湖南大学机械振动习题课1
机械振动·机械波课后习题

习题5·机械振动5.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为:(A)1:4 (B )1:2 (C )1:1 (D) 2:1(2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C) kA 2//4 (D)0(3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ± (B) 2A ± (C) 23A ±(D) 22A ± 5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。
(2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。
振子在位移为零,速度为-?A 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。
振子处在位移的绝对值为A 、速度为零、加速度为-?2A 和弹性力为-KA 的状态,则对应曲线上的____________点。
题5.2(2) 图(3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。
(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。
(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。
5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:(1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图 题5.3图(b)5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按20.1cos(8)(SI)3x t ππ=+的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)s 52=t 与s 11=t 两个时刻的位相差;5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2A x =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.5.9 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向;(2)由起始位置运动到cm 12=x 处所需的最短时间;(3)在cm 12=x 处物体的总能量.5.10 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度s /cm 0.50=v ,求振动周期和振动表达式.5.11 题5.11图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5.11图5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同?(2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.5.13 有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量s /m kg 100.14⋅⨯=∆-t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程.5.14 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.题5.14图5.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅: (1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm )343cos(5cm )33cos(521ππt x t x 5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
湖南大学研究生机械振动_习题第一章

某一数值附近反复变化。
一、振动工程的重要性
• 1. 大型回转机械动态失稳造成事故 • 2. 桥梁由于共振、风激振动倒塌 • 3. 产品包装 • 4. 汽车舒适性,航天工程 • 5. 机床加工质量 • 6. 夯士、振动检测
国家重点工程:长江三峡水利 枢纽工程,135米蓄水前中孔 闸门振动试验现场(2003年4 月应用锤击模态法)
st
m
d2x dt 2
P
k ( st
x)
mg k st
O x
F
m
d2x dt 2
kx
x
P
表明,物体偏离平衡位置于坐标x处,受到与偏离距离成正 比而与偏离方向相反的合力,称此力为恢复力。
在恢复力作用下维持的振动称为无阻尼自由振动。
重力加在振动系统上只改变其平衡位置,只要将坐标原点取 在平衡位置,可得到如上形式的运动微分方程。
无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时t,其 运动规律x(t)总可以写为: x(t)= x(t+T)
T为常数,称为周期,单位符号为s。 这种振动经过时间T后又重复原来的运动。
考虑无阻尼自由振动微分方程
d2x dt 2
2 n
x
0
解为:
x Asin(nt )
角度周期为2π,则有:
[n (t T ) ] (nt ) 2
武汉大桥局桥科院、北方交通大学进行 的“秦-沈线中华之星高速列车通过桥梁 振动及结构应变试验” 。 中华之星高速 列车设计时速260Km/h,实际测试时速 321.5 Km / h 。大桥为 28 孔双线后张 法 预应力混凝土简支箱梁桥 , 梁顶宽 12.4m,梁高2.2m,梁跨长24.6m。
机械振动_机械波课后习题

机械振动_机械波课后习题(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(B)k A 72 (3) 谐振动过程中,动能和势能相等的位置的位移等于(A) _A4 (D)5.2填空题(1) 一质点在X 轴上作简谐振动,振幅 A= 4cm,周期T= 2s,其平衡位置取作坐标原点。
