开始天体物理学及20世纪对空间物理学的研究;1950年前后开始对受控热核聚变的研究;以及低温等离子体技术应用的研究,从四个方面推动了这门学科的发展。
等离子体基本概念PPT课件

等离子体物理学科方向 主要研究内容
等离子体物理主要研究等离子体的整体形态和集体 运动规律、等离子体与电磁场及其它形态物质的相 互作用。
等离子体物理研究范围非常广泛:磁约束聚变等离 子体、惯性约束聚变等离子体、空间等离子体、天 体等离子体、低温等离子体、非中性等离子体、尘 埃等离子体、基础等离子体等
D 0Te / ne0e2
方程为 2(r) (r) / 0 / D2 q (r) / 0
方程的解 (r) q er /D 4 0 r
电荷屏蔽效应后中心电荷q的作用势,称
为屏蔽库仑势 参量 具D 有长度的量纲,称为德拜屏蔽长
度,它是反映电荷屏蔽效应的特征长度。
电荷屏蔽效应的特征长度意义
电子密度平衡分布可取势场为φ时的玻尔兹
曼分布
ne
n ee /Te e0
ne0为不受中心电荷影响时的电子密度, Te为电 子温度
电中性(初始): Zni0 ne0
空间电荷分布
(r) ne0e(1 ee /Te ) q (r)
高温条件: e Te ee /Te 1 e / Te
(r) ne0e2 / Te q (r) 0 / D2 q (r)
等离子体物理学研究可促进低温等离子体技术在国 民经济各领域中广泛应用。等离子体处理加工技术 已成为一些重要产业(如微电子、半导体、材料、 航天、冶金等)的关键技术,而在灭菌、消毒、环 境污染处理、发光和激光的气体放电、等离子体显 示、表面改性、同位素分离、开关和焊接技术等方 面的应用已创造了极大的经济效益。
等离子体物理学研究开辟了由高技术开发的新领域。 非中性等离子体的研究产生了一批崭新的具有革命 性意义的高技术项目,如相干辐射源的研制和粒子 加速器新概念的提出。将在能源、国防、通讯、材 料科学和生物医学中发挥重要作用。对基本物理过 程的深入研究已成为推动这些技术取得突破性进展 的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
By x By y By z
Bz x Bz y Bz z
梯度项, 剪切项
曲率项,
等离子体物理 李文君
假设没有电场,且磁场的方向是均匀的,而磁场的大小不均匀。 磁感应强度的梯度方向与磁场方向垂直: (磁力线是直的但密度增加的情况)
2 m 曲率漂移 / / RC B R 2 qB 2 RC
Rc 1 B 2 r 3 Rc Rc
B
= B R
等离子体物理 李文君 等离子体物理 李文君
m RC B 2 1 2 ( / / ) 2 2 q RC B 2
18
m RC B 2 1 2 B R ( / / ) 2 2 q RC B 2 1 RC B 1 2 2 ( m m // ) 2 2 q RC B 2
27
▽B∥B
磁镜
带电粒子在一种中间弱、两端强的特殊的磁场 中,当绕着磁力线旋进的粒子由弱磁场区进入两端的 强磁场区域时,就会受到一反向力的作用。这个力 迫使粒子的速度减慢,轨道螺距缩短,然后停下来 并反射回去,反射回去的粒子达管子中心区域后, 又向另一端螺旋前进,达端口后又被反射回来。粒 子就像光在两个镜子之间来回反射,称之为磁镜。
等离子体物理 李文君
2.3.5 回旋中心沿磁场的运动
考虑如图所示的磁场,其磁场强度大小沿z方向变化。 令场轴(柱)对称,则Bθ=0。 由于磁力线的收敛和发散,必然存 在分量Br,这个分量能引起在磁场 中俘获或捕集粒子的力。
Bz
z 柱坐标
Br
|B|随r变化会引起导向中心沿着轴向
假设1: B 0
代表粒子) 外场变化时,回旋运动受影响。若外场相对变化小,对回 旋运动的时间空间尺度影响小,则回旋运动近似是完整的,粒 子的运动可以近似用导向中心代表,将场的变化对回旋运动的 影响归结为对导向中心运动的修正
实际情况下,场的非均匀性比较弱-缓变,运动可进行分解:
快回旋运动
常局域磁场中的运动,忽略回旋中心的漂移
B B
/B/
z
B
/B/
y
B
/B/
x
等离子体物理 李文君 等离子体物理 李文君
B大
回旋半径小
B小
回旋半径大
/B/
B的梯度使轨道的底部的拉莫尔半径大于顶部的,故引 起了与 ▽B和B 都垂直的漂移。
m rL qB
等离子体物理 李文君
等离子体物理 李文君
dv 电荷运动方程(垂直与磁场): m q (v B ( y )) dt dv x
Fz qr B Br
dv B) m q (v dt
r
r
' பைடு நூலகம்
给出通常的拉莫尔回旋
等离子体物理 李文君
等离子体物理 李文君
Fr q Bz
F q r Bz z Br
Bz
Br
z 柱坐标
Fz q Br
正电荷回旋运动的方向 总是和方向相反
Bz // B z Fz F// B z Fz z
F// // B
z
平行于磁场方向的磁场梯度引起粒子沿着磁场方向的运动
回旋中心沿磁场的运动 带电粒子在随空间缓慢变化的磁场中运动时,它的磁矩是 一个不变量。
等离子体物理 李文君
证明: 已知:F B // //
