八年级数学上册 综合训练 轴对称作图及实际应用(轴对称最值问题一)天天练新人教版

合集下载

初二数学轴对称练习题及答案

初二数学轴对称练习题及答案

初二数学轴对称练习题及答案轴对称是初中数学中的一个重要概念,它在几何图形的研究中具有广泛的应用。

本文将为大家提供一些初二数学轴对称的练习题及答案,帮助同学们更好地理解和掌握这个知识点。

1. 练习题一在平面上,画出图形ABC,其中AB=3 cm,BC=4 cm,AC=5 cm。

找出图形的对称中心,并标出。

解答:首先,根据给定条件画出图形ABC。

由题目可知,三角形ABC是一个直角三角形,其中∠ABC=90°。

以边AC为轴,将三角形沿中点F对折,使得点B和B'重合。

连接BB',则BB'即为轴对称线,其交点F即为图形ABC的对称中心。

2. 练习题二如图所示,J、K、L、M是矩形ABCD的四个顶点,N是JL的中点,P是KN的中点,连接BM和CP,交于点O。

证明:BO=OC。

解答:根据题目所给条件,我们可以先证明三角形MBN与三角形PCO全等。

首先,由矩形ABCD的性质可知,AD∥BC,故∠NBC=∠BAN=90°。

其次,由题目可知,N是JL的中点,所以NJ=NL,结合矩形的性质可得∠NJL=∠NLF=90°,因此NFBJ是一个矩形。

同理,NEDK也是一个矩形。

由于FB=EK,NJ=NL,所以根据余角定理可知∠NBF=∠NEK。

再根据SSS全等定理,得到三角形MBN与三角形PCO全等,因此MB=PC。

又因为M和P分别是BC和KN的中点,故MB=BC/2,PC=KN/2。

所以BC/2=KN/2,即BC=KN。

由于BO和OC分别是BM和CP的中线,所以BO=BM/2,OC=CP/2。

综上所述,BO=OC。

3. 练习题三已知矩形EFGH中,AB=8 cm,BC=6 cm。

在边AB和BC上分别取两个等分点D和I,并连接DI。

求证:DI垂直于FG。

解答:根据题目中所给条件,我们可以先证明三角形GBD与三角形ACI全等。

首先,由矩形EFGH的性质可知,EF∥GH,所以∠FGB=∠AGH=90°。

北师大版数学八年级上册 轴对称解答题专题练习(word版

北师大版数学八年级上册 轴对称解答题专题练习(word版

北师大版数学八年级上册轴对称解答题专题练习(word版一、八年级数学轴对称解答题压轴题(难)1.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.2.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110° ,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18° ,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75° ,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x y x ααβ=+⎧⎨=-+⎩①② -②得,2α﹣β=0,∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴+y x y x ααβ=+⎧⎨=+⎩①② -①得,α=β﹣α,∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y x y x αβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.3.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==- 在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.4.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC , ∵BD 是△ABC 的一条特异线,∴△ABD 与△BCD 为等腰三角形,∴AD=BD=BC ,∴∠A=∠ABD ,∠C=∠BDC ,∴∠ABC=∠C=∠BDC ,∵∠BDC=∠A+∠ABD=2∠A ,设∠A=x ,则∠C=∠ABC=∠BDC=2x ,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.5.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【详解】(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线,∴∠CAM12∠BAC,∴∠CAM=∠BAM=30°.(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD =∠BCE.在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°. 由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°. ③当点D 在线段MA 的延长线上时. ∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD . 由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.6.已知如图1,在ABC ∆中,AC BC =,90ACB ∠=,点D 是AB 的中点,点E 是AB 边上一点,直线BF 垂直于直线CE 于点F ,交CD 于点G . (1)求证:AE CG =.(2)如图2,直线AH 垂直于直线CE ,垂足为点H ,交CD 的延长线于点M ,求证:BE CM =.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)首先根据点D 是AB 中点,∠ACB =90°,可得出∠ACD =∠BCD =45°,判断出△AEC ≌△CGB ,即可得出AE =CG ;(2)根据垂直的定义得出∠CMA +∠MCH =90°,∠BEC +∠MCH =90°,再根据AC =BC ,∠ACM =∠CBE =45°,得出△BCE ≌△CAM ,进而证明出BE =CM . 【详解】(1)∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°,∴∠CAE =∠BCG . 又∵BF ⊥CE ,∴∠CBG +∠BCF =90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵CAE BCGAC BCACE CBG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,BEC CMAACM CBEBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答. 【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H , ∵∠BAO =60°, ∴∠ABO =30°, ∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°, ∴∠ABC =180°﹣60°﹣40°=80°, ∵BD 是△ABC 的角平分线, ∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°, ∴DB =DC , 在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ), ∴OB =HC , 在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ), ∴CF=AB=6, 故答案为6;(2)∵△ABD 和△BCQ 是等边三角形, ∴∠ABD =∠CBQ =60°, ∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ), ∴∠BDQ =∠BAC =60°, ∴∠PDO =60°, ∴PD =2DO =6, ∵PD =23DC , ∴DC =9,即 OC =OD+CD =12, ∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F . 由(2)得,△AEP ≌△ADB , ∴∠AEP =∠ADB =120°, ∴∠OEF =60°, ∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小, ∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.8.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A 的坐标为___________;(2)当ABP △是等腰三角形时,求P 点的坐标;(3)如图2,过点P 作PE AB ⊥交线段AB 于点E ,连接OE ,若点A 关于直线OE 的对称点为A ',当点A '恰好落在直线PE 上时,BE =_____________.(直接写出答案) 【答案】(1)()0,8;(2)()4,0或()6,0或7,03⎛⎫ ⎪⎝⎭;(3)425【解析】 【分析】(1)根据勾股定理可以求出AO 的长,则可得出A 的坐标; (2)分三种情况讨论等腰三角形的情况,得出点P 的坐标; (3)根据PE AB ⊥,点A '在直线PE 上,得到EAGOPG ,利用点A ,A '关于直线OE 对称点,根据对称性,可证'OPG EAO ,可得'8OP OA ,82AP,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE解之即可. 【详解】解:(1)∵点B 坐标为6,0,点A 是y 轴正半轴上一点,且10AB =,∴ABO 是直角三角形,根据勾股定理有:22221068AOAB BO ,∴点A 的坐标为()0,8; (2)∵ABP △是等腰三角形, 当BPAB 时,如图一所示:OP BP BO,∴1064∴P点的坐标是()4,0;=时,如图二所示:当AP ABOP BO∴6∴P点的坐标是()6,0;=时,如图三所示:当AP BP设OP x =,则有6AP x∴根据勾股定理有:222OP AO AP += 即:22286x x解之得:73x =∴P 点的坐标是7,03; (3)当ABP △是钝角三角形时,点A '不存在; 当ABP △是锐角三角形时,如图四示:连接'OA ,∵PE AB ⊥,点A '在直线PE 上,∴AEG △和GOP 是直角三角形,EGAOGP∴EAGOPG ,∵点A ,A '关于直线OE 对称点, 根据对称性,有'8OA OA ,'EAEA∴'FAO FAO,'FAE FAE∴'EAGEAO则有:'OPG EAO∴'AOP 是等腰三角形,则有'8OP OA ,∴22228882APAO OP ,设BE x =,则有6AE x ,根据勾股定理,有:22222BP BE EP AP AE 即:2222688210x x解之得:425BE x【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.9.八年级的小明同学通到这样一道数学题目:△ABC 为边长为4的等边三角形,E 是边AB 边上任意一动点,点D 在CB 的延长线上,且满足AE =BD .(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由; (3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)32)DE =CE ,理由见解析;(3)这个最小值为7; 【解析】 【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值. 【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=BH 3=,∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23.故答案为:23;(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=AH 3=,∴C 'H =4+1=5,∴C 'F 22'253C H HF =+=+=27,∴DE +EF 的最小值为27.【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.10.如图,在等边三角形ABC 右侧作射线CP ,∠ACP =α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)求∠DBC 的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB 的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB 的大小;(3)用等式表示线段AE ,BD ,CE 之间的数量关系,并证明.【答案】(1)∠DBC 60α=︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°.理由:设AC、BD相交于点H,如图2,∵点A关于射线CP的对称点为点D,∴AC=DC,AE=DE,又∵CE=CE,∴△ACE≌△DCE(SSS),∴∠CAE=∠CDE,∵∠DBC=∠BDC,∴∠DBC=∠CAE,又∵∠BHC=∠AHE,∴∠AEB=∠BCA=60°,即∠AEB的大小不会发生变化,且∠AEB=60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.。

