抗体偶联药物
抗体偶联药物药学研究与评价技术指导原则(征求意见稿)

抗体偶联药物的研究与评价
抗体偶联药物(Antibody-drug conjugates, ADCs)是一种具有广泛应用前景的新型药物,通过将单克隆抗体与细胞毒素偶联而形成。
这种药物可以通过特异性地识别癌细胞表面的抗原,将细胞毒素释放到肿瘤细胞内部,从而实现对癌细胞的有选择性杀伤。
在抗体偶联药物的研究与评价过程中,有一些重要的技术指导原则需要遵循。
首先,选择合适的抗体是至关重要的。
抗体应具有良好的特异性和亲和力,能够高效地结合到目标抗原上。
同时,抗体的结构和稳定性也需要考虑,以确保药物的稳定性和安全性。
其次,有效的药物载体也是关键因素之一。
药物载体应具有合适的化学性质和生物学特性,能够稳定地与抗体结合,并在抗体与肿瘤细胞结合后释放细胞毒素。
常用的药物载体包括小分子药物、蛋白质和核酸等。
此外,药物的连接方式也需要谨慎选择。
连接方式应该稳定、可控,并且不会对抗体的特异性和亲和力产生明显的影响。
常用的连接方式包括可逆连接和不可逆连接。
在药物评价方面,需要进行一系列的体外和体内实验。
体外实验可以评估药物的特异性、亲和力和稳定性等性质。
而体内实验则可以评估药物的药代动力学、药效学和毒性等方面。
这些实验结果可以为临床试验提供可靠的依据。
总之,抗体偶联药物的研究与评价是一个复杂而重要的过程。
抗体偶联药物技术

抗体偶联药物技术抗体偶联药物(Antibody-Drug Conjugate,ADC)技术是一种新型的靶向治疗方法,它将单克隆抗体与小分子细胞毒性药物通过连接子进行偶联,形成一种能够同时具有靶向性和杀伤性的药物。
以下是对抗体偶联药物技术的主要方面的详细介绍:1. 抗体选择在ADC技术中,抗体的选择是至关重要的。
理想的抗体应具有高亲和力、高特异性和高稳定性。
通常使用的抗体是针对肿瘤相关抗原的单克隆抗体,这些抗原通常在肿瘤细胞表面过度表达,而在正常细胞中不表达或低表达。
2. 药物载荷ADC中的药物载荷通常是小分子的细胞毒性药物,如化疗药物或毒素。
这些药物通过连接子与抗体进行偶联,形成ADC。
连接子的选择对于药物的稳定性、抗体的靶向性以及药物的释放至关重要。
3. 连接子连接子是ADC中的关键组成部分,它能够将抗体与药物载荷连接在一起。
理想的连接子应具有稳定性、可选择性、可降解性和低免疫原性。
常用的连接子包括硫醚连接子、腙连接子和二硫键连接子等。
4. 药代动力学优化ADC的药代动力学性能对其疗效和安全性具有重要影响。
研究人员通过改变抗体与药物载荷的比例、优化连接子的稳定性等手段来优化ADC的药代动力学性能。
优化后的ADC应具有较高的肿瘤组织浓度、较低的正常组织浓度以及较长的半衰期。
5. 安全性评估ADC的安全性评估是其开发过程中的重要环节。
在临床前研究中,需要对ADC进行全面的安全性评估,包括对动物的毒理学研究、药代动力学研究以及对免疫原性的评估等。
在临床试验中,需要对患者的安全性进行密切监测,包括对不良反应的记录和处理。
6. 临床试验ADC的临床试验通常分为多个阶段,包括初步安全性评估、剂量探索和扩大队列验证等。
在临床试验中,需要对患者的病情进行密切观察,并对ADC的治疗效果进行评估。
在试验结束后,需要对患者的生存期、生活质量等进行长期随访和评估。
总之,抗体偶联药物技术是一种具有巨大潜力的靶向治疗方法,它通过将单克隆抗体与小分子细胞毒性药物偶联在一起,实现对肿瘤细胞的精准打击和有效治疗。
抗体药物偶联物的研究进展

