用待定系数法求函数解析式
初二函数专题5--用待定系数法求解析式+答案

初二函数专题6--用待定系数法求解析式一、用待定系数法求解析式 1、已知函数图象如图所示,则此函数的解析式为( ) A.2y x =- B.2(10)y x x =--<<C.12y x =-D. 1(10)2y x x =--<<2、已知一次函数的图象经过(3,2)和(1,-2)两点. 求这个一次函数的解析式.3、已知一次函数y ax b =+的图象经过点()023A -,,()143B -,,()4C c c +,. ⑴ 求c ;⑴ 求222a b c ab ac bc ++---的值.4、一条直线l 经过不同的三点A (a ,b ),B (b ,a ),C (a b -,b a -),那么直线l 经过 象限.二、根据位置关系求解析式5、已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.6、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .三、根据函数定义求解析式7、已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y 的值都为l9,求y 与变量x 的函数关系式.8、已知函数y (32)(4)a x b =+--为正比例函数。
(1)求a b 、的取值范围;(2)a b 、为何值时,此函数的图象过一、三象限。
9、已知y 与1x -成正比例,且当3x =时5y =.求y 与x 之间的函数关系式.y xO3214321A四、根据增减性求解析式10、已知一次函数y kx b =+中自变量x 的取值范围为26x -<<,相应的函数值的范围是119y -<<,求此函数的解析式。
11、已知函数(2)31y a x a =---,当自变量x 的取值范围为35x ≤≤时,y 既能取到大于5的值,又能取到小于3的值,则实数a 的取值范围为 .12、已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.13、一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.14、⑴已知关于x 的一次函数()372y a x a =-+-的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.⑴已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.参考答案用待定系数法求解析式1、用待定系数法求解析式【例1】 已知函数图象如图所示,则此函数的解析式为( )A.2y x =-B.2(10)y x x =--<<C.12y x =-D. 1(10)2y x x =--<<【解析】 由题意,正比例函数经过点(-1,2),求出函数解析式为2y x =-,同时根据图象看出自变量的取值范围为10x -<<答案:B【例2】 已知一次函数的图象经过(3,2)和(1,-2)两点.求这个一次函数的解析式.【解析】 设这个一次函数的解析式为:y kx b =+,由题意可知322k b k b +=⎧⎨+=-⎩,解得24k b =⎧⎨=-⎩故这个一次函数的解析式为:24y x =-.【点评】这种首先设出函数解析式,然后再根据已知条件求出函数解析式的系数的方法,称为“待定系数法”.【例3】 (09四川泸州)已知一次函数y ax b =+的图象经过点()023A -,,()143B -,,()4C c c +,. ⑴ 求c ;⑴ 求222a b c ab ac bc ++---的值.【解析】 ⑴根据已知()023A -,,()143B -,,求出一次函数解析式为223y x =+-,再把C 点坐标代入得23c =+.⑴()()()222222192a b c ab ac bc a b b c a c ⎡⎤++---=-+-+-=⎣⎦∵【点评】第二小问老师应该详细分析【例4】 (江苏省初中数学竞赛试题)一条直线l 经过不同的三点A (a ,b ),B (b ,a ),C(a b -,b a -),那么直线l 经过 象限.【解析】 设直线l 的解析式为y kx t =+,因点A 、B 在直线l 上.⑴b ka ta kb t =+⎧⎨=+⎩,⑴a b =/,解得:1k =-,故直线l 的解析式为y x =-+t . 又点C 在直线l 上.⑴()b a a b t -=--+,得0t =.即直线l 的解析式为y x =-,可知l 经过二、四象限.2、根据位置关系求解析式【例5】 已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数 的解析式.【解析】 根据题意可设此函数解析式为2y x b =+,过点P (-1,2),解得4b =,解析式为24y x =+.【例6】 (08年上海市中考题)如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .【解析】 根据题意可得OA 的解析式为2y x =,向上平移一个单位以后,可得:12y x -=,即21y x =+3、根据函数定义求解析式【例7】 已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y 的值都为l9,求y 与变量x 的函数关系式.【解析】 根据已知条件,设11y k x =,22k y x = (1k ,2k 均不为零),于是,得:2221212k y y y k x x=+=+将2x =,3x =代入212y y y =+得:22122121943199k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解之:122536k k =⎧⎪⎨=⎪⎩,⑴2365y x x =+【补充】已知函数y (32)(4)a x b =+--为正比例函数。
