复数及其运算

合集下载

复数及其运算(完整版本)

复数及其运算(完整版本)

z1 z2
z1 z2
;
(5)zz;
(6 )zz R e (z )2 I m (z )2 |z|2 ;
恒为正整数或0,它的非负平方根称为z的模或绝对值
11
例 1 设 z13i , 求 R z )e I,m ( z )与 z( z. i 1i
解 z1 3i i 3i(1i) 3 1 i, i 1i ii (1i)1 (i) 2 2
18
19
20世纪
•16世纪,解代数方程时引入复数(笛卡尔,韦塞尔,阿尔冈) •17世纪,实变初等函数推广到复变数情形 •18世纪,逐步阐明复数的几何、物理意义。(达朗贝尔,欧拉)
流 体 力 学u (x ,y )+ iv (x ,y )
3
•19世纪,奠定理论基础。A.L.Cauchy、维尔斯特 拉斯分别用积分和级数研究复变函数,黎曼研究复 变函数的映射性质
§1-1 复数及其运算 §1-2 复平面上的点集 §1-3 复变函数及其极限和连续 §1-4 复球面与无穷远点
6
§1-1 复数及其运算
主要介绍关于复数的基本概念,包括复数的定 义、表示方法、运算法则、基本不等式的应用
7
一 复数的概念及表示法
i2 1
定 义 : 形 如 z x y i 或 z x i y 的 数 称 为 复 数 .
则z 1 z 2 x 1 x 2 且 y 1 y 2
8
共轭复数 实部相同而虚部绝对值相等符号相反的两
个复数称为共轭复数, z的共轭复数记z. 为
即 z : x i,y 则 若 z x i.y
x Rez zz , y Imz zz
2
2i
9
复数系关于加法,乘法,除法是自封闭的

复数公式及运算法则

复数公式及运算法则

复数公式及运算法则
复数公式:复数是由实部和虚部组成的数。

复数通常写成a + bi 的形式,其中a和b都是实数,而i是一个虚数单位,满足i² = -1。

复数的运算法则:
1.复数的加法和减法:将实部与实部、虚部与虚部分别相加或相减。

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) - (c + di) = (a - c) + (b - d)i
2.复数的乘法:使用分配律将两个复数相乘。

(a + bi) * (c + di) = ac + adi + bci + bdi²
因为i²=-1,所以可以将上式简化为:
(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
3.复数的除法:用分子分母都乘以分母的共轭复数(实部保持不变,虚部取负数),然后将分母变为实数。

(a + bi) / (c + di) = (a + bi) * (c - di) / (c² + d²)
因为乘法和除法都需要分别计算实部和虚部,所以计算复数的乘
法和除法时需要注意分配律和运用恒等式。

拓展:复数在物理学、工程学、数学等多个领域都有广泛应用,
如在电路分析、信号处理、量子力学等方面。

由于虚部可以表示位移、相位差等概念,复数可以用来表示波形、振动、旋转等物理量。

同时,复数的数学理论也非常丰富,包括复数拓扑学、复变函数论等多个分支。

高中数学中的复数及其运算规则

高中数学中的复数及其运算规则

高中数学中的复数及其运算规则在高中数学中,复数是一个重要的概念,它不仅可以用来解决实数范围内无解的方程,还可以应用于许多实际问题中。

本文将介绍复数的定义、运算规则以及一些常见的应用。

一、复数的定义复数是由实数和虚数部分组成的数,通常用 a+bi 的形式表示,其中 a 和 b 都是实数,i 是虚数单位,满足 i^2 = -1。

实数部分 a 是复数的实部,虚数部分 b 是复数的虚部。

二、复数的运算规则1. 复数的加法和减法设有两个复数 z1 = a1+bi1 和 z2 = a2+bi2,则它们的和为 z1+z2 =(a1+a2)+(b1+b2)i,差为 z1-z2 = (a1-a2)+(b1-b2)i。

2. 复数的乘法设有两个复数 z1 = a1+bi1 和 z2 = a2+bi2,则它们的乘积为 z1*z2 = (a1a2-b1b2)+(a1b2+a2b1)i。

3. 复数的除法设有两个复数 z1 = a1+bi1 和 z2 = a2+bi2,则它们的商为 z1/z2 =(a1a2+b1b2)/(a2^2+b2^2) + ((a2b1-a1b2)/(a2^2+b2^2))i。

4. 复数的共轭复数 z = a+bi 的共轭复数记作 z* = a-bi。

共轭复数的实部与原复数相同,虚部的符号相反。

5. 复数的模复数 z = a+bi 的模记作 |z|,定义为|z| = √(a^2+b^2)。

复数的模表示复数到原点的距离。

6. 复数的幂运算设有一个复数 z = a+bi 和一个正整数 n,则 z 的 n 次幂定义为 z^n = (a+bi)^n = r^n(cos(nθ)+isin(nθ)),其中 r = |z|,θ 是 z 的辐角。