抗体药物偶联物的研究进展抗体药物偶联物是一种新兴的治疗方法,它利用抗体与药物的结合来精确靶向治疗肿瘤和其他疾病。
近年来,该技术取得了长足的进步,为临床治疗带来了新的希望。
本文将从抗体药物偶联物的原理、研究进展和临床应用方面进行详细介绍。
一、抗体药物偶联物的原理抗体药物偶联物是将靶向性抗体与药物或其他治疗物质结合在一起,通过靶向性抗体的特异性识别和结合肿瘤细胞表面的抗原,将药物或其他治疗物质传递给肿瘤细胞,实现精准治疗的一种新型药物。
其原理是利用抗体与特定肿瘤细胞表面的抗原结合,将药物或其他治疗物质释放到目标细胞内部,从而实现对肿瘤细胞的精确打击,同时减少对正常细胞造成的损伤。
目前,抗体药物偶联物主要包括两种类型:一种是将抗体与毒素或放射性同位素结合,通过毒素或放射性同位素的作用来杀死肿瘤细胞;另一种是将抗体与细胞毒性药物结合,通过细胞毒性药物的作用来杀死肿瘤细胞。
这两种类型的抗体药物偶联物在肿瘤治疗方面都具有很大的潜力。
2. 抗体药物偶联物的研究方法目前,研究人员主要通过两种方法来制备抗体药物偶联物。
一种是直接将抗体与药物或其他治疗物质化学共价结合,形成共价连接;另一种是利用基因工程技术,将抗体和药物或其他治疗物质分别制备成两个单独的分子,然后通过特定的连接方式将它们组装在一起,形成抗体药物偶联物。
与传统的化疗药物相比,抗体药物偶联物具有更高的靶向性和选择性,减少了对正常细胞的损伤,同时增强了对肿瘤细胞的杀伤作用。
抗体药物偶联物还可以在体内释放药物,延长药物的半衰期,从而提高疗效,减少药物的频繁使用。
研究表明,抗体药物偶联物在肿瘤治疗方面取得了显著的进展。
一些已经上市的抗体药物偶联物已经在临床上取得了一定的成果,为临床治疗提供了新的选择;还有一些新型的抗体药物偶联物正在研发中,有望进一步提高抗肿瘤药物的治疗效果。
1. 抗体药物偶联物在肿瘤治疗中的应用目前,抗体药物偶联物在肿瘤治疗中已经得到了广泛的应用。
抗体偶联药物基础知识

抗体偶联药物基础知识
抗体偶联药物(antibody-drug conjugates,简称ADCs)是一种结合了单克隆抗体和载药物的复合物。
其工作原理是通过特异性识别靶向细胞表面的抗原,将药物直接传递给目标细胞,从而提高药物的靶向性和疗效。
ADCs的结构通常由三部分组成:单克隆抗体、连接剂和药物。
单克隆抗体可以特异性地结合在肿瘤细胞表面的抗原上,从而使ADCs能够选择性地识别和结合目标细胞。
连接剂则用于将药物与抗体连接起来,常见的连接方式有化学偶联、放射性标记或基因工程技术等。
药物部分则是ADCs的主要疗效成分,常见的药物包括化疗药物、毒素、放射性物质等。
ADCs的优势在于提高了药物的靶向性和疗效,并减少了对正
常细胞的毒性。
相比传统化疗药物,ADCs可以更精确地靶向
肿瘤细胞,并释放药物以发挥治疗效应。
此外,ADCs还可以
通过抗体的FC端与免疫系统相互作用,促进免疫细胞介导的
抗肿瘤效应。
然而,ADCs也面临一些挑战和限制。
制备ADCs的过程相对
复杂,需要确保抗体、连接剂和药物之间的稳定性和正确配比,以及避免抗体的免疫原性。
在临床应用方面,ADCs可能面临
药物耐受性、药物代谢和排泄问题,以及药物达到肿瘤细胞内部的难题。
尽管存在一些挑战,ADCs仍然被广泛应用于肿瘤治疗领域,
并被认为是一种有潜力的治疗方法。
随着对ADCs的进一步研究和技术改进,相信其在肿瘤治疗中的应用前景将会更加广阔。
抗体偶联药物药学研究与评价技术指导原则