待定系数法求解析式

待定系数法求函数解析式【要点梳理】一.已知三点求抛物线解析式例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式.例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标.二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式.三.已知两点及对称轴,求抛物线解析式例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式.四.已知x轴上两点坐标及另一点坐标求抛物线解析式例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标.五.求平移后新抛物线解析式例6把抛物线2xy-=向左平移1个单位,然后向上平移3个单位,求平移后新的抛物线解析式.六.求沿坐标轴翻折后新抛物线解析式例7 在一张纸上作出函数322+-=xxy的图象,沿x轴把这张纸对折,描出与函数322+-=xxy的图象关于x轴对称的抛物线,并写出新抛物线解析式.【课堂操练】1.求下列条件下的二次函数解析式:(1)过点(-1,0),(0,2)和(4,0).(2)顶点为(2,-3),且过点(-1,15).2.已知二次函数cbxaxy++=2的图象如图所示,求它关于y轴对称的抛物线解析式.3.已知二次函数cbxaxy++=2的图象如图所示,求它关于x轴对称的抛物线解析式.4.已知二次函数cbxxy++=221的图象过点A(c,-2),,求证:这个二次函数图象的对称轴是直线x=3,题目中横线上方部分是被墨水污染了无法辨认的文字.(1)根据已知和结论中现有信息,你能否求出题目中的二次函数解析式?若能,请写出解题过程;若不能,请说明理由.(2)请你根据已有的信息,在原题中的横线上添加一个适当的条件,把原题补充完整.【课后巩固】1.将抛物线2y x=的图像向右平移3个单位,则平移后的抛物线的解析式为___________.2.二次函数342++=xxy的图象可以由二次函数2xy=的图象平移而得到,下列平移正确的是()A、先向左平移2个单位长度,再向上平移1个单位长度B、先向左平移2个单位长度,再向下平移1个单位长度C、先向右平移2个单位长度,再向上平移1个单位长度D、先向右平移2个单位长度,再向下平移1个单位长度3.已知2y ax bx c=++的图象过(-2,-6)、(2,10)和(3,24)三点,求函数解析式.4.已知函数2y ax bx c=++,当x=1时,有最大值-6,且经过点(2,-8),求出此抛物线的解析式.5.已知二次函数的图象与x轴的交点横坐标分别为2和3,与y轴交点的纵坐标是72,求它的解析式.6.已知抛物线22(2)4y m x mx n =--+的对称轴是x =2,且它的最高点在直线112y x =+上,求此抛物线的解析式.7.已知抛物线2y ax bx c =++(a ≠0)经过 (0,1)和(2,-3)两点. (1)如果抛物线开口向下,对称轴在y 轴的左侧,求a 的取值范围.(2)若对称轴为x =-1,求抛物线的解析式.8. 二次函数图象过A 、B 、C 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB =OC . (1)求C 的坐标;(2)求二次函数的解析式,并求出函数最大值.9.在平面直角坐标系中,△AOB 的位置如图所示.已知∠AOB =90°,AO =BO ,点A 的坐标为 (-3,1).(1)求点B 的坐标,(2)求过A ,O ,B 三点的抛物线的解析式, (3)设点B 关于抛物线的对称轴的对称点为B l ,求△AB l B 的面积.10.已知点A (-2,-c )向右平移8个单位得到 点A ',A 与A '两点均在抛物线2y ax bx c =++上, 且这条抛物线与y 轴的交点的纵坐标为-6,求这 条抛物线的顶点坐标.11.在直角坐标平面内,二次函数图象的顶点为A (1,-4),且过点B (3,0). (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.12.一次函数y =x -3的图象与x 轴,y 轴分别交于点A ,B .一个二次函数y =x 2+bx +c 的图象经过点A ,B .(1)求点A ,B 的坐标,并画出一次函数y =x -3的图象;(2)求二次函数的解析式及它的最小值.13.在平面直角坐标系中,已知二次函数k x a y +-=2)1(的图像与x 轴相交于点A 、B ,顶点为C ,点D 在这个二次函数图像的对称轴上,若四边形ABCD 时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.14.关于x 的函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方. (1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式; (3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.。
