2017年秋北师大版九年级数学上典中点习题2.5一元二次方程的根与系数的关系(PDF版)
北师大版九年级上册 2.5 一元二次方程的跟和系数的关系(含答案及解析)

初中数学北师大版九年级上学期第二章 2.5 一元二次方程的跟与系数的关系一、单选题1.若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A. 4B. 2C. 1D. ﹣22.若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且=﹣,则m等于()A. ﹣2B. ﹣3C. 2D. 33.若,,则以,为根的一元二次方程是()A. B. C. D.4.已知,是方程的两个实数根,则的值是( )A. 2023B. 2021C. 2020D. 20195.已知关于x的一元二次方程x2-bx+c=0的两根分别为x1=1,x2=-2,则b与c的值分别是( )A. b=-1,C=2B. b=1,C=-2C. b=1,c=2D. b=-1,c=-26.兰兰和笑笑分别解一道关于X的一元二次方程,兰兰因把一次项系数看错,解得方程两根为-2和6,笑笑因把常数项看错,解得方程两根为3和4,则原方程是()A. x2+7x-12=0B. x2-7x-12=0C. x2+7x+12=0D. x2-7x+12=0二、填空题7.已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是________.8.已知关于x的一元二次方程x2﹣4x+m=0有一个根为1,则方程的另一个根为________.9.若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为________三、计算题10.已知x1、x2是方程x2+2x﹣3=0的两个根,(1)求x1+x2;x1x2的值;(2)求x12+x22的值.四、解答题11.阅读材料:已知方程a22a 1=0,1 2b b2=0且ab≠1,求的值.解:由a22a 1=0及1 2b b2=0,可知a≠0,b≠0,又∵ab≠1,.1 2b b2=0可变形为,根据a22a 1=0和的特征.、是方程x22x 1=0的两个不相等的实数根,则,即.根据阅读材料所提供的方法,完成下面的解答.已知:3m27m 2=0,2n2+7n 3=0且mn≠1,求的值.五、综合题12.如图,矩形OABC在平面直角坐标系中,若x2-2 x+2=0的两根是x1、x2,且OC=x1+x2,OA=x1x2(1)求B点的坐标.(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BD的解析式.(3)在平面上是否存在点P,使D、C、B、P四点形成的四边形为平形四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.答案解析部分一、单选题1.答案:A解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4。
北师大九年级数学上2.5 一元二次方程_根与系数的关系

( X1-X2)2 = ( __X_1+)X2 -2 4X1X2 = ___12 3、判断正误:
以2和-3为根的方程是X2-X-6=0 (× )
4、已知两个数的和是1,积是-2,则这两个数是 __2_和__-1。
例2: 已知方程5x2 kx 6 0 的一个根
是2,求它的另一个根及k的值.
解:设方程 5x2 kx 6 0 的两个根
1.一元二次方程的一般形式是什么?
ax2 bx c 0(a 0)
2.一元二次方程的求根公式是什么?
x b b2 4ac (b2 4ac 0) 2a
3.一元二次方程的根的情况怎样确定?
0 有两个不相等的实数根
b2 4ac 0 有两个相等的实数根
0 没有实数根
新课讲解
如果方程x2+px+q=0有两个根是x1,x2 那么有x1+ x2=-p, x1 •x2=q 猜想:2x2-5x+3=0,这个方程的两根之和, 两根之积是与各项系数之间有什么关系?