八年级数学轴对称同步练习题(K12教育文档)

八年级数学轴对称同步练习题(K12教育文档)

八年级数学轴对称同步练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学轴对称同步练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学轴对称同步练习题(word版可编辑修改)的全部内容。

人教新课标八年级数学(上)自主学习达标检测(二)(轴对称)(时间90分钟满分100分)班级学号姓名得分一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..不..与其他三个同?请指出这个图形,并说明理由.答:这个图形是: (写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在 Rt △ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形。

7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何?请用一句话表示: .10.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥DE,则△DEC的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形。

初中数学八年级上册轴对称练习题含答案

初中数学八年级上册轴对称练习题含答案

初中数学八年级上册轴对称练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,球沿图中箭头方向击出后碰到桌子的边缘会反弹,其中∠1叫做入射角,∠2叫做反射线,如果每次的入射角总是等于反射角,那么球最后将落入桌子四个顶角处的球袋中的()A.A号袋B.B号袋C.C号袋D.D号袋2. 下面4个图案,其中是轴对称图形的有()A.4个B.3个C.2个D.1个3. 小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是( )A. B. C. D.4. 下列图案不是轴对称图形的是( )A. B.C. D.5. 从镜子中看到钟的时间是8点25分,正确的时间应是()A.3点45分B.3点35分C.3点30分D.3点25分6. 如图,已知∠AOB=30∘,点P为∠AOB内一点,分别作出点P关于OA,OB的对称点P1,P2,连接OP1,OP2,P1P2,设P1P2交OA于点M,交OB于点N,连接PM,PN.若PM=1,PN=2,MN=3,则OP1的长为()A.4B.5C.6D.77. 一辆汽车车牌如图所示,则在正面看它在马路上水中的倒影为()A.B.C.D.8. 到三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点9. 如图,在△ABC 中,∠B =70∘,DE 是AC 的垂直平分线,且∠BAD:∠BAC =1:3,则∠C 的度数为( )A.48∘B.3307º C.46∘D.44∘10. 如图,△ABC 与△A′B′C′关于直线L 成轴对称,则下列结论中错误的是( )A.AB =A′B′B.∠B =∠B′C.AB // A′C′D.直线L 垂直平分线段AA′11. 在平面直角坐标系xOy 中,已知点A(0, 8),点B(6, 8),若点P 同时满足下列条件:①点P 到A ,B 两点的距离相等;②点P 到∠xOy 的两边距离相等.则点P 的坐标为________.12. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =3.1cm ,CD=2.3cm.则四边形ABCD的周长为________.13. 证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等..已知:如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F.求证:AB、BC、AC的垂直平分线相交于点P证明:∵点P是AB边垂直平分线上的一点,∴ ________=________(________).同理可得,PB=________.∴ ________=________(等量代换).∴ ________(到一条线段两个端点距离相等的点,在这条线段的________)∴AB、BC、AC的垂直平分线相交于点P,且________.14. 如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为________度.15. 如图,已知CD垂直平分AB.若AC=4, AD=5,则四边形ADBC的周长是________.AB的长为半径作弧,两弧相16. 如图,已知线段AB,分别以点A和点B为圆心,大于12交于C,D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=________.17. 如图,中,AB的垂直平分线交AC于点M,若,,,则的周长为________cm.18. 如图,在△ABC中,AB=AC, DE是AB的垂直平分线,△BCE的周长为24, BC=10则AB的长为________19. 如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点________.(P1至P4点)20. 如图,在▱ABCD中,按如下顺序作图:①以点A为圆心,AD长为半径画弧,交AB于点F;DF长为半径画弧,两弧交于点G;②分别以点D,点F为圆心,大于12③连接DF,作射线AG,交DC于点E.则四边形ADEF是________形;若AD=5,DF=6,则AE=________.21. 如图,已知:△ABC中,试说明:(1)用尺规作图作出边AB、BC的垂直平分线并相交于点P(要求:不写作法,保留作图痕迹)(2)求证:P在AC的垂直平分线上.22. 如图,在△ABC中,AB>AC.(1)用尺规作图法在AB上找一点P,使得PB=PC.(保留作图痕迹,不用写作法);(2)在(1)的条件下,连结PC,若AB=6,AC=4,求△APC的周长.23. 如图是由三个相同的小正方形组成的图形,请你用三种方法在图中补画一个相同的小正方形,使补画后的四个小正方形所组成图形为轴对称图形.24. 如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入哪一个球袋?说明理由.25. 如图,△ABC中,∠BAC=110∘,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.26. 如图,P为∠AOB内的一点,分别作出点P关于OA、OB的对称点P1、P2,连结P1、P2,交OA于M,交OB于N,若P1P2=13cm,求△MNP的周长?27. 如图,已知△ABC≅△DEF,且A,B,D,E四点在同一直线上,(1)如图1,请你用无刻度的直尺作出线段BE的垂直平分线;(2)如图2,请你用无刻度的直尺作出线段AD的垂直平分线.28. 如图,下面是一些交通标志,你能从中获得哪些信息?29. 已知:直线a1,a2垂直相交于O,于两直线外一点P,求作点P关于直线a1的对称点P′,点P关于直线a2的对称点P″,试证明:OP′=OP″.30. 两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.31. 已知:如图,在Rt△ABC中,∠C=90∘,∠B=30∘,AD平分∠BAC交BC于点D.(1)求证:点D在AB的垂直平分线上;(2)若CD=2,求BC的长.32. 如图,在△ABC中,DE是BC的垂直平分线,垂足为点E,交AB于点D,若CE=5,△ABC的周长为25,求△ADC的周长.33. 如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30∘,求∠MAN的度数;(3)若∠MON=45∘,BM=3,BC=12,求MN的长度.34. 如图,△ABC的周长为20cm,AC的垂直平分线DE交BC于D,E为垂足,若AE= 4cm,△ABD的周长为________cm.35. 指出下列图形中的轴对称图形,并找出它们的对称轴.36. 如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.37. 如图,已知:在△ABC中,AB,BC边上的垂直平分线相交于点P,求证:点P在AC的垂直平分线上.38. 如图所示,已知AB=AC,DB=DC,E是AD延长线上的一点,问:BE与CE相等吗?