待定系数法求函数的解析式

一次函数的解析式1、把y=kx+b (k ≠0,b 为常数)叫做一次函数的标准解析式,简称标准式。
直线过()11,y x , ()22,y x =>2121x x y y k --=,或1212x x y y k --=b:与y 轴交点的刻度( 纵坐标)1:若点A (2,4)在直线y=kx-2上,则k=( )A .2B .3C .4D .02:一条直线通过A (2,6),B (-1,3)两点,求此直线的解析式。
3:一条直线通过A (1,6),B (0,3)两点,求此直线的解析式。
4:若A (0,2),B (-2,1),C (6,a )三点在同一条直线上,则a 的值为( )A .-2B .-5C .2D .55.已知点M (4,3)和N (1,-2),点P 在y 轴上,且PM+PN 最短,则点P 的坐标是( )A .(0,0)B .(0,1)C .(0,-1)D .(-1,0)6.如图,已知一次函数y=kx+b 的图象经过A (0,1)和B (2,0),当x >0时,y 的取值范围是( )A .y <1B .y <0C .y >1D .y <27.已知一次函数y=kx+b 的图象如图所示(1)当x <0时,y 的取值范围是______。
(2)求k ,b 的值.用待定系数法求二次函数解析式二次函数的解析式有三种基本形式:1、一般式:y=ax2+bx+c (a≠0)。
C:与y轴交点刻度(纵坐标)2、顶点式:y=a(x-h)2+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。
3、交点式:y=a(x-x1)(x-x2) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
1.已知一个二次函数的图象过点(0,-3)(4,5),(-1, 0)三点,求这个函数的解析式?2.已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式.3. 已知抛物线的顶点为(1,-4),且过点(0,-3),求抛物线的解析式?4.过点(2,4),且当x=1时,y有最值为6;求抛物线的解析式?5.. 已知一个二次函数的图象过点(0,-3)(4,5),对称轴为直线x=1,求这个函数的解析式?6.如图,已知两点A(-8,0),(2,0),与y轴正半轴交于点C(0、4)。
待定系数法求函数解析式10题

待定系数法求函数解析式10题1. 题目:已知一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),求这个一次函数的解析式。
- 解答:- 因为一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),所以把这两个点分别代入函数解析式中。
- 当x = 1,y = 3时,得到3=k×1 + b,也就是k + b=3;当x=-1,y = - 1时,得到-1=k×(-1)+b,也就是-k + b=-1。
- 现在有了一个方程组k + b = 3 -k + b=-1。
- 把这两个方程相加,(k + b)+(-k + b)=3+(-1),得到2b = 2,解得b = 1。
- 把b = 1代入k + b = 3,得到k+1 = 3,解得k = 2。
- 所以这个一次函数的解析式是y = 2x+1。
2. 题目:二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4),求这个二次函数的解析式。
- 解答:- 因为二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4)。
- 当x = 0,y = 1时,代入解析式得1=a×0^2+b×0 + c,也就是c = 1。
- 当x = 1,y = 2时,得到2=a×1^2+b×1 + c,也就是a + b + c=2;当x=-1,y = 4时,得到4=a×(-1)^2+b×(-1)+c,也就是a - b + c = 4。
- 因为c = 1,所以把c = 1代入a + b + c = 2和a - b + c = 4中,得到a + b+1 = 2 a - b+1 = 4。
- 化简这两个方程得a + b = 1 a - b = 3。
- 把这两个方程相加,(a + b)+(a - b)=1 + 3,得到2a = 4,解得a = 2。
利用待定系数法求解析式