解得:x1=23
x2=1
所以得到,x1+x2=
5 2
x1 •x2=
3 2
问题2;对于一元二次方程的一般式是否也
分别是 x1 、x2
所以:x1 • x2 2
即:
x2
3 5
由于 x1 x2 2
得:k=-7
,其中
x2
6 5
( 3) 5
x1
k 5
2
。
答:方程的另一个根是
3 5
,k=-7
练习:
(1)若关于x的方程2x2+5x+n=0的一个根是 -2,求它的另一个根及n的值。
(2)若关于x的方程x2+kx-6=0的一个根是- 2,求它的另一个根及k的值。
北师大版九年级数学上册教案:2.5一元二次方程根与系数的关系

2.教学难点
-难点内容:
a.理解判别式Δ的含义及其与方程根的关系。
b.熟练运用韦达定理求解一元二次方程的根。
c.将一元二次方程根与系数的关系应用于解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程根与系数关系在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的了解一元二次方程根与系数关系的基本概念。一元二次方程根与系数关系是指在特定条件下,方程的根与其系数之间存在一定的数学规律。它是解决一元二次方程问题的重要工具,可以帮助我们快速找到方程的根。
2.案例分析:接下来,我们来看一个具体的案例。通过分析方程ax^2+bx+c=0的判别式Δ和韦达定理,展示它们在实际问题中的应用,以及如何帮助我们解决方程的根。
此外,课堂总结环节,学生们的反馈让我意识到,他们在学习一元二次方程根与系数的关系时,对知识点的整体把握还有待加强。为了帮助学生更好地构建知识体系,我计划在下一节课中,通过思维导图等形式,梳理一元二次方程的相关知识点,使学生们能够更清晰地理解各个知识点之间的联系。
最后,我觉得自己在教学过程中,还需要注意以下几点:
3.重点难点解析:在讲授过程中,我会特别强调判别式Δ和韦达定理这两个重点。对于难点部分,如Δ与根的关系,我会通过列举具体方程和对应根的情况来帮助大家理解。
北师大版九年级数学上册一元二次方程的根与系数的关系

2.5 一元二次方程的根与系数的关系一、选择题1.已知方程x 2+2x-1=0的两根分别是x 1,x 2,则1211x x += ( )A.2B.-2C.-6D.62.若k>1,关于x 的方程2x 2-(4k+1)x+2k 2-1=0的根的情况是( )A.有一正根和一负根B.有两个正根C.有两个负根D.没有实数根3.已知二次三项式2x 2+kx+c 分解因式为2(x-3)(x+1),则b,c 的值分别为( )A.3,-1B.-6,2C.-6,-4D.-4,-6 4.如果24410xx -+=,那么4x 等于( ) A.-2 B.2 C.4 D.-2或45.已知方程x 2+5x-2=0,求作一个新的一元二次方程, 使它的根分别是已知方程各根的平方的倒数,则此新方程为( )A.4y 2-29y+1=0B.4y 2-25y+1=0C.4y 2+29y+1=0D.4y 2+25y+1=06.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.19二、填空题7.若方程x 2+3x+m=0的一根是另一根的一半,则m=______,两个根是_______.8.某制药厂生产的某种针剂,每支成本3元,由于连续两次降低成本,现在的成本是2.43元,则平均每次降低的百分数是_________.9.关于x 的代数式x 2+(m+2)x+(4m-7)中,当m=_______时,代数式为完全平方式.10.已知a 2+3a=7,b 2+3b=7,且a ≠b,则a+b=_______.11.某市计划在两年内将工农业生产总值翻两番,则平均每年工农业生产总值的增长率是________.12.关于x 的方程x 2-kx+6=0有一根-2,那么这个方程两根倒数的和是_______.2的两个实数根,则m 等于_________.14.在一元二次方程x 2+bx+c=0中,如果系数b 、c 可在1,2,3,4,5,6中任意取值, 那么其中有实数解的方程有______个.三、解答题15.已知x 1=q+p,x 2=q-p 是关于x 的一元二次方程x 2+px+q=0的两个根,求p 、q 的值.16.已知: 321329m n m n +=⎧⎨=-⎩, 22m n m n-+-- 的值为根的一元二次方程.17.某小会议室的地面为长方形,长比宽多2米,如果地面用384块边长为25 厘米的正方形瓷砖恰好铺满,试算一算,这个小会议室的长和宽各是多少?18.已知x 1和x 2是方程(k 2-1)x 2-6(3k-1)x+72=0的两正根,且(x 1-1)(x 2-1)=4, 求k 的值.四、列方程解应用题19.一个长方形水池,长88米,宽48米,沿池边四周有一条宽度相同的路,已知这条路的面积是1776平方米,求路的宽度.20.一容器装满了含盐量为20%的盐水50升,第一次倒出若干升,用水加满;第二次又倒出同样多,再用水加满,此时容器中盐水的含盐量为12.8%,求每次倒出的盐水是多少升.答案一、ABDBAD 二、7.2;-1,-2 8.10%9.4或8 10.-3 11.100% 12.56-13.4 14.19三、15.203013ppqq⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩或16.x2+2x-14=0 17.长6米,宽4米四、18.K=319. 宽6米20.10升构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。
北师大版九年级数学上册同步练习:2.5 一元二次方程的根与系数的关系