请说明理由.39. 搜集各国的国旗标志,举出5个以上具有轴对称图形的标志,并画出它们所有的对称轴.40. 指出下列图形中的轴对称图形,是轴对称图形的指出对称轴.参考答案与试题解析初中数学八年级上册轴对称练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】生活中的轴对称现象【解析】根据图形画出图示可直接得到答案.【解答】解:如图所示:球最后将落入桌子四个顶角处的球袋中的C号袋中,故选:C.2.【答案】B【考点】轴对称图形【解析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,观察可知前三个是轴对称图形,第四个不是轴对称图形.故选B.3.【答案】D【考点】镜面对称【解析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左右翻折,即可得到原图象,实际时间为8点的时针关于过12时,6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,而D更接近8点.【答案】A【考点】轴对称图形【解析】此题暂无解析【解答】解:由题A是中心对称图形不是轴对称图形,BCD是轴对称图形.故选A.5.【答案】B【考点】镜面对称【解析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻8点25分与3点35分成轴对称,所以此时实际时刻为3点35分.故选B.6.【答案】【考点】轴对称的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】镜面对称【解析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的图片与A显示的图片成轴对称,所以在正面看它在马路上水中的倒影为A显示的图片.故选A.8.【答案】D【考点】根据:垂直平分线上任意一点,到线段两端点的距离相等.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【解答】到线段两个端点距离相等的点在该线段的垂直平分线上,由此可得出要到三角形三个顶点的距离相等的交点是三条边的垂直平分线的交点.故选:D9.【答案】D【考点】线段垂直平分线的性质【解析】由DE垂直平分AC可得∠DAC=∠DCA;∠ADB是△ACD的外角,故∠DAC+∠DCA=∠ADB又因为∠B=70∘⇒∠BAD=180∘−∠B−∠BAD,由此可求得角度数.【解答】解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x−x=2x,根据题意得:180∘−(x+70∘)=2x+2x,解得x=22∘,∴∠C=∠DAC=22∘×2=44∘.故选:D.10.【答案】C【考点】线段的垂直平分线的性质定理的逆定理轴对称的性质线段垂直平分线的性质【解析】利用轴对称的性质对各选项进行判断.【解答】解:∵△ABC与△A′B′C′关于直线L成轴对称,∴AB=A′B′,∠B=∠B′,直线l垂直平分AA′.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】(3,3)【考点】线段垂直平分线的定义角平分线的定义【解析】性质解答即可.【解答】解:∵点A(0, 8),点B(6, 8),点P到A,B两点的距离相等,∴点P在线段AB的垂直平分线x=3上.∵点P到∠xOy的两边距离相等,∴点P在∠xOy的平分线上,∴点P的坐标为(3, 3).故答案为:(3,3).12.【答案】10.8cm【考点】轴对称的性质【解析】根据轴对称图形的性质得出AB=BC=3.1cm,CD=AD=2.3cm,进而求出即可.【解答】解:∵四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=3.1cm,CD=2.3cm,∴AB=BC=3.1cm,CD=AD=2.3cm,则四边形ABCD的周长为:3.1+3.1+2.3+2.3=10.8(cm).故答案为:10.8cm.13.【答案】解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据线段垂直平分线的性质定理和逆定理即可解答本题.解:∵点P是AB边垂直平分线上的一点,∴ AP=BP(线段垂直平分线上的点到线段两端的距离相等)同理可得,PB=PC∴ PA=PC(等量代换).)∴ P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AB、BC、AC的垂直平分线相交于点P,且PA=PB=PC.故答案为:AP,BP,线段垂直平分线上的点到线段两端的距离相等;PC;PA,PC;P在AC的垂直平分线上,垂直平分线上;PA=PB=PC.14.【答案】100【考点】轴对称的性质【解析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=30∘,∴∠B=180∘−∠A−∠C=180∘−50∘−30∘=100∘.故答案为:100.15.【答案】18【考点】线段垂直平分线的性质【解析】此题主要考查线段的垂直平分线的性质.【解答】解:∵CD垂直平分AB,若AC=4,AD=5,∴AC=BC=4,AD=BD=5,∴四边形ADBC的周长为AD+AC+BD+BC=18.故答案为:18.16.【答案】5线段垂直平分线的性质作线段的垂直平分线【解析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.【解答】解:由题意得,直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为:5.17.【答案】12【考点】线段垂直平分线的性质【解析】根据线段垂直平分线的性质可得BM=AM=4cm,然后可得△MBC的周长.【解答】:AB的垂直平分线交AC于点M,BM=AM=4cmCM=3cm,BC=5cm∴△MBC的周长为:4+3+5=12(cm)故答案为:12.18.【答案】14【考点】线段垂直平分线的性质线段的垂直平分线的性质定理的逆定理【解析】根据“线段垂直平分线的性质定理”即可得到AE=EE,由于△BCE的周长为24,利用线段的等量代换即可得到|AC+BC的值;已知BC的长度,即可得到AC的长度,由于AB=AC,则问题得解.【解答】∼DE是AB的垂直平分线,AE=EE.△BCE的周长为24,BC+BE+CE=BC+AE+CE=BC+AC=24BC=10AC=14.AB=ACAB=1A【答案】P2【考点】生活中的轴对称现象【解析】认真读题,作出点A关于P1P2所在直线的对称点A′,连接A′B与P1P2的交点即为应瞄准的点.【解答】如图,应瞄准球台边上的点P2.20.【答案】菱,8【考点】作线段的垂直平分线菱形的判定与性质【解析】此题暂无解析【解答】解:由①可知,AD=AF,由②可知,GD=GF,所以AE为线段DF的垂直平分线,则DE=EF,设AE与DF交于点O,∵ DE//AF,∴ ∠DEA=∠FAE.在△DOE和△FOA中,{∠DEA=∠FAE,DO=OF,∠DOE=∠FOA,∴ △DOE≅△FOA,∴ DE=AF,∴ 四边形ADEF是菱形;∵ AD=5,DF=6,∴ DO=3,∴ AO=√AD2−DO2=4,∴ AE=8.故答案为:菱;8.三、解答题(本题共计 20 小题,每题 10 分,共计200分)(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.【考点】线段的垂直平分线的性质定理的逆定理作线段的垂直平分线线段垂直平分线的性质【解析】(1)根据垂直平分线的作法得出即可;(2)可用作圆的方法作出线段AB、BC的垂直平分线;因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA=PB=PC 即可.【解答】(1)解:如图,P为所求作的点.(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC,∴点P在AC的垂直平分线上.22.【答案】(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.【考点】作线段的垂直平分线线段垂直平分线的性质【解析】【解答】解:(1)答案如图所示.(2)∵ PB=PC,AB=6,AC=4,∴ △APC周长=AC+AP+PC=AC+AP+PB=4+6=10.23.【答案】解:如图所示.【考点】轴对称图形【解析】根据轴对称图形的概念,先确定出不同情况的对称轴,然后补全小正方形即可.