若t = 0时质点第一次通过x = — 2cm 处且向X 轴负方向运动,则质点第二次通过 x = — 2cm 处的时刻为 ____ s 。
(2) 一水平弹簧简谐振子的振动曲线如题 5.2(2)图所示。
振子在位移为零,速度为一:A 、加速度为零和弹性力为零的状态,对应于曲线上的____________ 点。
振子处在位移的绝对值为 A 、速度为零、加速度为-?2A 和弹性力为一KA 的状态,则对应曲线上的点。
题5.2(2) 图⑶一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周 5.1选择题 (1) 一物体作简谐振动, 时刻的动能与t 二T/8 (A)1 : 4 (B) 1: 习题5 ?机械振动振动方程为-Acos( t -),则该物体在"0 (T 为振动周期)时刻的动能之比为:2 (C) 1: 1 (D) 2 : 1 (A)kA 2 (C) kA 7/4(D)0(B)期为T,振幅为A(a)若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为X= ____________________ 0(b)若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为X= __________________ 05.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:(1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10°kg的小球与轻弹簧组成的系统,按x =0.1cos(8t三)(SI)的3规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相⑶t2 =5s与t1 =1s两个时刻的位相差;5.8—个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T ,其振动方程用余弦函数表示.如果t=0时质点的状态分别是:(1)xo = -A ;(2)过平衡位置向正向运动;(3)过处向负向运动;2(4)过x二- A处向正向运动.J2试求出相应的初位相,并写出振动方程.5.9一质量为10 10"kg的物体作谐振动,振幅为24cm,周期为4.0s,当t = 0时位移为24cm .求:(1)t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2)由起始位置运动到x =12cm处所需的最短时间;⑶在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉幵1.0cm后,给予向上的初速度V0 =5.0cm/s,求振动周期和振动表达式.5.11题5.11图为两个谐振动的x-t曲线,试分别写出其谐振动方程.题5.11图5.12一轻弹簧的倔强系数为k,其下端悬有一质量为M的盘子.现有一质量为m 的物体从离盘底h高度处自由下落到盘中并和盘子粘在一起,于是盘子幵始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同?(2)此时的振动振幅多大?⑶ 取平衡位置为原点,位移以向下为正,并以弹簧幵始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.5.13 有一单摆,摆长I =1.0m ,摆球质量m=10 10 Jkg ,当摆球处在平衡位置时,若给小球一水平向右的冲量 F :t 二1.0 10-kg m/ s ,取打击时刻为计时起点(t =0),求振动的初位相和角振幅,并写出小球的振动方程.5.14 有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20m ,位相与第一振动的位相差为一,已知第一振动的振幅为0.173m ,求第二个振动的振幅以及第6一、第二两振动的位相差.题5.14图5.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
机械振动·机械波课后习题

机械振动·机械波课后习题习题5·机械振动5.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为:(A)1:4 (B )1:2 (C )1:1 (D) 2:1(2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C) kA 2//4 (D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A)4A ± (B) 2A ± (C) 23A ±(D) 22A ± 5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。
(2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。
振子在位移为零,速度为-?A 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。
振子处在位移的绝对值为A 、速度为零、加速度为-?2A 和弹性力为-KA 的状态,则对应曲线上的____________点。
题5.2(2) 图(3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。
(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。
(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。