5 一元二次方程的根与系数的关系1.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1·x2的值是( )A.2 B.-2 C.4 D.-32.若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是( ) A.-10 B.10 C.-16 D.163.已知一元二次方程的两个根分别是x=2和x=-3,则这个一元二次方程是( ) A.x2-6x+8=0 B.x2+2x-3=0C.x2-x-6=0 D.x2+x-6=04.已知关于x的方程x2+5x+m=0的一个根为-2,则另一个根是( )A.-6 B.-3 C.3 D.65.若关于x的方程x2+mx+7=0的一个根为3-2,求方程的另一个根及m的值.6.已知一元二次方程x2-6x-3=0的两个根分别为α与β,则1α+1β的值的相反数为( )A.-1 B.1 C.-2 D.27.设x1,x2是方程x2+5x-3=0的两个根,则x12+x22的值是( )A.19 B.25 C.31 D.308.已知m,n是关于x的一元二次方程x2-2tx+t2-2t+4=0的两实数根,则(m+2)(n +2)的最小值是( )A.7 B.11 C.12 D.169.若x1,x2是方程x2-2mx+m2-m-1=0的两个根,且x1+x2=1-x1x2,则m的值为( )A.-1或2 B.1或-2 C.-2 D.110. 已知x1,x2是关于x的一元二次方程x2-5x+a=0的两个实数根,且x12-x22=10,则a=________.11.已知关于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的两根之和等于两根之积,求k 的值.12.方程ax 2+bx -c =0(a >0,b >0,c >0)的两个根的符号为( ) A .同号 B .异号 C .两根都为正 D .不能确定13.已知关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根. (1)求k 的取值范围;(2)请选择一个整数k 值,使方程的两根同号,并求出方程的根.14.若关于x 的一元二次方程x 2+2()m -1x +m 2=0的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值范围是( )A .m ≤12B .m ≤12且m ≠0 C .m <1 D .m <1且m ≠015.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,求m 的值.16.已知x 1,x 2是关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0的两个实数根. (1)若(x 1-1)(x 2-1)=28,求m 的值;(2)已知等腰三角形ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的长,求△ABC 的周长.17.2021·鄂州已知关于x 的方程x 2-(2k -1)x +k 2-2k +3=0有两个不相等的实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为x 1,x 2,是否存在这样的实数k ,使得|x 1|-|x 2|=5成立?若存在,求出这样的k 值;若不存在,请说明理由.1.D [解析] ∵x 1,x 2是一元二次方程x 2-2x -3=0的两个根,∴x 1·x 2=-3.故选D .2.A3.D [解析] 设此一元二次方程为x 2+px +q =0.∵二次项系数为1,两个根分别为x =2,x =-3,∴p =-(2-3)=1,q =(-3)×2=-6,∴这个方程为x 2+x -6=0.故选D .4.B [解析] 设方程的另一个根为n ,则有-2+n =-5,解得n =-3.故选B. 5.解:设方程的另一个根为t ,根据题意,得(3-2)t =7,∴t =73-2=3+ 2.所以-m =3-2+3+2=6,即m =-6. 即方程的另一个根为3+2,m 的值为-6.6.D [解析] ∵一元二次方程x 2-6x -3=0的两个根分别为α与β, ∴α+β=6,αβ=-3,∴-(1α+1β)=-α+βαβ=-6-3=2.故选D.7.C [解析] ∵x 1,x 2是方程x 2+5x -3=0的两个根,∴x 1+x 2=-5,x 1x 2=-3,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=25+6=31.故选C.8.D [解析] ∵m ,n 是关于x 的一元二次方程x 2-2tx +t 2-2t +4=0的两实数根,∴m +n =2t ,mn =t 2-2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7.∵方程有两个实数根,∴Δ=(-2t )2-4(t 2-2t +4)=8t -16≥0,∴t ≥2,∴(t +1)2+7≥(2+1)2+7=16.故选D.9.D [解析] ∵x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,∴x 1+x 2=2m ,x 1·x 2=m 2-m -1.∵x 1+x 2=1-x 1x 2,∴2m =1-(m 2-m -1),即m 2+m -2=0,解得m 1=-2,m 2=1. ∵方程x 2-2mx +m 2-m -1=0有实数根,∴Δ=(-2m )2-4(m 2-m -1)=4m +4≥0,解得m ≥-1.∴m =1.故选D. 10.214 [解析] 由根与系数的关系,得x 1+x 2=5,x 1·x 2=a ,由x 12-x 22=10得(x 1+x 2)(x 1-x 2)=10.∵x 1+x 2=5,∴x 1-x 2=2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=25-4a =4,∴a =214. 11.解:设方程的两根为x 1,x 2,根据题意,得Δ=(2k -1)2-4(k 2+1)≥0,解得k ≤-34, x 1+x 2=-(2k -1)=1-2k ,x 1x 2=k 2+1.∵方程的两根之和等于两根之积,∴1-2k =k 2+1,∴k 2+2k =0,∴k 1=0,k 2=-2. 而k ≤-34,∴k =-2.12.B [解析] ∵ax 2+bx -c =0(a >0,b >0,c >0),∴Δ=b 2+4ac >0,∴方程有两个不相等的实数根.设方程ax 2+bx -c =0(a >0,b >0,c >0)的两个根为x 1,x 2, ∵x 1x 2=-ca<0,∴两根异号.故选B.13.解:(1)∵方程x 2-3x -k =0有两个不相等的实数根,∴Δ=(-3)2+4k =9+4k>0,解得k >-94.(2)∵方程的两根同号,∴-k >0,即k <0.又∵k >-94,∴整数k =-2或-1.当k =-2时,原方程为x 2-3x +2=0,解得x 1=1,x 2=2.(答案不唯一)14.B [解析] ∵关于x 的一元二次方程x 2+2(m -1)x +m 2=0有实数根,∴b 2-4ac =4(m -1)2-4m 2=4-8m ≥0,∴m ≤12.