【解答】解:如图所示.24.【答案】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.【考点】生活中的轴对称现象【解析】由已知条件,按照反射的原理画图即可得出结论.【解答】解:该球最后将落入2号球袋.理由:球击到边框上一点,过这点和边框垂直的直线就是球击中边框前后路径的对称轴,如图所示,球击中边框反弹后的路径为虚线,最后指向2号袋.25.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).【考点】线段垂直平分线的性质【解析】(1)根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,DA=BD,FA= FC,则∠EAD=∠B,∠FAC=∠C,得出∠DAF=∠BAC−∠EAD−∠FAC=110∘−(∠B+∠C)求出即可.(2)由(1)中得出,AD=BD,AF=FC,即可得出△DAF的周长为BD+FC+ DF=BC,即可得出答案.【解答】解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180∘,∴110∘+∠B+∠C=180∘,∴x+y=70∘.∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴∠EAD=∠B,∠FAC=∠C.∴∠DAF=∠BAC−(x+y)=110∘−70∘=40∘.(2)∵AB,AC的垂直平分线分别交BA于E,交AC于G,∴DA=BD,FA=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).26.【答案】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.【考点】轴对称的性质【解析】根据轴对称的性质可得PM=P1M,PN=P2N,从而求出△MNP的周长等于P1P2,从而得解.【解答】解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△MNP的周长等于P1P2=13cm.27.【答案】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.【考点】作线段的垂直平分线【解析】此题暂无解析【解答】解:(1)由图可得两个图形为全等三角形,并且为轴对称图形,则直线l即为所求,如图:(2)如图,直线l即为所求.28.【答案】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.【考点】生活中的轴对称现象【解析】根据图形中的几个交通标志的轴对称性可以作出判断,答案不唯一.【解答】解:答案不唯一,(1)(2)(3)中的图案都是轴对称图形,(4)不是轴对称图形.29.【答案】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.【考点】轴对称的性质【解析】作出图形,连接PP′、PP″、OP,根据轴对称的性质可得OP′=OP,OP″=OP,然后证明即可.【解答】证明:如图,连接PP′、PP″、OP,∵P关于直线a1的对称点P′,∴OP′=OP,∵点P关于直线a2的对称点P″,∴OP″=OP,∴OP′=OP″.30.【答案】解:它们的对称轴均为经过两圆圆心的一条直线.【考点】轴对称图形【解析】根据每个圆都是轴对称图形,且对称轴是经过圆心的直线,则两个不是同心圆的圆组成的图形的对称轴是经过两个圆的圆心的直线.【解答】解:它们的对称轴均为经过两圆圆心的一条直线.31.【答案】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.【考点】线段的垂直平分线的性质定理的逆定理含30度角的直角三角形线段垂直平分线的性质【解析】无无【解答】(1)证明:∵∠C=90∘,∠B=30∘,∴∠BAC=60∘,∵AD平分∠BAC,∴∠BAD=∠CAD=30∘,∴∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上.(2)解:在Rt△ADC中,AD=2CD=4,∴BD=AD=4,∴BC=BD+CD=4+2=6.32.【答案】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.【考点】线段垂直平分线的性质【解析】由DE是BC的垂直平分线,即可求得BD=CD与BC的值,又由△ABC的周长为25,即可求得AB+AC的值,继而求得△ADC的周长.【解答】解:∵DE是BC的垂直平分线,∴BD=CD,BE=CE=5,∴BC=BE+CE=10,∵△ABC的周长为25,∴AB+AC=25−10=15,∴△ADC的周长为:AD+CD+AC=AD+BD+AC=AB+AC=15.33.【答案】∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.【考点】线段垂直平分线的性质【解析】(1)根据线段的垂直平分线的性质得到MA=MB,NA=NC,根据三角形的周长公式计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算;(3)根据(2)的解法得到∠MAN=90∘,根据勾股定理列式计算即可.∵直线OM是AB的垂直平分线,∴MA=MB,同理,NA=NC,∵△AMN的周长为6,∴MA+MN+NA=6,即MB+MN+NC=BC=6;∵∠MON=30∘,∴∠OMN+∠ONM=150∘,∴∠BME+∠CNF=150∘,∵MA=MB,ME⊥AB,∴∠BMA=2∠BME,同理,∠ANC=2∠CNF,∴∠BMA+∠ANC=300∘,∴∠AMN+∠ANM=360∘−300∘=60∘,∴∠MAN=180∘−60∘=120∘;由(2)的作法可知,∠MAN=90∘,由(1)可知,MA=MB=3,NA=NC设MN=x,∴NA=NC=12−3−x=9−x,由勾股定理得,MN2=AM2+AN2,即x2=32+(9−x)2,解得,x=5,即MN=5.34.【答案】12【考点】线段垂直平分线的性质【解析】此题主要考查了线段的垂直平分线定理,三角形的周长公式,整体代入,解本题的关键是求出AB+BC的值.【解答】解:∵ DE是AC的垂直平分线,∴ AD=CD,AC=2AE,∵ AE=4cm,∴ AC=8cm,∴ △ABC的周长为20cm,∴ AB+BC+AC=20,∴ AB+BC=20−AC=12cm,∴ △ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=12cm,故答案为:12.35.解:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:36.【答案】解:.(答案不唯一).【考点】轴对称图形【解析】结合轴对称图形的概念进行解答即可.【解答】解:.(答案不唯一).37.【答案】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.【考点】线段垂直平分线的性质【解析】因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA是否等于PC即可.【解答】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.38.【答案】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.【考点】轴对称的性质【解析】根据垂直平分线的定义可分别判定:点A在线段BC的垂直平分线上,D点也在线段BC 的垂直平分线上,所以可推出AD是线段BC的垂直平分线.从而求得BE=EC.【解答】解:连接BC,交AE于F,∵AB=AC,∴点A在线段BC的垂直平分线上.同理,D点也在线段BC的垂直平分线上.∵两点确定一条直线,∴AD是线段BC的垂直平分线.∵E是AD延长线上的一点,∴BE=EC.39.【答案】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,把图形沿一条直线对折,直线两侧的部分能够互相重合,这样的直线就是图形的对称轴,据此即可作出.【解答】解:秘鲁;圣卢西亚;法国;老挝.答案不唯一.40.【答案】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:【考点】生活中的轴对称现象【解析】根据轴对称图形的定义,即可作出判断.【解答】解:根据轴对称图形的定义可知:第一个、第二个、第四个图形都是轴对称图形.对称轴如图:。