抗体偶联药物药学研究与评价技术指导原则抗体偶联药物(ADCs)是一种由抗体与药物物质共轭而成的复合物,该药物具有靶向癌细胞的能力,同时也可以释放药物物质来杀死癌细胞。
抗体偶联药物具有较高的药物选择性和活性,可以加强药物的疗效,并减少药物的毒副作用。
以下是抗体偶联药物药学研究与评价技术指导原则的一些建议:1. 抗体选择:选择具有高亲和力和特异性的抗体作为载体,确保药物能够精确地靶向癌细胞。
2. 药物物质选择:选择具有强烈杀伤癌细胞能力的药物物质,例如细胞毒素、放射性同位素或放疗剂。
药物物质应具有足够的稳定性,以确保在体内能够释放出来。
3. 载体选择:选择合适的化学链连接抗体和药物物质,确保药物物质可以稳定地连接在抗体上,并在适当的时机释放出来。
4. 药物释放机制:研究药物在体内的释放机制,例如在肿瘤细胞内的酶活性或pH变化等条件下释放。
这有助于提高抗体偶联药物的选择性和活性。
5. 药物代谢和清除:研究抗体偶联药物在体内的代谢和清除动力学,以及药物物质的代谢产物。
这有助于确定药物的剂量和给药方案。
6. 药效学评价:开展动物模型的药效学评价,研究抗体偶联药物的抗肿瘤活性、毒副作用和耐受性。
这有助于评估药物的疗效和安全性。
7. 客体工程:通过对抗体结构的修饰和改造,优化抗体偶联药物的效果。
例如,可以改变抗体的Fc区域,以增强药物的与免疫系统的相互作用。
8. 药物稳定性:研究抗体偶联药物在体内和体外的稳定性,包括在不同温度、酸碱度和光照条件下的稳定性。
这有助于确定药物的储存和使用条件。
总之,抗体偶联药物的药学研究与评价需要综合考虑抗体、药物物质、药物释放机制、药代动力学、药效学、客体工程和药物稳定性等因素。
这些技术指导原则可以指导抗体偶联药物的研发和评价。
抗体偶联药物及其细胞代谢动力学pdf

抗体偶联药物及其细胞代谢动力学一、药物设计原理抗体偶联药物(Antibody-Drug Conjugate,ADC)是一种靶向肿瘤细胞的治疗性药物,由单克隆抗体、连接子和小分子细胞毒药物三部分组成。
其设计原理是将高特异性的抗肿瘤抗体与高效低毒的细胞毒药物通过连接子进行偶联,从而实现对肿瘤细胞的精准杀伤。
二、抗体选择与制备在ADC药物设计中,抗体的选择是关键。
理想的抗体应具有高特异性、高亲和力和良好的稳定性。
常用的抗体筛选方法包括杂交瘤技术、基因工程抗体和噬菌体展示技术等。
制备得到的抗体需要进行质量检测和纯化,确保其符合药物生产的质量标准。
三、药物偶联与活性检测将细胞毒药物与抗体偶联需要选择合适的连接子,以保证药物的稳定性、安全性和有效性。
常用的连接子包括硫醚连接子、氨基连接子和碳碳双键连接子等。
偶联后的ADC药物需要进行活性检测,以评估其是否能有效识别肿瘤细胞并发挥杀伤作用。
四、细胞靶向与内化ADC药物通过与肿瘤细胞表面的抗原特异性结合,实现靶向作用。
结合后的药物会被肿瘤细胞内吞,进入细胞内部。
这一过程需要特定的细胞内化机制,如网格蛋白和caveolin-1等介导的内吞作用。
五、药物释放与毒性进入细胞内部的ADC药物需要经过特定的化学反应或酶解作用,使连接子断裂,从而释放出细胞毒药物。
释放后的细胞毒药物发挥杀伤肿瘤细胞的作用。
同时,ADC药物也可能对正常细胞产生毒性作用,因此需要对药物的毒性进行严格评估和控制。
六、细胞代谢与排泄肿瘤细胞对ADC药物的代谢和排泄机制可能不同于正常细胞。
研究药物的代谢和排泄过程有助于了解药物的疗效和毒性,为药物设计和优化提供依据。
此外,通过研究药物的代谢和排泄机制,可以为药物的给药方式和剂量提供参考。
七、药效与毒性评价在ADC药物的临床前研究和临床试验阶段,需要进行药效和毒性评价。