∵x 1+x 2=-2(m -1)>0,∴m <1.∵x 1x 2=m 2>0,∴m ≠0,∴m ≤12且m ≠0.故选B.15.解:∵α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,∴α+β=-2m -3,α·β=m 2, ∴1α+1β=α+βαβ=-2m -3m2=-1, ∴m 2-2m -3=0, 解得m =3或m =-1.∵关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根, ∴Δ=(2m +3)2-4×1×m 2=12m +9>0, ∴m >-34,∴m =-1不合题意,舍去,∴m =3.16.解:(1)由题意,得x 1+x 2=2(m +1),x 1x 2=m 2+5. ∵(x 1-1)(x 2-1)=28,∴x 1x 2-(x 1+x 2)+1=28, ∴m 2+5-2(m +1)+1=28.由题意,得b 2-4ac =[-2(m +1)]2-4(m 2+5)≥0,∴⎩⎪⎨⎪⎧m 2+5-2(m +1)+1=28,[-2(m +1)]2-4(m 2+5)≥0, 解得m =6.(2)当x 1=x 2时,b 2-4ac =0,则m =2, ∴x 1=x 2=3.∵3+3<7,不符合三角形三边关系定理, ∴m =2舍去.当x 1=7时,72-2(m +1)×7+m 2+5=0, 解得m =4或m =10.当m =4时,x 2=3,∴周长为3+7+7=17; 当m =10时,x 2=15.∵7+7<15,不符合三角形三边关系定理, ∴m =10舍去.∴这个三角形的周长为17. 注:x 2=7的情况与x 1=7的情况相同.17.解:(1)∵原方程有两个不相等的实数根,∴Δ=[-(2k -1)]2-4(k 2-2k +3)=4k -11>0,解得k >114.(2)存在.∵x 1+x 2=2k -1,x 1x 2=k 2-2k +3=(k -1)2+2>0,∴将|x 1|-|x 2|=5两边平方,可得x 12-2x 1x 2+x 22=5,即(x 1+x 2)2-4x 1x 2=5,∴(2k -1)2-4(k 2-2k +3)=5,即4k -11=5,解得k =4.∵4>114,∴k =4.。
北师大版九年级数学上册 2.5 一元二次方程的根与系数的关系 同步练习题(含答案,教师版) - 副本

北师大版九年级数学上册第二章2.5 一元二次方程的根与系数的关系同步练习题一、选择题1.已知x1,x2是一元二次方程x2+2x-k-1=0的两根,且x1x2=-3,则k的值为(B)A.1 B.2 C.3 D.42.若一元二次方程x2-2x-1=0的两根分别为x1,x2,则1x1+1 x2的值为(B)A.1 B.-2 C.3 D.-43.已知关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1,x2.若b+2c=0,则1x1+1x2+x1x2x1+x2的值为(D).A.52 B.-32C.32D.-524.若一元二次方程x2-3x-2=0的两根分别是m,n,则m3-3m2+2n=(A)A.6 B.5 C.3 D.45.对于任意实数a,b,定义:a◆b=a2+ab+b2.若方程(x◆2)-5=0的两根记为m,n,则m2+n2=(D).A.3 B.4 C.5 D.66.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为(A ).A .1B .2C .3D .4 二、填空题7.已知关于x 的一元二次方程x 2-2kx -8=0的一个根是2,则此方程的另一个根是-4.8.已知关于x 的方程x 2+mx -2n =0的两根之和为-2,两根之积为1,则m +n 的值为32.9.写一个以5,-2为根的一元二次方程(化为一般形式)x 2-3x -10=0.10.已知m ,n 是一元二次方程x 2-2x -3=0的两根,则m +n +mn =-1.11.若x 1+x 2=3,x 21+x 22=5,则以x 1,x 2为根的一元二次方程是x 2-3x +2=0.12.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m+m n 的值是452或2. 13.已知a ,b 是方程x 2+2x -5=0的两个实数根,则a 2b +ab 2的值为10.14.已知关于x 的方程kx 2-3x +1=0有两个实数根,分别为x 1和x 2.当x 1+x 2+x 1x 2=4时,k =1.15.若方程2x 2+4x -3=0的两根为x 1,x 2,则1x 21+1x 22=289.三、解答题16.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)x 21+x 22;解:x 21+x 22=(x 1+x 2)2-2x 1x 2=32-2×(-1) =11.(2)1x 1+1x 2. 解:1x 1+1x 2=x 1+x 2x 1x 2=3-1=-3.17.已知关于x的一元二次方程x2-2(a-1)x+a2-a-2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x21+x22-x1x2=16,求a的值.解:(1)∵关于x的一元二次方程x2-2(a-1)x+a2-a-2=0有两个不相等的实数根,∴Δ=[-2(a-1)]2-4(a2-a-2)>0.解得a<3.∵a为正整数,∴a=1或2.(2)∵x21+x22-x1x2=16,∴(x1+x2)2-3x1x2=16.∵x1+x2=2(a-1),x1x2=a2-a-2,∴[2(a-1)]2-3(a2-a-2)=16.解得a1=-1,a2=6.又由(1)知a<3,∴a=-1.18.已知x 1,x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根,求使x 1x 2+x 2x 1-2的值为整数的实数k 的整数值.解:根据题意,得Δ=(-4k)2-4×4k(k+1)≥0,且k≠0,解得k <0.∵x 1+x 2=1,x 1x 2=k +14k ,∴x 1x 2+x 2x 1-2=(x 1+x 2)2-2x 1x 2x 1x 2-2 =(x 1+x 2)2x 1x 2-4=1k +14k -4 =-4k +1.∵k 为整数,且-4k +1为整数,∴k +1=±1,±2,±4. 又∵k<0,∴k =-5,-3,-2.19.已知关于x 的方程3x 2+2x -m =0没有实数解,求实数m 的取值范围.