5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:(1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7 质量为kg 10103-?的小球与轻弹簧组成的系统,按20.1cos(8)(SI)3x t ππ=+的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)s 52=t 与s 11=t 两个时刻的位相差;5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2A x =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.5.9 一质量为kg 10103-?的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向;(2)由起始位置运动到cm 12=x 处所需的最短时间;(3)在cm 12=x 处物体的总能量.5.10 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后,给予向上的初速度s /cm 0.50=v ,求振动周期和振动表达式.5.11 题5.11图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5.11图5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同?(2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.5.13 有一单摆,摆长m 0.1=l ,摆球质量kg 10103-?=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量s /m kg 100.14??=?-t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程.5.14 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.题5.14图5.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) +=+=cm )373cos(5cm )33cos(521ππt x t x (2)??+=+=cm )343cos(5cm )33cos(521ππt x t x 5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
机械振动_机械波课后习题

习题5 •机械振动5.1选择题(1) 一物体作简谐振动,振动方程为x=Acos(,t ),则该物体在t=0时刻2的动能与t二T/8(T为振动周期)时刻的动能之比为:(A) 1: 4 ( B) 1:2 (C) 1:1 (D) 2:1(2) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA2(B) kA2/2(C) kA2//4(D)0(3)谐振动过程中,动能和势能相等的位置的位移等于(A),4(C) 一3A2(B)冷(D) - 2A5.2填空题(1) 一质点在X轴上作简谐振动,振幅A = 4cm,周期T = 2s,其平衡位置取作坐标原点。
若t= 0时质点第一次通过x = —2cm处且向X轴负方向运动,则质点第二次通过x= —2cm处的时刻为___ So(2) —水平弹簧简谐振子的振动曲线如题 5.2(2图所示。
振子在位移为零,速度为—呱、加速度为零和弹性力为零的状态,对应于曲线上的______________ 点。
振子处在位移的绝对值为A、速度为零、加速度为--2A和弹性力为-KA的状态,则对应曲线上的_____________ 点。
题5.2(2)图(3) —质点沿x轴作简谐振动,振动范围的中心点为x轴的原点,已知周期为T,振幅为A。
(a) 若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x= __________________ 。
(b) 若t=0时质点过x=A/2处且朝x轴负方向运动,则振动方程为x= ________________ 。
5.3符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动:⑴拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题5.3图题5.3图(b)5.4弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?5.5单摆的周期受哪些因素影响?把某一单摆由赤道拿到北极去,它的周期是否变化?5.6简谐振动的速度和加速度在什么情况下是同号的?在什么情况下是异号的?加速度为正值时,振动质点的速率是否一定在增大?5.7质量为10 10:kg的小球与轻弹簧组成的系统,按x = 0.1cos(8t,空)(SI)的规律3作谐振动,求:(1) 振动的周期、振幅和初位相及速度与加速度的最大值;(2) 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?⑶t2 =5S与t1 =1s两个时刻的位相差;5.8 一个沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示•如果t =0时质点的状态分别是:(1) x o = -A ;(2) 过平衡位置向正向运动;A(3) 过x二一处向负向运动;2A(4) 过x A处向正向运动.V2试求出相应的初位相,并写出振动方程.5.9 —质量为10 10^kg的物体作谐振动,振幅为24cm,周期为4.0s,当t =0时位移为24cm .求:(1) t =0.5s时,物体所在的位置及此时所受力的大小和方向;(2) 由起始位置运动到x = 12cm处所需的最短时间;(3) 在x =12cm处物体的总能量.5.10有一轻弹簧,下面悬挂质量为1.0g的物体时,伸长为4.9cm .用这个弹簧和一个质量为8.0g的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm后,给予向上的初速度V。
机械振动补充练习1

机械振动补充训练11.一质点做振幅为A ,周期为T 的简谐运动.试求在一个周期内从位移为2处运动到位移为-2处所需要的时间2.如图所示,一个劲度系数为k 的轻弹簧竖直固定在桌上,将一小球放在弹簧上,弹簧被压缩d 后平衡,然后按住小球使弹簧再被压缩c ,且c >d ,松开小球后,求小球上升到最高点所需的时间.3.(多选)一简谐振子沿x 轴振动,平衡位置在坐标原点。