人教版数学八年级上册 第13章 轴对称 综合训练(含答案)

人教版数学八年级上册 第13章 轴对称 综合训练(含答案)

人教版 八年级数学 第13章 轴对称 综合训练一、选择题1. 若点P (a ,b )与点Q (-2,-3)关于x 轴对称,则a +b 的值为( )A .-5B .5C .1D .-12.点M(3,2)关于x 轴对称的点的坐标为 ( )A . (-3,2)B . (3,-2)C . (-3,-2)D . (3,2)3. 如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN .若MN =2,则OM 的长为( )A .3B .4C .5D .64. (2020·福建)如图,AD 是等腰三角形ABC 的顶角平分线,5 BD ,则CD 等于( )A.10B.5C.4D.35. 如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A.(一,2)B.(二,4)C.(三,2)D.(四,4)6. 如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为()A.10 B.11 C.11.5 D.137. (2020·青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°8. 在数学课上,老师提出如下问题:如图,已知△ABC中,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PB=BC.下面是四名同学的作法,其中正确的是()9. 如图,在直角坐标系xOy中,直线y=1是△ABC的对称轴,已知点A的坐标是(4,4),则点B的坐标是()图13-2-7A.(4,-4)B.(-4,2)C.(4,-2)D.(-2,4)10. 如图,在△ABC中,AB=BC,点D在AC上,BD=6 cm,E,F分别是AB,BC边上的动点,△DEF周长的最小值为6 cm,则∠ABC的度数为()A.20°B.25°C.30°D.35°二、填空题11. 如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B 的坐标为________.12. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.13. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.14. 如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM+MN的值最小时,∠OCM的度数为________.15. 如图,在△ABC中,AB=AC,∠BAC=40°,AD是中线,BE是高,AD与BE交于点F,则∠BFD=________°.16. 如图,在小正三角形组成的网格中,已有6个小正三角形被涂黑,还需涂黑n个小正三角形,使它们与原来被涂黑的小正三角形组成的新图案恰有3条对称轴,则n的最小值是________.17. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.18. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、解答题19. 如图,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.20. 如图,在△ABC中,O是边AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△ABC的外角平分线于点F.探究线段OE与OF的数量关系,并说明理由.21. 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1),B(3,4),C(4,2).(1)在图中画出△ABC关于x轴对称的△A1B1C1;(2)平移△A1B1C1,使点C1移动到原点O的位置,画出平移后的△A2B2C2;(3)在△ABC中有一点P(m,n),则经过以上两次变换后点P的对应点P2的坐标为.人教版 八年级数学 第13章 轴对称 综合训练-答案一、选择题1. 【答案】C[解析] ∵点P(a ,b)与点Q(-2,-3)关于x 轴对称,∴a =-2,b=3.∴a +b =-2+3=1.2. 【答案】B3. 【答案】C[解析] 如图,过点P 作OB 的垂线段,交OB 于点D ,则△PDO 为含30°角的直角三角形,∴OD =12OP =6.∵PM =PN ,MN =2,∴MD =DN =1. ∴OM =OD -MD =6-1=5. 故选C.4. 【答案】B【解析】本题考查了等腰三角形三线合一的性质,∵AD 是等腰三角形ABC 的顶角平分线,5 BD ,∴CD=BD=5,因此本题选B .5. 【答案】B[解析] 如图,把(二,4)位置的小正方形涂黑,则整个图案构成一个以直线AB 为对称轴的轴对称图形.6. 【答案】A[解析] ∵直线m垂直平分AB,∴B,C关于直线m对称.设直线m交AB于点D,∴当点P和点D重合时,AP+CP的值最小,最小值等于AB 的长,∴△APC的周长的最小值是6+4=10.7. 【答案】D×(180°-70°)=55°;(2)【解析】(1)当70°是顶角时,另两个角相等,都等于12当70°是底角时,另一个底角也是70°,顶角=180°-70°×2=40°.因此另外两个内角的底数分别是55°,55°或70°,40°.故选D.8. 【答案】C[解析] ∵P A+PB=BC,而PC+PB=BC,∴P A=PC.∴点P为线段AC的垂直平分线与BC的交点.显然只有选项C符合题意.9. 【答案】C[解析] 根据题意,得点A和点B是关于直线y=1对称的点,它们到直线y=1的距离相等,都是3个单位长度,所以点B的坐标是(4,-2).10. 【答案】C[解析] 如图,将△ABD和△DBC分别沿着AB和BC向外翻折,得△ABG和△HBC,连接GH,分别交AB,BC于点E,F,此时△DEF的周长最小,即为GH的长,∴GH=6 cm.∵BD=6 cm,∴BG=BH=BD=6 cm=GH.∴△BGH是等边三角形.∴∠GBH=60°.∴2∠ABD+2∠DBC=60°.∴∠ABD+∠DBC=30°.∴∠ABC=30°.故选C.二、填空题11. 【答案】(2,3)[解析] ∵△ABO是关于y轴对称的轴对称图形,∴点A(-2,3)与点B关于y轴对称.∴点B的坐标为(2,3).12. 【答案】513. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.14. 【答案】10°[解析] 作点C关于OA的对称点D,过点D作DN⊥OB于点N,交OA于点M,则此时CM+MN的值最小.∵∠OEC=∠DNC=90°,∠DME=∠OMN,∴∠D=∠AOB=40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°. ∴∠OCM=10°.15. 【答案】7016. 【答案】3[解析] 如图所示,n的最小值为3.17. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.18. 【答案】③三、解答题19. 【答案】解:(1)证明:∵△ABC 为等边三角形,∴∠BAC =∠C =60°,AB =CA.在△ABE 和△CAD 中,⎩⎨⎧AB =CA ,∠BAE =∠C ,AE =CD ,∴△ABE ≌△CAD.(2)∵△ABE ≌△CAD ,∴∠ABE =∠CAD.∵∠BFD =∠ABE +∠BAD ,∴∠BFD =∠CAD +∠BAD =∠BAC =60°.20. 【答案】解:OE =OF.理由:∵MN ∥BC ,∴∠OEC =∠BCE ,∠OFC =∠DCF.∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠OCE =∠BCE ,∠OCF =∠DCF.∴∠OEC =∠OCE ,∠OFC =∠OCF.∴OE =OC ,OC =OF.∴OE =OF.21. 【答案】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)点P(m,n)经过第一次变换后的对应点P1的坐标为(m,-n),经过第二次变换后的对应点P2的坐标为(m-4,-n+2).故答案为(m-4,-n+2).。

八上 轴对称 线段和最值 知识点+例题+练习 (非常好 分类全面)

八上 轴对称 线段和最值 知识点+例题+练习 (非常好 分类全面)

教学内容轴对称的性质、线段的轴对称性教学目标会做轴对称图形、掌握线段的轴对称性质、会求线段和最小值重点线段的轴对称性质、求线段和最小值课堂精讲【知识梳理】1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;题型一、判断轴对称图形及对称轴数量1、下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2、倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在这些标志中,是轴对称图形的是()A.B.C.D.3、如图所示的图形分别有几条对称轴?请分别画出它们的对称轴.4、若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B. C.D.题型二、做轴对称图形1、如图,作出ABC关于BC所在直线对称的图形.2、作出△ABC关于直线m的对称图形.3、如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.画出△ABC关于x轴的对称图形△A1B1C1;4、如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个5、如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个题型三、线段的轴对称的性质1、线段的垂直平分线:①性质定理:线段的垂直平分线上的点到线段的两个端点的距离相等;②判定定理:到一条线段两个端点的距离相等的点在这条线段的垂直平分线上。