解:∵3x 2+2x -m =0没有实数解, ∴Δ=4-4×3×(-m)<0,解得m <-13.故实数m 的取值范围是m <-13.20.已知实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0,求mn+nm的值. 解:若m≠n,∵实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0, ∴m ,n 是方程3x 2+6x -5=0的两根. ∴m +n =-2,mn =-53.∴m n +n m =m 2+n 2mn =(m +n )2-2mn mn (-2)2-2×(-53)-53=-225. 若m =n ,则m n +nm =1+1=2.综上可知,m n +n m 的值为-225或2.21.已知关于x的一元二次方程x2-2x+m-1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)若方程的两根都是正数,求m的取值范围;(3)设x1,x2是这个方程的两个实数根,且1+x1x2=x21+x22,求m 的值.解:(1)∵方程有两个不相等的实数根,∴Δ=(-2)2-4(m-1)=-4m+8>0.∴m<2.∴当m<2时,方程有两个不相等的实数根.(2)设x1,x2是这个方程的两个实数根,则x1>0,x2>0,∴x1x2=m-1>0.∴m>1.∵方程的两根都是正数,∴Δ≥0.∴m≤2.∴m的取值范围是1<m≤2.(3)由题意可得x1+x2=2,x1x2=m-1.∵1+x1x2=x21+x22,∴1+x1x2=(x1+x2)2-2x1x2,即1+m-1=22-2(m-1).解得m=2.22.已知k 为非负实数,关于x 的方程x 2-(k +1)x +k =0和kx 2-(k +2)x +k =0.(1)求证:前一个方程必有两个非负实数根;(2)当k 取何值时,上述两个方程有一个相同的实数根? 解:(1)证明:x 2-(k +1)x +k =0,Δ=[-(k +1)]2-4k =k 2-2k +1=(k -1)2≥0,∴方程x 2-(k +1)x +k =0的根为x =(k +1)±(k -1)22.∴x 1=k ,x 2=1. ∵k 为非负实数,∴方程x 2-(k +1)x +k =0必有两个非负实数根. (2)方程kx 2-(k +2)x +k =0中,∵k ≥0,当k≠0时,Δ=(k +2)2-4k 2=(k +2+2k)(k +2-2k)=(3k +2)(2-k).∵k >0,∴3k +2>0.∴要使(3k +2)(2-k)≥0,需满足2-k≥0, 即k≤2,且k≠0.当k =0时,x =0.∴k ≤2时,方程有实数根.当相同的根是k 时,把x =k 代入方程kx 2-(k +2)x +k =0,得k 3-(k +2)k +k =0,解得k =0或k =1+52或k =1-52.∵k 为非负实数,∴k =0或1+52.满足k≤2.当相同的根是1时,把x =1代入方程kx 2-(k +2)x +k =0,得k -(k +2)+k =0,解得k =2.满足k≤2.∴当k =2或0或1+52时,上述两个方程有一个相同的实数根.。
北师大版九年级数学上册 2.5 一元二次方程的根与系数的关系 同步练习题(含答案,教师版)

北师大版九年级数学上册第二章2.5 一元二次方程的根与系数的关系同步练习题一、选择题1.已知x1,x2是一元二次方程x2+2x-k-1=0的两根,且x1x2=-3,则k的值为(B) A.1 B.2 C.3 D.42.若一元二次方程x2-2x-1=0的两根分别为x1,x2,则1x1+1x2的值为(B)A.1 B.-2 C.3 D.-43.已知关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1,x2.若b+2c=0,则1x1+1x2+x1x2x1+x2的值为(D).A.52B.-32C.32D.-524.若一元二次方程x2-3x-2=0的两根分别是m,n,则m3-3m2+2n=(A)A.6 B.5 C.3 D.45.对于任意实数a,b,定义:a◆b=a2+ab+b2.若方程(x◆2)-5=0的两根记为m,n,则m2+n2=(D).A.3 B.4 C.5 D.66.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为(A).A.1 B.2 C.3 D.4二、填空题7.已知关于x的一元二次方程x2-2kx-8=0的一个根是2,则此方程的另一个根是-4.8.已知关于x的方程x2+mx-2n=0的两根之和为-2,两根之积为1,则m+n的值为32.9.写一个以5,-2为根的一元二次方程(化为一般形式)x2-3x-10=0.10.已知m,n是一元二次方程x2-2x-3=0的两根,则m+n+mn=-1.11.若x1+x2=3,x21+x22=5,则以x1,x2为根的一元二次方程是x2-3x+2=0.12.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n 的值是452或2.13.已知a ,b 是方程x 2+2x -5=0的两个实数根,则a 2b +ab 2的值为10.14.已知关于x 的方程kx 2-3x +1=0有两个实数根,分别为x 1和x 2.当x 1+x 2+x 1x 2=4时,k =1.15.若方程2x 2+4x -3=0的两根为x 1,x 2,则1x 21+1x 22=289.三、解答题16.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值: (1)x 21+x 22;解:x 21+x 22=(x 1+x 2)2-2x 1x 2 =32-2×(-1) =11.(2)1x 1+1x 2. 解:1x 1+1x 2=x 1+x 2x 1x 2=3-1=-3.17.已知关于x 的一元二次方程x 2-2(a -1)x +a 2-a -2=0有两个不相等的实数根x 1,x 2.(1)若a 为正整数,求a 的值;(2)若x 1,x 2满足x 21+x 22-x 1x 2=16,求a 的值.解:(1)∵关于x 的一元二次方程x 2-2(a -1)x +a 2-a -2=0有两个不相等的实数根, ∴Δ=[-2(a -1)]2-4(a 2-a -2)>0.解得a <3. ∵a 为正整数, ∴a =1或2.(2)∵x 21+x 22-x 1x 2=16, ∴(x 1+x 2)2-3x 1x 2=16.