1、利用待定系数法求解析式:(1)过(-1,11),(2,8),(0,6)三点;(2)顶点(3,-1),过(2,3);(3)对称轴为直线x=2,且过(1,4),(5,0)。
2、用函数观点看一元二次方程一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线y=ax2+bx+c与x轴的交点坐标是5, 那么二次函数y= 3 (1).一元二次方程3 x2+x-10=0的两个根是x1= -2 ,x2=3x2+x-10与x轴的交点坐标是_____(2). 若抛物线y= x2+ax+b与x轴的交点坐标是(5,0)和(-2,0),则一元二次方程x2+bx+c=0的两个根是_____.3、二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点b2–4ac > 0(2)有一个交点b2–4ac= 0(3)没有交点b2–4ac< 0若抛物线y=ax2+bx+c与x轴有交点,则b2 – 4ac≥04.利用抛物线图象填空:(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为__________(6)y=ax2+bx+c与y=ax+c的图象交于A(-0.8,0.6)、B(3.2,1)两点则方程ax2+bx+c=ax+c的图象根为-----------------5、函数观点看一元二次方程(字母符号)(1)a看开口方向(2)c看与y轴交点(3)b的符号:左同右异(4)b2-4ac的符号:由抛物线与x轴的交点个数确定:(5)a+b+c的符号:由x=1时抛物线上的点的位置确定(6)a-b+c的符号:由x=-1时抛物线上的点的位置确定(7)根据二次函数图象,如何确定2a-b,2a+b符号2a-b 的符号,看抛物线对称轴在x=-1的左侧还是右侧2a+b 的符号,看抛物线对称轴在x=1的左侧还是右侧。
用待定系数法求一次函数解析式

y=3x-30
60 元上网费用; (2)若小李 4 月份上网 20 小时,他应付________
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是__________.
35
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,
30k b 60 k 3 则 ,解得 .所以 y=3x-30. b 30 40k b 90
k=2 ∴ y=2 x +2 ∴ x=-1 时 y=度y(厘米)在一定限度内 所挂重物质量x(千克)的一次函数,现已测得 不挂重物时弹簧的长度是6厘米,挂4千克质量 的重物时,弹簧的长度是7.2厘米,求这个一次 函数的解析式。
解:设这个一次函数的解析式为:y=kx+b 根据题意,把x=0,y=6和x=4,y=7.2代入,得: b=6 k=0.3 4k+b=7.2 解得 b=6
Page 2
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解: ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b
解得
b=-5
∴这个一次函数的解析式为y=2x-5
Page
3
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. ∵ y=kx+b 的图象与y=2x平行. 解:
当B点的坐标为(0,4)时,则 y=kx+4
4 ∴ 0=3k+4, ∴k= - ∴ 3 4 ∴ 0=3k+4, ∴k= 3
y= -
4 x+4 3
当B点的坐标为(0,-4)时,则 y=kx-4
求函数f(x)的解析式

例2 已知 f ( x 1) x 2 x ,求 f ( x )
2 解:令 t x 1,则 t 1 , x (t 1)
f ( x 1) x 2 x
f (t ) (t 1) 2 2(t 1) t 2 1,
2
f ( x) x 1 ( x 1)
2 a x+ab+b f[f(x)]=af(x)+b=a(ax+b)+b=
a 2 4 ab b 3
a 2 a 2 或 b 1 b -3
f ( x) 2x 1 或 f ( x) 2x - 3
二、【换元法】
已知f(g(x)),求f(x)的解析式,一般的可用换元法,具体为:令 t=g(x),在求出f(t)可得f(x)的解析式。换元后要确定新元t的取值 范围。
2
f ( x) ( x 1) 1
2
作业: 《全优课堂》 1、P23 例3 2、P24能力提高7
再
见
解:1、令x=1,y=0则有 f(1)-f(0)=2,由f(1)=0的f(0)=-2 。 2、令y=0则有 f(x)-f(0)=(x+1)x, 所以 f(x)=(x+1)x+2 .
求函数解析式的题型有:
(1)已知函数类型,求函数的解析式:待定系 数法;
(2)已知f(x)求f[g(x)]或已知f[g(x)]求f(x) :换元法、 配凑法; (3)已知含有两个不同变量的函数的关系式: 列方程组法(消去法) (4)已知关系式中的变量可任意取值:赋值法
练习:
1、若f (3x 1) 4 x 3, 求f ( x)的解析式。 2、已知f ( x 1) x 1, 求f ( x)的解析式。
用待定系数法求解析式

例3.