药效评价主要通过观察肿瘤的生长抑制程度、生存期延长等指标来进行评估。
毒性评价则需要对可能产生的毒副作用进行监测和评估,以确保药物的安全性和有效性。
adc药物质量标准

adc药物质量标准
ADC(Antibody-Drug Conjugates,抗体-药物偶联物)是一类将抗体与细胞毒素偶联的药物,是一种新型的靶向抗癌治疗药物。
ADC的质量标准通常由制药行业和监管机构共同制定,以确保其质量、安全性和功效。
ADC药物质量标准主要包括以下几个方面:
1. 抗体的质量标准:包括抗体的生产工艺、纯度、结构、稳定性和检测方法等。
2. 药物连接部分的标准:这部分通常是将抗体与毒素连接的结构,需要确定其纯度、稳定性、连接率等指标。
3. 毒素的质量标准:包括毒素的纯度、稳定性、溶解度、生物学活性等。
4. 终端ADC产品的质量标准:这部分涵盖了终端ADC 的纯度、溶解度、稳定性、杂质成分、含量测定和释放标准等。
制药行业和相关监管机构如美国FDA、欧洲药品管理局(EMA)等都会发布相关的指导方针和规定,以确保ADC的质量符合要求,并对ADC的生产、质量控制、监管审批等方面提出了严格的要求。
需要指出的是,ADC作为一种新型的抗癌治疗药物,其研究和标准处于不断发展之中,因此质量标准也可能随着研究进展而不断更新。
因此,生产商需要密切关注最新的药物质量标准,以确保符合最新的要求。
抗体偶联药物(ADCs)分析

抗体偶联药物(ADCs)分析抗体偶联药物(Antibody-Drug Conjugates,ADCs)是一类由单克隆抗体和具有强效细胞毒性的小分子药物通过生物活性连接子偶联而成的新型生物药物。
其药物作用机理为通过单克隆抗体特异导向靶标癌细胞,再由偶联的小分子药物杀死癌细胞。
因此,ADC兼具了单克隆抗体药物高度特异性和靶向性的特点,以及小分子药物清除癌细胞的高效性,能协同发挥抗体药物和化学药物各自的优点,能够降低对生物系统的伤害。
常用的抗体偶联药物的制备是通过两步偶联反应,先将抗体与偶联剂(linker)结合形成中间体(抗体-linker),然后中间体再与小分子药物连接生成抗体偶联药物,如下图所示。
抗体偶联药物ADCs两步反应。
在反应过程中可能会出现以下几个问题:1, 部分抗体和小分子药物不能成功偶联;2, 抗体中存在多个结合位点(Cys, Lys 残基等),结合部位以及结合数量的不同会导致不均一性;3, 由于小分子药物的疏水性更高,与单抗结合数量的不同可能导致ADC药物的疏水性发生变化等问题。
这些未偶联的裸抗和具有细胞毒性的小分子以及偶联药物的不均一性可能会对ADC药物的药效、安全性产生影响。
相比单克隆抗体,ADCs药物的生产工艺更为复杂,因此为了保证ADCs药物的安全性和有效性,需对ADCs药物的质量进行监控。
药物抗体比(drug to antibody ratio,以下简称DAR)是评价ADCs药物的生产工艺和产品质量的重要参数之一。
因此,在ADC申报前对于ADC药物结构、DAR、药效、安全性的全面评估是至关重要的。
百泰派克拥有多种先进色谱质谱分析仪器,结合专业生物信息学分析团队,能快速、准确的为您提供专业系统的抗体偶联药物分析评定服务。
检测平台• MALDI-TOF质谱。
• ESI-TOF质谱。
• UV/VIS光谱。
• UV-MALDI质谱。
• 反相高效液相色谱 (RP-HPLC)。