∵x 1+x 2=2(a -1),x 1x 2=a 2-a -2, ∴[2(a -1)]2-3(a 2-a -2)=16. 解得a 1=-1,a 2=6. 又由(1)知a <3, ∴a =-1.18.已知x 1,x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根,求使x 1x 2+x 2x 1-2的值为整数的实数k 的整数值.解:根据题意,得Δ=(-4k)2-4×4k(k+1)≥0,且k≠0,解得k <0. ∵x 1+x 2=1,x 1x 2=k +14k ,∴x 1x 2+x 2x 1-2=(x 1+x 2)2-2x 1x 2x 1x 2-2 =(x 1+x 2)2x 1x 2-4=1k +14k-4 =-4k +1.∵k 为整数,且-4k +1为整数,∴k +1=±1,±2,±4. 又∵k<0,∴k =-5,-3,-2.19.已知关于x 的方程3x 2+2x -m =0没有实数解,求实数m 的取值范围. 解:∵3x 2+2x -m =0没有实数解, ∴Δ=4-4×3×(-m)<0,解得m <-13.故实数m 的取值范围是m <-13.20.已知实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0,求m n +n m 的值.解:若m≠n,∵实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0, ∴m ,n 是方程3x 2+6x -5=0的两根. ∴m +n =-2,mn =-53.∴m n +n m =m 2+n 2mn =(m +n )2-2mn mn (-2)2-2×(-53)-53=-225. 若m =n ,则m n +nm =1+1=2.综上可知,m n +n m 的值为-225或2.21.已知关于x 的一元二次方程x 2-2x +m -1=0. (1)当m 取何值时,方程有两个不相等的实数根? (2)若方程的两根都是正数,求m 的取值范围;(3)设x 1,x 2是这个方程的两个实数根,且1+x 1x 2=x 21+x 22,求m 的值. 解:(1)∵方程有两个不相等的实数根,∴Δ=(-2)2-4(m -1)=-4m +8>0.∴m<2. ∴当m <2时,方程有两个不相等的实数根.(2)设x 1,x 2是这个方程的两个实数根,则x 1>0,x 2>0,∴x 1x 2=m -1>0.∴m>1. ∵方程的两根都是正数,∴Δ≥0.∴m ≤2.∴m 的取值范围是1<m≤2. (3)由题意可得x 1+x 2=2,x 1x 2=m -1. ∵1+x 1x 2=x 21+x 22,∴1+x 1x 2=(x 1+x 2)2-2x 1x 2, 即1+m -1=22-2(m -1).解得m =2.22.已知k 为非负实数,关于x 的方程x 2-(k +1)x +k =0和kx 2-(k +2)x +k =0. (1)求证:前一个方程必有两个非负实数根;(2)当k 取何值时,上述两个方程有一个相同的实数根? 解:(1)证明:x 2-(k +1)x +k =0,Δ=[-(k +1)]2-4k =k 2-2k +1=(k -1)2≥0,∴方程x 2-(k +1)x +k =0的根为x =(k +1)±(k -1)22.∴x 1=k ,x 2=1. ∵k 为非负实数,∴方程x 2-(k +1)x +k =0必有两个非负实数根. (2)方程kx 2-(k +2)x +k =0中,∵k ≥0,当k≠0时,Δ=(k +2)2-4k 2=(k +2+2k)(k +2-2k)=(3k +2)(2-k). ∵k >0,∴3k +2>0.∴要使(3k +2)(2-k)≥0,需满足2-k≥0, 即k≤2,且k≠0.当k =0时,x =0.∴k ≤2时,方程有实数根.当相同的根是k 时,把x =k 代入方程kx 2-(k +2)x +k =0,得k 3-(k +2)k +k =0, 解得k =0或k =1+52或k =1-52.∵k 为非负实数,∴k =0或1+52.满足k≤2. 当相同的根是1时,把x =1代入方程kx 2-(k +2)x +k =0,得k -(k +2)+k =0,解得k =2.满足k≤2.∴当k =2或0或1+52时,上述两个方程有一个相同的实数根.。
北师大新版九年级数学同步试卷:一元二次方程的根与系数的关系

北师大新版九年级(上)中考题同步试卷:2.5 一元二次方程的根与系数的关系(01)一、选择题(共18小题)1.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2B.a≤2C.a>2D.a<22.若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()A.﹣1B.1C.﹣4D.43.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,35.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1B.0C.1D.26.下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0B.x2﹣6x+9=0C.5x2﹣4x﹣1=0D.3x2﹣4x+1=0 7.方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A.m>B.m≤且m≠2C.m≥3D.m≤3且m≠2 8.关于x的一元二次方程(m﹣2)x2+(2m+1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是()A.m>B.m>且m≠2C.﹣<m<2D.<m<29.若关于x的一元二次方程x2+(2k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥B.k>C.k<D.k≤10.关于x的一元二次方程x2+x+m=0有实数根,则m的取值范围是()A.m≥B.m≤C.m≥D.m≤11.下列方程有两个相等的实数根的是()A.x2+x+1=0B.4x2+2x+1=0C.x2+12x+36=0D.x2+x﹣2=012.下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0B.x2+2x﹣19=0C.x2+4=0D.x2+x+l=0 13.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9B.10C.9或10D.8或1014.