t =0时刻振子的位移x =-0.1m ;t =43s 时刻x =0.1m ;t =4s 时刻x =0.1m 。
该振子的振幅和周期可能为()A .0.1m ,8sB .0.1m,2.5sC .0.1m,8sD .0.2m ,8sE .0.2m,8s它们的质量均为m ,弹簧的劲度系数为k ,C 为一固定的挡板,现将一个质量也为m 的物块D 从距A 为L 的位置由静止释放,D 和A 相碰后立即粘在一起,之后在斜面上做简谐运动.在简谐运动过程中,物块B 对C 的最小弹力为32mg sin θ,重力加速度为g ,则以下说法正确的是()A .简谐运动的振幅为3mg sin θ2kB .简谐运动的振幅为mg sin θ2kC .B 对C 的最大弹力为11mg sin θ2D .B 对C 的最大弹力为9mg sin θ26.(多选)如图所示,一顶角为直角的“”形光滑细杆竖直放置.质量均为m 的两金属环套在细杆上,高度相同,用一劲度系数为k 的轻质弹簧相连,此时弹簧为原长l 0.两金属环同时由静止释放,运动过程中弹簧的伸长在弹性限度内,且弹簧始终保持水平,已知弹簧的长度为l 时,弹性势能为12k (l -l 0)2,重力加速度为g ,下列说法正确的是()A .左边金属环下滑过程机械能守恒B .弹簧的最大拉力为2mgC .金属环在最高点与最低点加速度大小相等D .金属环的最大速度为gm 2k7.水平桌面上的轻质弹簧一端固定,另一端与小物块相连。
弹簧处于自然长度时物块位于O点((图中未标出))。
湖南大学机械振动习题课

2 n 1 tan 2 1 n
等效激励:旋转部件偏心质量引起的振动
M
me m t u x
M
2
sin t u x
e
2
k c
a
2
k
k
c
b
The rotating unbalance system can be equated to a SDOF system as shown above. 由动量定理(theorem of momentum)
Therefore, solve to get: B = 0 and A = 0.0353. Hence, x 0.0353e
n t
sin d t
For maximum displacement: velocity x
0
dx x 0.0353e nt (n sin d t d cos d t ) 0 dt n sin d t d cos d t 0
振幅: A u (
n
0 u
)
2
n
v0
v0
m k
最大张力: T mg kA mg v0 mk 1000 9.8 0.5 1000 4 105 1.98 104 (N)
此题基本理论:单自由度自由振动 Free vibration of SDOF
( 2 1)n t ( 2 1)n t
k c 0 2m m
2
2
Over-damped ( 1 )
x(t ) a1e
Critically Damped ( 1 )
a2e
机械振动习题和答案解析

《机械振动噪声学》习题集1-1 阐明下列概念,必要时可用插图。
(a) 振动;(b) 周期振动和周期;(c) 简谐振动。
振幅、频率和相位角。
1-2 一简谐运动,振幅为0.20 cm,周期为0.15 s,求最大的速度和加速度。
1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。
1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、周期和最大加速度。
1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。
即:A cos ωn t +B cos (ωn t + φ) =C cos (ωn t + φ' ),并讨论φ=0、π/2 和π三种特例。
1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大?1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。
其中ε << ω。
如发生拍的现象,求其振幅和拍频。
1-8 将下列复数写成指数A e i θ形式:(a) 1 + i3(b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i )2(f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8]2-1 钢结构桌子的周期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。
已知周期的变化∆τ=0.1 s。
求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。
2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。
2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O用刚度为k的弹簧相连,求系统的振动微分方程。
图2-1 图2-2 图2-32-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
解:取x为广义坐标,根据等效系统与原系统的动能相
等得:
1 2
me x2
1 2
ml2
12
m( l 2
令
n
k m
48020 4.9 2000ra Nhomakorabea / s
d n
1 2
n2
(C ) 2m
4.92 ( 1960 )2 4.875 2 2000
rad / s
代入得tm=0.3 s,最大振幅为:
xmax
x0
d
entm
sin dtm
应注意最大振幅并不发生在 sin
解:取广义坐标θ 如图,系统的振动微 分 方程为:
I0 [k (k1 k2 )l2 ] k2la sin t
共振频率为:
02
k
(k1 k2 )l2 I0
故:
K
I
2
00
(k1 k2 )l 2
图3
控制板的固有圆频率为:
n
k I0
02
取m1, m2, K1, K2处的竖向位移为广义坐标,如何等效?