人教版八年级数学上册 轴对称解答题专题练习(word版

人教版八年级数学上册 轴对称解答题专题练习(word版

人教版八年级数学上册轴对称解答题专题练习(word版一、八年级数学轴对称解答题压轴题(难)1.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.2.再读教材:宽与长的比是5-1(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22AC BC+=2212+=5.故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=5.AN=AC=1,CD=AD﹣AC=5﹣1.∵BC=2,∴CDBC=51-,∴矩形BCDE是黄金矩形.∵MNDN=15+=512-,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH51,宽HE=35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.3.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.4.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC∆是等腰锐角三角形,()AB AC AB BC=>,若ABC∠的角平分线BD交AC于点D,且BD是ABC∆的一条特异线,则BDC∠=度.(2)如图2,ABC∆中,2B C∠=∠,线段AC的垂直平分线交AC于点D,交BC于点E,求证:AE是ABC∆的一条特异线;(3)如图3,若ABC∆是特异三角形,30A∠=,B为钝角,不写过程,直接写出所有可能的B的度数.【答案】(1)72;(2)证明见解析;(3)∠B度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE与△AEC为等腰三角形求解即可;(3)根据题意分当BD为特异线、AD为特异线以及CD为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB 为等腰三角形,∴AE 是△ABC 的一条特异线;(3)如图3,当BD 是特异线时,如果AB=BD=DC ,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC ,DB=DC ,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°; 如果AD=DB ,DC=DB ,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD 是特异线时,AB=BD ,AD=DC ,则:∠ABC=180°−20°−20°=140°;当CD 为特异线时,不符合题意;综上所述,∠B 度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.5.如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P .(1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM . ①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ; ②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论.【详解】(1)证明:因为△ABC 为等边三角形,所以60A ACB ∠=∠=︒∵AC BC A ACB AE CD =⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS ≌ ,∴AEC CDB ∠=∠, 在四边形AEPD 中,∵360AEC EPD PDA A ∠+∠+∠+∠=︒,∴18060360AEC EPD CDB ∠+∠+︒-∠+︒=︒,∴120EPD ∠=︒,∴120BPC ∠=︒;(2)①如图2,∵△ABC 是等边三角形,点M 是边BC 的中点,∴∠BAC =∠ABC =∠ACB =60°,AM ⊥BC ,∠CAP =12∠BAC =30°,∴PB =PC , ∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM =;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.6.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN=即3ANBN=.(2)如下图:过点M作ME∥BC交AC于E∴∠CME=∠MCB,∠AEM=∠ACB∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MECNBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP ∆是等边三角形,120EMP FCP ==︒∠∠∴AP MP AM ==∵P 点是AC 的中点∴111222AP PC MP AM AC AB BC ====== ∴12AM MB AB == 在EMP ∆与FCP ∆中EMP FCP AEP PFC MP PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS ∆∆≌∴ME FC =∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+= ∴3322BC BF BE BC BC -==. 【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.7.八年级的小明同学通到这样一道数学题目:△ABC 为边长为4的等边三角形,E 是边AB 边上任意一动点,点D 在CB 的延长线上,且满足AE =BD .(1)如图①,当点E 为AB 的中点时,DE = ;(2)如图②,点E 在运动过程中,DE 与EC 满足什么数量关系?请说明理由;(3)如图③,F 是AC 的中点,连接EF .在AB 边上是否存在点E ,使得DE +EF 值最小?若存在,求出这个最小值;若不存在,请说明理由.(直角三角形中,30°所对的边是斜边的一半)【答案】(1)32)DE =CE ,理由见解析;(3)这个最小值为7;【解析】【分析】(1)如图①,过点E 作EH ⊥BC 于H ,由等边三角形的性质可得BE =DB =AE =2,由直角三角形的性质可求BH =1,EH 3=,由勾股定理可求解;(2)如图②,过E 作EF ∥BC 交AC 于F ,可证△AEF 是等边三角形,AE =EF =AF =BD ,由“SAS ”可证△DBE ≌△EFC ,可得DE =CE ;(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H ,由“SAS ”可证△ACE '≌△AC 'E ',可得C 'E '=CE ',可得当点C ',点E ',点F 三点共线时,DE +EF 的值最小,由勾股定理可求最小值.