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定15.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一16.一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况17.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根18.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1二、填空题(共7小题)19.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.20.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.21.一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=.(只需填一个).22.已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是.23.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是.24.关于x的一元二次方程2x2﹣4x+m﹣1=0有两个相等的实数根,则m的值为.25.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.三、解答题(共5小题)26.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.27.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.28.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.29.已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.30.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.北师大新版九年级(上)中考题同步试卷:2.5 一元二次方程的根与系数的关系(01)参考答案一、选择题(共18小题)1.C;2.B;3.B;4.A;5.B;6.A;7.B;8.D;9.D;10.D;11.C;12.B;13.B;14.B;15.D;16.B;17.C;18.D;二、填空题(共7小题)19.k≥﹣6;20.m<﹣4;21.4;22.k≥1;23.k<2且k≠1;24.3;25.a<﹣1;三、解答题(共5小题)26.;27.;28.;29.;30.;北师大新版九年级(上)中考题同步试卷:2.5 一元二次方程的根与系数的关系(02)一、选择题(共14小题)1.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根2.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b 的大致图象可能是()A.B.C.D.3.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0D.k>且k≠0 4.若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1B.a>1C.a≤1D.a<15.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1B.a>1C.a≤1D.a≥16.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2 7.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k≠0D.k<1且k≠0 8.判断一元二次方程式x2﹣8x﹣a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?()A.12B.16C.20D.249.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根都是自然数D.无实数根10.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1B.a≤4C.a≤1D.a≥111.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0B.2x2﹣x+1=0C.4x2﹣2x﹣3=0D.x2﹣6x=0 12.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能13.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0B.2x2﹣4x+3=0C.9x2+6x+1=0D.5x+2=3x2 14.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定二、填空题(共11小题)15.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m=.16.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是(写出一个即可).17.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是.19.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m=.20.已知k>0,且关于x的方程3kx2+12x+k+1=0有两个相等的实数根,那么k的值等于.21.关于x的一元二次方程x2﹣x+m=0没有实数根,则m的取值范围是.22.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是.23.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是.24.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.25.