可以证明dμ / dt =0,即粒子在B变化的区域内运动时,拉莫尔 半径发生变化,但μ 保持不变。这就是磁镜方案的基础。
d // B 推广到一般:沿着磁力线方向的平均力 F// m dt s d // B m // // dt s d 1 B s B 2 [ m // ] dt 2 s t t
//
ˆr e
ˆ e
1 Bz B Br Bz 1 1 B ( )r ( ) ( ( rB ) r z z r r r r
Br Bz 1 1 Br ) ( ( rB ) )z z r r r r
21
缓慢变化的磁场:
2.3.4 有限拉莫尔半径效应 B
/B/
拉莫尔半径
梯度漂移速度
B
/B/
由于回旋半径非常小,无法感知到磁场在空间的非均匀性
磁场强度为无穷大
等离子体物理 李文君
无法感知到磁场在空间的非均匀性,没有漂移,只能围绕这根磁 力线运动。即带电粒子被强磁场所约束/被磁感应线套住不能离开。
等离子体物理 李文君
d m q B0 q (r ) B0 dt d c 零级近似 c D m q c B0 未扰动 dt
在洛伦兹力作用下的运动方程:
等离子体物理 李文君
9
有了梯度磁场分量后,各个点 的速度不同,要计算力,需要 考虑一个回旋周期的平均。
c
vD rc
弱不均匀性条件
缓慢的漂移运动
由于磁场的不均匀性导致回旋轨道的不闭合,产生中心漂移
(在一个回旋周期内)对快运动进行平均
等离子体物理 李文君 等离子体物理 李文君
2.3.2 带电粒子的梯度漂移
磁场的空间变化可用
Bx x Bx B y Bx z
Plasma Physics
第二章 单粒子轨道运动
等离子体物理 李文君
2.3 带电粒子在非均匀恒定磁场中的运动
(空间分布) 2.3.1 回旋中心漂移近似
带电粒子在电磁场中的运动:回旋运动 +导向中心的运动
由于场的不均匀性,很难给出速度的解析表达式。
等离子体物理 李文君
导向中心近似 (不考虑时空尺度较小的回旋运动,用导向中心
F B
B
1 B B rL 2 B2
梯度漂移速度:
梯度漂移速度垂直与磁感应强度和磁场梯度 离子的漂移速度大于电子的漂移速度,方向相反。 漂移速度与回旋半径成正比 数量级:
B rcB rc ~ ~ 1 B L
等离子体物理 李文君
弯曲的磁场
柱坐标
ˆr e
1 Fef B R 2 q B m RC B 2 qB RC
2 // 2
ˆ e
等离子体物理 李文君
真空中弯曲磁场在半径方向是不均匀的
必须考虑到B的梯度漂移 (稀薄等离子体,不考虑电场)
真空中 B j 1 E =0 0 c 2 t
B qv (sin ct ) B0 rL (cos ct ) y
B qv (sin ct ) B0 qv rL sin ct cos ct y
Fx qvy B( y) dt
0
2
2
0
B qv (sin ct ) B0 qv rL sin ct cos ct y dt
1 ( B) Z ( rB ) 0 r r
等离子体物理 李文君 等离子体物理 李文君
B
0
1 ( B) Z ( rB ) 0 r r
1 B B r
不能是常数 是r 的函数
Rc 2 Rc B 梯度漂移 2 2 2 m B B m B B m RC B B 2 2 2 2 qB R 2qB B 2qB B B C
假设2:磁场主要是沿着z轴方向
B Br r Bz z
Bz 1 0 rBr r r z
B 0
等离子体物理 李文君
假设3: Z轴方向磁场的梯度在轴附近变化不大
积分
r
0
Bz rBr dr r z
r
0
rdr
1 Bz Br r[ ]r 0 2 z
m
m
dt dv y
dt
qB( y )v y Fx
qB( y )v x Fy
求解这个方程非常困难, B是y的函数!
条件:B缓变! 假定 B 很小, B可作泰勒展开 .
B B0 ( r ) B ...
回旋中心磁场 拉莫半径位矢 Bz B0 y ( Bz / y ) .......
为了约束热核等离子体而把磁场弯成环形,不论怎样改变温度和磁场, 粒子最终都将漂移出环。 1 1 1 1 2 2 m / / T ; m 2 T T 能量均分定理 2 2 2 2 三个自由度 B
z
x
y
二个自由度
19
等离子体物理 李文君
等离子体物理 李文君
20
等离子体物理 李文君
离子沿着磁力线方向运动
沿着方向的漂移很小
等离子体物理 李文君
导向中心位于轴上的那个粒子,对一次回转作平均。
Br
Bz
z
r rL
Bz
轴线上
1 Bz Fz q r 2 z
磁矩:
2 m 2B
B z Fz z
等离子体物理 李文君 等离子体物理 李文君
Fy qvx B( y) dt
0
2
2
0
B qv ( cos ct ) B0 qv rL (cos ct ) y
2
1 B qv rL ( ) 2 y
等离子体物理 李文君
1 B Fy qv rL ( ) 2 y
qB 2 A rL 回旋周期面积: rL c (2.2.4) c m c 1 回旋周期电流:i q q 2 T 2 m 磁矩: i A
vy v sin ct vx , vy , y 用圆周运动代替