练习3: 已知一元二次函数f(x)的图象经过点(3,8),
且与x轴交于两点(-1,0),(5,0),求函数f(x)的
已解析解知:式由一。题元意可二设次函数函的数解析f式(x为)的f (图x) 象a(x经1)(过x 点5) (0,因3为)图且象经与过(X3轴,交8)于两点(1,0) ,(3,代入0)得 ,8求 a函(3数1)(3f5()x)的解析式。
所以 a 1
因此,函数的解析式为 f (x) (x 1)(x 5)
三、小结:
已知条件
已知一次函数经过两点 A(x0,y0),B(x1,y1)
可设函数解析式为
f (x) kx b(k 0)
已知二次函数经过不重
合的三点A(x0,y0),B(x1,y1),
C(x2,y2)
f (x) ax2 bx c(a 0)
这种通过求待定系数来确定变量之间关系(函
数解析式)的方法叫做待定系数法。
二、典例讲解与练习:
例1、已知一元二次函数f(x)在x=-1,0,1处的函 数值分别为7,-1,-3,求这个函数 f(x)的解析 式。
练习1:
已知一元二次函数f(x),且x=0,-1,1 处的函数值分别为3, 6, 2,求这个函数 f(x)的解析式。
思考:
问题1: 一元二次函数 f(x)的图象的对称轴是直线x=2, 并且图象经过点P(2,0),Q(0,4),求函数f(x)的解 析式。
问题2: 一元二次函数 f(x)满足 f(2+x)=f(2-x) , 且函数 有最大值2,与 y 轴交于点(0,-6),求函数 f(x)的解析式。
一、复习引入
1.已学的函数及其解析式:
①正比例函数: y k x
②反比例函数: ③一 ຫໍສະໝຸດ 函 数:y k xy kxb
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k+b=2 解方程得:k=1, b=1 因此:所求二次函数是:y=x+1
例题解析
例3 已知一元二次函数的顶点坐标为(1,-2)并 且经过点(3,0)求f(x)的解析式.
解: 设所求的二次函数为f(x)= a(x-k)2+h (a0)
由已知得: f(x)=a(x-1)2-2
将点(3,0)代入上式得a= 1
2
因此:所求二次函数是:f(x) =1 2(x-1) 2-2
例题解析
例2 已知一元二次函数f(x)在x=-1,0,1处的函 数值分别为7,-1,-3,求f(x)的解析式.
解: 设所求的二次函数为f(x)= ax2+bx+c (a0)
a-b +c=7
由已知得:
c=-1
a+b+c=-3
解方程得: a=3, b=-5, c =-1
如果知道这个函数的一般形式, 可先把所求函数 写为一般形式,其中系数待定,然后再根据题设 条件求出这些待定系数. 这种通过求待定系数来 确定变量之间关系式的方法叫做待定系数法.
待定系数法的步骤:
设列解答
例题解析
例1 已知一个一次函数的图象过两点(-1,0), (1,2),求这个函数的解析式?
解:设所求的一次函数为y=kx+b -k+b=0
因此:所求二次函数是: y=3x2-5x-1
跟踪练习:
1.已知一次函数的图象经过两点(-1,0), (1,2),求这个函数的解析式.
2.已知一元二次函数的图像经过三点(0,-1), (1,2), (-3,2),求这个函数的解析式.
3.已知一元二次函数的图像顶点为(0,-1),且 经过点(1,2)求这个函数的解析式.
课时小结
设列解答
规划 目标 付出 结果
复习ቤተ መጻሕፍቲ ባይዱ顾
1.正比例函数,反比例函数,一次函数,二次函 数的解析式分别是什么?
2.如果 f(x)x4, 则f (5) ? 3.如果一次函数 f(x)axb, 那么由 f (3) 5
能得到什么结论?
4.设函数 f ( x ) 是正比例函数且 f (2) 4
求它的解析式.
待定系数法: 一般地,在求一个函数时,