方法(2):定义法 设使系统绕A点产生单位角加速度需要施加弯矩M,则在m1、 m2上产生绕A点的M惯性m1矩a12 :1 m2a42 1
Ie M m1a12 m2a42
设使系统产生单位转角需要施加弯矩M,则在K1、K2处将产生
al
)2
x al
2
故
me
m(1
1 a
1 3a2
)
由于固有频率与质量的平方根成反比,欲得到最高固有 频率,必须使me为极小:
dme da
3a 2 3a3
0
得:
a2 3
代入:
d2me d2a
2(1 a) a4
0
是为极小值,故铰链应放在离A端
2 3
l
处。
1 2
Ie 2
得转动惯量:
Ie m1a12 m2a42
根据等效前后势能相等:
U
1 2
K1(a2 )2
1 2
K2 (a3 )2
1 2
Ke 2
等效转动刚度:
Ke K1a12 K2a32
固有频率为:
n
Ke Ie
a22K1 a32K2 a12m1 a42m2
(k1
k2 )l 2 I0
1.求图1所示系统的固有频率。AB为刚性杆,杆本
身质量忽略不计。
Ie Ke
me Ke
图1
图b
解:方法(1):能量法
取广义坐标θ 如图,利用等效质量和等效刚度的概念,可 把原系统等效成为图b所示等效系统。
根据等效前后动能相等:
T
1 2
m1(a1 )2
1 2
m2 (a4 )2
0.529
dt 1
cm
,即
t
2d
时,此时:
x x0 en /(2d ) 0.526 cm
d
3.求图3所示系统在支撑运动为ys=y0 sinωt时的振动微 分方程。AB为刚性杆。
y
图3
解: 方法(1)按原系统列振动微分方程。 设θ为AB杆的相对转角,y为m上下运动时的绝对位
响应为:
x
x0ent
(cos d t
n d
sin
d t )
(1)
图2
式中:d n 1 2
对(1)式取一次导数:
x
x0ent
n2 d
sin d t
(2)
最大振幅应发生在 x 0 时,由(2)式可知:
tm 0
时质量m振幅最大,代入(1)式得:
xmax
弹性恢复力,对支点取矩:
M K1 a2 1 a2 K2 a3 1 a3
Ke M K1a22 K2a32
固有频率为:
n
Ke Ie
a22K1 a32K2 a12m1 a42m2
2.一质量m =2000 kg,以匀速度v =3 cm/s运动,与弹 簧K、阻尼器C相撞后一起作自由振动,如图所示。 已知K=48020 N/m,C=1960 N-s/m。问质量m在相 撞后多少时间达到最大振幅?最大振幅是多大?
O点,另有一相当于扭簧kθ的联动装置控制其转动。已知 控制板绕O点的转动惯量为I O 。为计算控制板系统的固有 频率,用图示试验方法测定kθ 。将升降舵固定,而在控制 板的自由端联接两个弹簧k1 ,k2 。使k2的一端有简谐支承 运动y=asinω。调节激振频率至系统共振,测定共振频率 为ω0 。试计算kθ及控制板的固有频率。
图3 ① 控制板;② 升降舵
当我们需要操纵飞机抬头或低头时,水平尾翼中的升降舵就会发生 作用。升降舵是水平尾翼中可操纵的翼面部分,其作用是对飞机进 行俯仰操纵。
图1
图2
图3
红线表示气流方向(也就是飞机机头方向吹过来的风的方向),黑线表示平尾,蓝 线表示升降舵舵面。 图1--飞机起飞时升降舵舵面的情况,飞机往前飞,气流就往后吹,气流遇到升降 舵上翘的舵面产生阻力,阻力产生压力,压力把升降舵舵面往下压,飞机机头就 会自然向上了,飞机就往上飞。 图2----飞机下降时候升降舵舵面的情况。图3---------飞机就是平飞状态。
2. 一弹簧k与阻尼器c并联于无质量的水平板上。今 将一质量m轻放在板上后立即松手,系统即作衰 减振动。问质量m的最大振幅是多少?发生在何 时?最大速度是多少?发生在何时?设阻尼比
0<ζ<1。
解:系统自由振动的微分方程为:
mx cx kx 0
在t=0,x=x0 ,x 0 的初始条件下的
x0
mg k
最大速度发生在 x 0 时,由(2)式可得:
cos d tm
n d
sin dtm
0
或
tgd tm
d n
时速度最大,代入(2)式得:
xmax
g entm
n
应注意最大速度并不发生在质量m过静平衡位置时,这 是和无阻尼自由振动不同之处。
3. 一飞机升降舵的控制板铰接于升降舵的轴上,如图3所示
图2
解: 系统自由振动的微分方程为:
mx Cx Kx 0
在t=0,x=0, x x0 的初始条件下的响应为:
x
x0
d
ent
sin dt
x
x0
d
ent (d
cos d t
n
sin dt)
由 x 0 ,得最大振幅发生在
tm
1 d
tg1 d n