【详解】(1)如图①,过点E 作EH ⊥BC 于H ,∵△ABC 为边长为4的等边三角形,点E 是AB 的中点,∴AE =BE =2=DB ,∠ABC =60°,且EH ⊥BC ,∴∠BEH =30°,∴BH =1,EH 3=BH 3=,∴DH =DB +BH =2+1=3,∴DE 2293DH EH =+=+=23.故答案为:23;(2)DE =CE.理由如下:如图②,过E 作EF ∥BC 交AC 于F .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∵EF ∥BC ,∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∴∠AEF =∠AFE =∠A =60°,∴△AEF 是等边三角形,∴AE =EF =AF ,∴AB ﹣AE =AC ﹣AF ,∴BE =CF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,且AE =EF =DB ,BE =CF ,∴△DBE ≌△EFC (SAS),∴DE =CE ,(3)如图③,将△ABC 沿AB 翻折得到△ABC ',连接C 'F 交AB 于点E ',连接CE ',DE ',过点F 作FH ⊥AC '于点H.∵将△ABC 沿AB 翻折得到△ABC ',∴AC =AC '=BC =BC '=4,∠BAC =∠BAC '=60°,且AE '=AE ',∴△ACE '≌△AC 'E '(SAS),∴C 'E '=CE ',由(2)可知:DE '=CE ',∴C 'E '=CE '=DE '.∵DE +EF =C 'E +EF =C 'E '+EF ,∴当点C ',点E ',点F 三点共线时,DE +EF 的值最小.∵F 是AC 的中点,∴AF =CF =2,且HF ⊥AC ',∠FAH =180°﹣∠CAB ﹣∠C 'AB =60°,∴AH =1,HF 3=3=∴C 'H =4+1=5,∴C 'F 22'253C H HF +=+=27∴DE +EF 的最小值为27【点睛】本题是三角形综合题,考查了等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质,折叠的性质,添加恰当辅助线是解答本题的关键.8.如图,在等边三角形ABC 右侧作射线CP ,∠ACP =α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α<60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.【答案】(1)∠DBC60α=︒-;(2)∠AEB的大小不会发生变化,且∠AEB=60°;(3)BD=2AE+CE,证明见解析.【解析】【分析】(1)如图1,连接CD,由轴对称的性质可得AC=DC,∠DCP=∠ACP=α,由△ABC是等边三角形可得AC=BC,∠ACB=60°,进一步即得∠BCD=602α︒+,BC=DC,然后利用三角形的内角和定理即可求出结果;(2)设AC、BD相交于点H,如图2,由轴对称的性质可证明△ACE≌△DCE,可得∠CAE=∠CDE,进而得∠DBC=∠CAE,然后根据三角形的内角和可得∠AEB=∠BCA,即可作出判断;(3)如图3,在BD上取一点M,使得CM=CE,先利用三角形的外角性质得出∠BEC60=︒,进而得△CME是等边三角形,可得∠MCE=60°,ME=CE,然后利用角的和差关系可得∠BCM=∠DCE,再根据SAS证明△BCM≌△DCE,于是BM=DE,进一步即可得出线段AE,BD,CE之间的数量关系.【详解】解:(1)如图1,连接CD,∵点A关于射线CP的对称点为点D,∴AC=DC,∠DCP=∠ACP=α,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD=602α︒+,BC=DC,∴∠DBC=∠BDC()1806021806022BCDαα︒-︒+︒-∠===︒-;(2)∠AEB 的大小不会发生变化,且∠AEB =60°.理由:设AC 、BD 相交于点H ,如图2,∵点A 关于射线CP 的对称点为点D ,∴AC=DC ,AE=DE ,又∵CE=CE ,∴△ACE ≌△DCE (SSS ),∴∠CAE =∠CDE ,∵∠DBC =∠BDC ,∴∠DBC =∠CAE ,又∵∠BHC =∠AHE ,∴∠AEB =∠BCA =60°, 即∠AEB 的大小不会发生变化,且∠AEB =60°;(3)AE ,BD ,CE 之间的数量关系是:BD =2AE +CE .证明:如图3,在BD 上取一点M ,使得CM=CE ,∵∠BEC =∠BDC +∠DCE =6060αα︒-+=︒,∴△CME 是等边三角形,∴∠MCE =60°,ME=CE ,∴60260BCM BCD MCE DCE ααα∠=∠-∠-∠=︒+-︒-=,∴∠BCM =∠DCE ,又∵BC=DC ,CM=CE ,∴△BCM ≌△DCE (SAS ),∴BM=DE ,∵AE=DE ,∴BD=BM+ME+DE =2DE+ME =2AE+CE .【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定和性质、三角形的内角和定理和轴对称的性质等知识,熟练掌握并运用上述知识解题的关键.=. 9.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=时,AD是ABC的中线吗?请说明(1)如图1,当点E在AC的延长线上且CD CE理由;AB BD AE之间的数量关系,请说明理(2)如图2,当点E在AC的延长线上时,写出,,由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出AB BD AE的数量关系.,,+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC 为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE 是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF ∥BC ,∴∠EDB=∠DEF ,∵AD=DE ,∴∠DEA=∠DAE ,∴∠DEF=∠DAF ,∵DF=DF ,AF=EF ,在△AFD 和△EFD 中,AD DE DF DF AF EF =⎧⎪=⎨⎪=⎩, ∴△AFD ≌△EFD (SSS )∴∠ADF=∠EDF ,∠DAF=∠DEF ,∴∠FDB=∠EDF+∠EDB ,∠DFB=∠DAF+∠ADF ,∵∠EDB=∠DEF ,∴∠FDB=∠DFB ,∴DB=BF ,∵AB=AF+FB ,∴AB=BD+AE .【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD=∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸) (2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠ 60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD == ()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+PQ ∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。