• 亲水相互作用色谱 (HILIC)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抗体偶联药物(ADC的涅槃重生抗体偶联药物(antibody-drug conjugate, ADC )是将抗体与细胞毒性药物连接起来,通过抗体的靶向作用将细胞毒药物靶向肿瘤,进而降低化疗中常见的药物非特异性的全身毒性。
抗体偶联药物(antibody-drug conjugate, ADC )的研究可以追溯到1980s,,但是直到2000年,首个抗体偶联药物gemtuzumaboz ogamicin (商品名Mylotarg,Pfizer研发)才被FDA B准用于治疗急性粒细胞白血病,但由于偶联技术、靶向性、有效性等受限,完整的抗体偶联药物在血液不稳定,导致致死性毒性的产生,于2010年撤市。
这使得本就不明朗的ADC药物研究,更蒙上了一层阴影。
但是随着Takeda/Seattle Genetics 通过对原有技术的改进,利用自己的新型抗体偶联技术开发了brentuximabvedotin (SGN-35商品名Adcetris ,)新型抗体偶联药物,并与2011年被FDA批准用于治疗霍奇金淋巴瘤和系统性间变性大细胞淋巴瘤。
2013年抗体偶联药物再次取得突破,Ge nen tech/Immu noGen 联合开发的Ado-trastuzumabemtansine (T-DM1,商品名Kadcyla )被FDA批准用于HER2阳性乳腺癌,这是首个针对实体瘤的抗体偶联药物。
随着这两个药物的研发成功,ADC药物再次以火热的状态进入人们的研究视野。
1、进入临床阶段ADC药物截至目前大概有30多种ADC药物进入临床开发阶段(表1),统计表中30 种药物针对适应症发现,其中仅有4种药物针对实体瘤。
主要原因:抗体难于透过毛细管内皮层和穿过肿瘤细胞外间隙到达实体瘤的深部。
而使用抗体片段,如Fab,制备分子量较小的偶联物,可能提高对细胞外间隙的穿透性,增加到达深部肿瘤细胞的药物量。
因此“抗体的小型化或适度的小型化将会是研制ADC药物的重要途径”。
同时我们还能看到ImmunoGe、Seattle Genetics 在现有ADC药物研发中占有绝对的统治地位,这得力于他们成熟的抗体偶联技术一一利用天然抗体自身的赖氨酸和半胱氨酸中的巯基偶联药物(non-specific )。
2、如何才能成功开发出一种ADC药物?一种成功的ADC药物(图1所示)主要包括四个方面:合适的靶点(Tumor Antigen )、高度特异性的抗体(Antibody )、理想的偶联子(Linker )、高效的药物(Cytotoxic Drug )。
第一、靶点选择的依据现在ADC药物主要应用于抗肿瘤作用,因此在选择靶点时,理想的靶点抗原,应在在肿瘤细胞表面过量表达,但是在正常组织中无表达或者极少表达。
其次当A DC药物中抗体和靶点集合后,可有有效内化,进入细胞内释放药物,对靶细胞进行杀伤。
第二、抗体的特异性,亲和力和药代动力学研究An tibody specificity, affinity, and pharmacok in etics抗体和靶抗原的高亲和力是ADC有效起到靶向杀伤的核心所在,一般认为亲和力指数KD 10 nM是对抗体的基本要求。
在这基础上,在筛选免疫原性低,半衰期长,在血液中稳定的抗体。
第三、偶联子(Linker ) 的选择selection and intracellular drug release理想的linker既可以在血液中维持稳定,又可以在靶细胞有效释放药物。
现在常用的Linker 可以分为两大类:cleavable linkers 和non-cleavable linke rs。