三、复数的应用1. 解方程复数可以用来解决实数范围内无解的方程,如 x^2+1=0。

设 x = a+bi 是方程的解,则代入方程得到 (a+bi)^2+1=0,展开后得到 a^2-b^2+2abi+1=0,由此可得到两个方程 a^2-b^2+1=0 和 2ab=0。

复数的运算

复数的运算
的虚部减虚部减去它的得的差是 3, 求复数ω. 2 3 + 3i 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源( :// 228668 )”提供下载, 官网是 :// zjbandao ,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。 三、成交方法: 1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站 :// 228668 或 :// zjbandao 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@qq 或mmzwzy@139 里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系: 13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:请在修改要求中尽可能详细的说明你的要求,我们做好发给你后只给你 提供一次重改机会,因你说明不清楚造成要修改第三次的,要补交半数费用。

复数的概念及其运算法则

复数的概念及其运算法则

复数的概念及其运算法则复数是数学中的一个重要概念,它由实数部分和虚数部分构成。

在本文中,我们将介绍复数的概念、表示方法以及复数的运算法则。

一、复数的概念复数是由实数和虚数构成的数,形如 a+bi 的形式,其中 a 是实数部分,b 是虚数部分,i 是虚数单位。

虚数单位 i 是定义为√-1,虚数部分b 可以是任意实数。

复数的实部和虚部分别表示为 Re(z) 和 Im(z),其中 z 是一个复数。

如果复数 z=a+bi 中实数部分 a=0,则该复数被称为纯虚数;如果虚数部分 b=0,则该复数被称为实数。

复数的模表示为 |z|,即复数 z 的绝对值。

复数的表示方法有多种形式,常见的包括代数形式、三角形式和指数形式。

代数形式即复数的标准表示形式 a+bi;三角形式通过模和幅角来表示复数,形如|z|cosθ+|z|sinθi,其中θ 是复数的辐角;指数形式则是使用指数函数表示复数,形如|z|e^(iθ)。

二、复数的运算法则1. 复数的加法与减法复数的加法与减法可以通过实部和虚部分别进行运算。

设z1=a+bi,z2=c+di 为两个复数,则它们的加法和减法如下:- 加法:z1+z2=(a+c)+(b+d)i- 减法:z1-z2=(a-c)+(b-d)i2. 复数的乘法复数的乘法可以通过实部和虚部进行计算。

设 z1=a+bi,z2=c+di 为两个复数,则它们的乘法运算如下:z1*z2=(a+bi)(c+di)= (ac-bd)+(ad+bc)i3. 复数的除法复数的除法可以通过乘以共轭复数的形式来实现。

设 z1=a+bi,z2=c+di 为两个复数,z2 ≠ 0,则它们的除法运算如下:z1/z2=(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) + (bc-ad)/(c^2+d^2)i需要注意的是,对于复数的运算,虚数单位 i 具有如下性质:- i^2=-1- i^3=-i- i^4=1这些性质在复数运算过程中应用广泛。

复数概念及其运算

复数概念及其运算

复数概念及其运算复数是数学中一个非常重要的概念,起源于希腊数学。

在实数范围中,我们可以解决绝大多数方程和不等式问题,但在某些情况下,我们需要引入复数来进行运算。

本文将讨论复数的概念及其运算规则。

一、复数的概念复数是由一个实数部分和一个虚数部分组成的数。

虚数定义为包含负数的平方根的数。

通常情况下,复数用字母"z"表示。

一个复数可以表示为:z = a + bi其中,a为实数部分,bi为虚数部分,i为单位虚数,且满足i²= -1。

例如,一个典型的复数可以是:z = 3 + 4i。

在这个例子中,实数部分为3,虚数部分为4。

二、复数的运算规则1. 加法:复数的加法规则遵循实数和虚数分别相加的原则。

设有两个复数 z₁ = a₁ + b₁i 和 z₂ = a₂ + b₂i。

它们的和为:z₁ + z₂ = (a₁ + a₂) + (b₁ + b₂)i例如,有两个复数 z₁ = 3 + 4i 和 z₂ = 2 + 5i。

它们的和为:z₁ + z₂ = (3 + 2) + (4 + 5)i = 5 + 9i2. 减法:复数的减法规则与加法类似,实数部分和虚数部分分别相减。

设有两个复数 z₁ = a₁ + b₁i 和 z₂ = a₂ + b₂i。

它们的差为:z₁ - z₂ = (a₁ - a₂) + (b₁ - b₂)i例如,有两个复数 z₁ = 3 + 4i 和 z₂ = 2 + 5i。

它们的差为:z₁ - z₂ = (3 - 2) + (4 - 5)i = 1 - i3. 乘法:复数的乘法规则通过展开公式进行计算。

设有两个复数 z₁ = a₁ + b₁i 和 z₂ = a₂ + b₂i。

它们的积为:z₁ * z₂ = (a₁a₂ - b₁b₂) + (a₁b₂ + b₁a₂)i例如,有两个复数 z₁ = 3 + 4i 和 z₂ = 2 + 5i。

它们的积为:z₁ * z₂ = (3 * 2 - 4 * 5) + (3 * 5 + 4 * 2)i = -14 + 23i4. 除法:复数的除法规则通过乘以共轭复数并进行简化计算。