初二轴对称练习题

初二轴对称练习题

初二轴对称练习题轴对称是平面几何中一种重要的概念。

它在我们日常生活和学习中都有着广泛的应用。

本文将为大家介绍一些初二轴对称的练习题,以帮助大家更好地理解和掌握这一概念。

练习题一:在平面直角坐标系中,给定点A(2,4),请画出点A关于x轴对称的点A'的坐标,并判断点A和点A'是否关于x轴对称。

练习题二:在平面直角坐标系中,给定点B(-3,2),请画出点B关于y轴对称的点B'的坐标,并判断点B和点B'是否关于y轴对称。

练习题三:在平面直角坐标系中,给定点C(-5,-7),请画出点C关于原点对称的点C'的坐标,并判断点C和点C'是否关于原点对称。

练习题四:在平面直角坐标系中,给定点D(3,5),请画出点D关于直线x=y对称的点D'的坐标,并判断点D和点D'是否关于直线x=y对称。

练习题五:在平面直角坐标系中,给定点E(-2,-1),请画出点E关于直线y=x 对称的点E'的坐标,并判断点E和点E'是否关于直线y=x对称。

练习题六:在平面直角坐标系中,给定点F(4,-6),请画出点F关于直线y=-x 对称的点F'的坐标,并判断点F和点F'是否关于直线y=-x对称。

练习题七:在平面直角坐标系中,给定点G(0,3),请画出点G关于直线y=2x 的对称点G'的坐标,并判断点G和点G'是否关于直线y=2x对称。

练习题八:在平面直角坐标系中,给定点H(5,0),请画出点H关于直线y=-3x 的对称点H'的坐标,并判断点H和点H'是否关于直线y=-3x对称。

练习题九:在平面直角坐标系中,给定点I(-4,0),请画出点I关于直线x=2的对称点I'的坐标,并判断点I和点I'是否关于直线x=2对称。

练习题十:在平面直角坐标系中,给定点J(0,-8),请画出点J关于直线x=-4的对称点J'的坐标,并判断点J和点J'是否关于直线x=-4对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称作图及实际应用
学生做题前请先回答以下问题
问题1:轴对称最值问题的特征:
①有定点、_____;
②动点在____________上运动,
③求动点与定点连接组成的____________.
问题2:轴对称最值问题的解决方法:
以_______________为对称轴,作______的对称点,________________,利用_____________进行处理.
轴对称作图及实际应用(轴对称最值问题一)(人教版)
一、单选题(共8道,每道12分)
1.如图1,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一动点E,OB上有一动点F,求△PEF周长的最小值.如图2,某同学分别作点P关于OA,OB的对称点,则下列结论错误的是( )
A.
B.
C.
D.
2.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC 边上一点.若AE=2,则当EF+CF的和取得最小值时,点F的位置为( )
A.AD的中点
B.点D的位置
C.AD与BE的交点
D.AD上任意位置
3.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF交AB边于点F,若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为( )
A.6
B.8
C.10
D.12
4.如图,已知∠AOB=α,P是∠AOB内部的一个定点,且OP=2,点E,F分别是OA,OB上的动点.若△PEF周长的最小值等于2,则α=( )
A.30°
B.45°
C.60°
D.90°
5.如图,在△ABC中,∠ACB=90°,AB=15cm,BC=9cm,以AC为一边在△ABC外侧作等边三角形ACD,过点D作DE⊥AC,垂足为F,DE与AB相交于点E,连接CE,P是射线DE上的一
个动点.连接PC,
PB,当△PBC的周长最小时,点P在( )
A.点F处
B.点E处
C.DF的中点处
D.DE的中点处
6.(上接第5题)△PBC周长的最小值为( )
A.15cm
B.22cm
C.24cm
D.27cm
7.如图,∠AOB=60°,点P在∠AOB的平分线上,OP=10cm,点E,F分别是OA,OB上的动点,当△PEF的周长最小时,点O到EF的距离是( )
A.10cm
B.8cm
C.5cm
D.4cm
8.如图所示,∠MON=40°,P为∠MON内一个定点,A为OM上一动点,B为ON上一动点,则当△PAB的周长取最小值时,∠APB的度数为( )
A.80°
B.100°
C.110°
D.120°
欢迎您的下载,资料仅供参考!。

相关文档
最新文档