目前研究中发现,已有7个B细胞受体(CD19, CD20, CD21, CD22, CD79b, and CD180)使用cleavable linkers 可以起到有效的效果。
相反,在使用non- cleavable linkers 时只有CD22和CD79b抗原可以跟抗体结合后,有效的将A DC转运至溶酶体,并把药物释放出来,杀伤靶细胞。
因此在选在使用那种linker时必须结合靶点的自身性质进行选择。
第四、细胞毒性药物的选择由于抗体进入体内后,能有效进入肿瘤部位的约占总量的0.003 - 0.08%,因此就需要药物对靶细胞具有高效,高灵敏的杀伤作用(free drug IC50: 10-11 - 10-9M)。
目前常用的药物主要有两大类 -- microtubule in hibitors and DNA-damaging agents。
3、ADC发展趋势3.1 定向偶联技术(Site-specific conjugation )目前走在开发最前列的ADC药物均使用传统的偶链技术(n o-specific conj ugation ),最大的缺点就是得到的产品是一种每个抗体载有不同药物分子数的混合物);无法实现特定位置偶联药物,更重要的是临床评价难得到均一数据(e g,PK)0针对这些缺点,定向偶联技术成为各大公司追逐的热点。
使用定向偶联技术可以使每个抗体上携带相同数目的药物分子数,得到均一性的ADC药物。
利于药效学的研究和评估。
并且在临床中能够得到更加稳定有效的效果。
其中A mbrx的Un atural Ami no acid (pAcPh® 技术更有应用及推广前途。
3.2多价偶联ADC药物抗体药物以及疫苗的发展过程都是从单价药物向多价药物进行发展。
ADC也应该会走这个发展历程,即在同一个抗体链接几种相互协同的小分子来提高药物的药效。
这就需要更完善的偶链技术,至需要对两种甚至更多种技术进行整合使用。
但是现在,在Site-specific 技术中,过度追求了在特定位点偶联特定分子数,忽略了偶联的多样性。
实用传统技术进行多价偶联药物,需要在一个抗体上同时偶联多种药物,这时抗体自身修饰链接基团的单一性,会造成混合型产品,无法保证每个抗体上同时携带不同的药物。
这个难题可以通过Site-specific 技术来解决,在进行Site-specific 修饰时,可以设计多种不同的偶联基团,这就可以使用一种基团来针对带有对应基团的linker进行药物偶联。
最终通过linker多样化改造进行多种药物的链接,实现多价偶联ADC药物。
单抗及其偶联物均为大分子物质。
庞大的药物分子难于透过毛细管内皮层和穿过肿瘤细胞外间隙到达实体瘤的深部。
而使用抗体片段,如Fab、Fab制备分子量较小的偶联物,可能提高对细胞外间隙的穿透性,增加到达深部肿瘤细胞的药物量。
“小型化或适度的小型化是研制ADC药物的重要途径。
”第1 章抗体偶联药物研发进展In grid Sasso on and V e ronique Bia nc摘要在肿瘤治疗中,虽然许多单独给药的裸抗药物临床疗效有一定的局限性,但毋庸置疑的是,生物治疗手段已在癌症治疗中担当着日益重要的角色。
如果将具有治疗应用前景的抗体和小分子化学药物通过偶联反应制备抗体偶联药物(antibody-drug conjugate , ADC,则可以达到进一步提高抗体疗效的目的。
因为ADC 药物不但能特异性识别肿瘤细胞的表面抗原,而且可利用自身携带的高效小分子药物毒素杀灭肿瘤靶细胞。