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是.三、解答题(共5小题)26.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.27.已知关于x的方程x2+(2m﹣1)x+4=0有两个相等的实数根,求m的值.28.已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,p为实数.(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)29.已知关于x的方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.30.已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.北师大新版九年级(上)中考题同步试卷:2.5 一元二次方程的根与系数的关系(02)参考答案一、选择题(共14小题)1.C;2.B;3.A;4.A;5.B;6.D;7.D;8.C;9.A;10.C;11.A;12.C;13.C;14.A;二、填空题(共11小题)15.;16.0;17.①③;18.a>﹣且a≠0;19.﹣1;20.3;21.m>;22.m ≤1;23.m<;24.4;2;25.a≤1;三、解答题(共5小题)26.;27.;28.;29.;30.;北师大新版九年级(上)中考题同步试卷:2.5 一元二次方程的根与系数的关系(03)一、选择题(共13小题)1.若关于x的方程式x2﹣x+a=0有实数根,则a的值可以是()A.2B.1C.0.5D.0.252.下列关于x的一元二次方程有实数根的是()A.x2+1=0B.x2+x+1=0C.x2﹣x+1=0D.x2﹣x﹣1=0 3.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.4B.﹣4C.1D.﹣14.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.下列关于x的方程有实数根的是()A.x2﹣x+1=0B.x2+x+1=0C.(x﹣1)(x+2)=0D.(x﹣1)2+1=06.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.7.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0B.b2﹣4ac>0C.b2﹣4ac<0D.b2﹣4ac≥08.若+|n﹣2|=0,且关于x的一元二次方程ax2+mx+n=0有实数根,则a的取值范围是()A.a≥8B.a<8且a≠0C.a≤8D.a≤8且a≠0 9.下列方程没有实数根的是()A.x2+4x=10B.3x2+8x﹣3=0C.x2﹣2x+3=0D.(x﹣2)(x﹣3)=1210.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤111.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1 12.下列方程中,没有实数根的是()A.x2﹣4x+4=0B.x2﹣2x+5=0C.x2﹣2x=0D.x2﹣2x﹣3=0 13.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤B.m≤且m≠0C.m<1D.m<1且m≠0二、填空题(共12小题)14.如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m=.15.关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为.16.若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则m=.17.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.18.一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.19.关于x的一元二次方程x2﹣3x+b=0有两个不相等的实数根,则b的取值范围是.20.若一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值为.21.已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是.22.关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△P AB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△P AB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是.23.关于x的一元二次方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是.25.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为.三、解答题(共5小题)26.已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.27.一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.28.已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=16﹣x1x2,求实数m的值.29.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.30.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.北师大新版九年级(上)中考题同步试卷:2.5 一元二次方程的根与系数的关系(03)参考答案一、选择题(共13小题)1.D;2.D;3.D;4.D;5.C;6.B;7.B;8.D;9.C;10.D;11.C;12.B;13.B;二、填空题(共12小题)14.9;15.6;16.;17.k<1;18.k<;19.b<;20.9;21.0;22.没有实数根;23.k<;24.a>0;25.﹣3;三、解答题(共5小题)26.;27.;28.;29.;30.;。