复数的有关运算

复数的有关运算
z1 z1 ③. = z z 2 2
⑤. z = z
⑥. z = z ⇔ z ∈ R
数或0 数或
( z 2 ≠ 0) ⑦. z + z = 0 ⇔ Z为纯虚 为纯虚
④ . z = ( z)
n
n
四.共轭复数与模的性质及其运算 共轭复数与模的性质及其运算
① . | z1 ⋅ z2 |=| z1 | ⋅ | z2 |
| z−z1 | +| z −z2 | =2a (|z1 -z2 |=2a) (5).双曲线: z − z1 | −| z − z2 | = ±2a 双曲线: 双曲线 | (|z1 - z2 |> 2a)
(6).射线:z−z1 | −| z −z2 | =±2a 射线: 射线 |
(7).圆环 圆环: r <| z − z0 |< R 圆环 复数方程与直角坐标方程的转化
1 3 1 3 二. ω = - + i(或ω=- - i) 的性质 2 2 2 2 2 ①. 1+ ω + ω = 0
② . ω = 1 (周 T = 3) 期
3
③. ω =
1
ω

2
④ . ω n + ω n +1 + ω n + 2 = 0
一、复数的四则运算问题
1、已知复数z = 1 + i (1)设ω = z 2 + 3 z − 4,求ω; z 2 + az + b = 1 − i,求实数a,b的值 (2)如果 2 z − z +1
a + b = 1 a = −1 ⇒ ∴ a + 2 = 1 b = 2
4 2、设z + ∈ R,z − 2 |= 2,求z | z 解:设z = x + yi( x、y ∈ R,且z ≠ 0)

自考第1.1复数及其运算

自考第1.1复数及其运算

z2 0
z1 z2
z1
1 z2
| z1 | ei1
1 ei2 | z2 |
| z1 | ei(12 )
| z2 |
z1 | z1 | z2 | z2 |
任何两个复数商的模 等于它们模的商
Arg
(
z1 z2
)
1
2
Arg
( z1
)
Arg
(z2
)
任何两个复数商的辐角 等于它们辐角的差
16
(7)乘方 设 z | z | ei
23
18页11(2)试证 a bi, 1 , 1,1 四点共圆周 b 0 a bi
证明 在虚轴上取一点 ci, 则 ci, 1 的距离为 1 c2 , ci, 1 的距离为 1 c2
若 a bi,ci 的距离为 1 c2 则 a2 (b c)2 1 c2
3 )i, 2
z3
3
i
或 z3 z1 (z2 z1 ) e 3 1
3
z1
z3
z3 2 2i 第三个顶点为 z3
1 2
(2
3 )i, 2
x
或 z3 2 2i
12
(5)倒数
设 z x iy
1 z
z x iy z z x2 y2
x
iyபைடு நூலகம்
x2 y2 x2 y2
y
1 e i
整个平面 称为复平面 或z 平面
任何一个复数 z x iy 一一对应一个向量 OP
y
可以用向量 OP 来表示
向量的长度 称为z 的模 或绝对值
记为
y
P(x, y)
| z| r x2 y2
向量 O例Pz如为 终0 边时边| 1的,以角正i 的| 实弧轴度2为数始
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=aejθ (指数型)
=a∠部;
A=a1+ja2,B=b1+jb2
• 两个复数相等时, 其实部和虚部分别 相等,或模和辐角 分别相等。
• a、θ:复数A的模和辐角。
复数及其运算——复数加减
A=a1+ja2 (代数型) =aejθ (指数型) 两个复数:
• 复数单位: j 1

• a1、a2:复数A的实部、虚部;
• a、θ:复数A的模和辐角。
A=a1+ja2,B=b1+jb2
• 两个复数相加 ( 减 ) 等 于把它们的实部和虚 部分别相加(减)。 • 复数的加减运算应采
=a∠θ (极型)
• 复数单位: j 1 ; • a1、a2:复数A的实部、虚部;
• a、θ:复数A的模和辐角。
用代数型。
复数及其运算——复数乘除
A=a1+ja2 (代数型) 两个复数: A=a1+ja2,B=b1+jb2
=aejθ
(指数型)
=a∠θ (极型)
• 两个复数相乘 ( 除 ) 等
于将它们的模相乘 (除)、辐角相加(减)。
• 复数单位: j 1 ; • a1、a2:复数A的实部、虚部;
• 复数的乘除运算应采 用指数型或极型。
• a、θ:复数A的模和辐角。
复数及其运算——复数几何运算
两个复数: A=a1+ja2 (代数型) =aejθ (指数型) =a∠θ (极型) A=a1+ja2,B=b1+jb2 • 在复平面上进行代数运算 具有一定的几何意义。
复数及其运算
A=a1+ja2 (代数型) =aejθ (指数型)
=a∠θ (极型)
2 a a12 a2 a2 arctan a1
• 复数单位: j 1 ; • a1、a2:复数A的实部、虚部;
• a、θ:复数A的模和辐角。
复数及其运算——复数相等
A=a1+ja2 (代数型) 两个复数:
相关文档
最新文档