然而ADC药物的设计并不仅仅是简单的组合,它需要对特定肿瘤靶点和其适应证进行全方位考量,并在此基础上将抗体、连接子和小分子药物毒素三部分合理地整合在一起。
现阶段大部分进入临床试验的新一代ADC药物,都是建立在不断总结第一代ADC药物的经验基础上并结合日益更新的技术所研发的。
维布妥昔单抗(Adcetris?)是将抗CD30单克隆抗体和一种高效微管生成抑制剂偶联而成的ADC药物,用于治疗“霍奇金淋巴瘤(Hodgkin ' s lymphoma)” 和“间变性大纟田胞淋巴瘤(anaplastic lar ge cell lymphomas) ,该产品也是迄今为止唯一成功上市的ADC药物。
至今总共有27种抗体偶联药物进入临床试验(2013 年) ,适应证主要涉及恶性血液肿瘤和实体肿瘤治疗。
其中,曲妥珠-美坦新衍生物(trastuzumabemtansine ,T-DM1)是曲妥珠单抗通过不可切除连接子偶联美坦新衍生物(DM1)构成的。
在III期临床试验中,该药物对人类表皮生长因子受体2(human epidermal growth factor receptor 2 ,HER2阳性且难治/ 复发转移性乳腺癌表现出显著疗效。
而另一些正在进行临床试验的ADC 药物,如CMC-544 SAR3419 CDX-011 PSMA-ADCBT-062 和IMGN901 其抗原靶点、连接子及所偶联的药物也越来越多样化,这使我们对ADC药物的理解不断深入,同时也使得曾经一度停滞不前的ADC药物再次迎来了新的发展机遇。
为了提升疗效,ADC药物依然还面临着各种挑战,主要包括:仍需进一步提高治疗指数、靶点的精准选择、对ADC药物作用机制的透彻理解,更好地了解和控制ADC 药物脱靶效应的毒副作用,以及临床试验方案的优化和确定(包括患者的选择、给药方案的设计等)。
关键词:抗体偶联药物,癌症,细胞毒,连接子,抗体,美坦新,奥瑞他汀(Auristatin) ,卡奇霉素(Calicheamicin) ,曲妥珠-美坦新衍生物(T-DM1),SGN-35,CMC-5441 引言几十年来,肿瘤学的深入研究一直在为战胜癌症并且延长患者生命这一目标而努力奋斗。
如今抗肿瘤生物药(如抗体、多肽和蛋白质)在肿瘤治疗药物中也逐渐占有了一席之地,通常这些生物药物会与放疗和化疗药物联合使用。
虽然抗体药物与小分子药物相比具有许多优势,女口:①抗体药物对抗原阳性的肿瘤细胞具有高度特异性,因此可降低因药物脱靶效应对正常组织的毒性;②具有更长的半衰期等。
但迄今为止只有13种肿瘤治疗的抗体药物获准上市[1] 。
这也再次说明确定一个靶点并通过该靶点抗原的表达水平来调控影响肿瘤增长的困难性,以及单克隆抗体药物单独给药时其临床疗效的局限性。
而利用毒素、细胞毒素药物以及放射性核素改造修饰的抗体或抗体片段,已被公认为是一种既能高效杀伤靶细胞,又能实现对正常细胞和组织具有较低毒副作用的有效方法。
已有部分诸如此类的抗体上市,如通过基因工程手段将人白细胞介素-2( 可与白细胞介素-2 受体结合) 和白喉毒素融合而成的地尼白介素(Ontak?) ,其适应证为顽固性或易复发的表皮T 细胞淋巴瘤的治疗。
替伊莫单抗(Zevalin?) 和131I- 托西莫单抗(Bexxar?)是两种分别与90Y和1311偶联的鼠源抗CD20单克隆抗体,用于难治/ 复发性的滤泡性淋巴瘤治疗,而维布妥昔单抗(Adcetris?)则是在抗CD30单克隆抗体上偶联了高效的微管抑制剂,用于治疗霍奇金淋巴瘤和间变性大细胞淋巴瘤。