直线和圆高考试题集

合集下载

高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆一、单项选择题1.(2021·全国甲,文5)点(3,0)到双曲线x 216−y29=1的一条渐近线的距离为()A.95B.85C.65D.452.(2021·湖南湘潭模拟)已知半径为r(r>0)的圆被直线y=-2x和y=-2x+5所截得的弦长均为2,则r的值为()A.54B.√2C.32D.√33.(2021·北京清华附中月考)已知点P与点(3,4)的距离不大于1,则点P到直线3x+4y+5=0的距离的最小值为()A.4B.5C.6D.74.(2021·江西鹰潭一中月考)已知点M,N分别在圆C1:(x-1)2+(y-2)2=9与圆C2:(x-2)2+(y-8)2=64上,则|MN|的最大值为()A.√7+11B.17C.√37+11D.155.(2021·湖北黄冈中学三模)已知直线l:mx+y+√3m-1=0与圆x2+y2=4交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=()A.2B.4√33C.2√3D.46.(2021·重庆八中月考)已知圆C:x2+y2-4x-2y+1=0及直线l:y=kx-k+2(k∈R),设直线l与圆C相交所得的最长弦为MN,最短弦为PQ,则四边形PMQN的面积为()A.4√2B.2√2C.8D.8√27.(2021·山西临汾适应性训练)直线x+y+4=0分别与x轴、y轴交于A,B两点,点P在圆(x-4)2+y2=2上,则△ABP面积的取值范围是()A.[8,12]B.[8√2,12√2]C.[12,20]D.[12√2,20√2]8.(2021·山东青岛三模)已知直线l:3x+my+3=0,曲线C:x2+y2+4x+2my+5=0,则下列说法正确的是()A.“m>1”是曲线C表示圆的充要条件B.当m=3√3时,直线l与曲线C表示的圆相交所得的弦长为1C.“m=-3”是直线l与曲线C表示的圆相切的充分不必要条件D.当m=-2时,曲线C与圆x2+y2=1有两个公共点9.(2021·河北邢台模拟)已知圆M:(x-2)2+(y-1)2=1,圆N:(x+2)2+(y+1)2=1,则下列不是M,N 两圆公切线的直线方程为()A.y=0B.4x-3y=0C.x-2y+√5=0D.x+2y-√5=0二、多项选择题10.(2021·广东潮州二模)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是()A.-3B.3C.2D.-211.(2021·海南三亚模拟)已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则()A.圆O1和圆O2有两条公切线B.直线AB的方程为x-y+1=0C.圆O2上存在两点P和Q,使得|PQ|>|AB|D.圆O1上的点到直线AB的最大距离为2+√2三、填空题12.(2021·辽宁营口期末)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,-1)时,点M到直线l2的距离为.13.(2021·山东滨州检测)已知圆M:x2+y2-12x-14y+60=0,圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,则圆N的标准方程为.14.(2021·山东烟台二模)已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且构成正方形ABCD,则|m-n|的值为.15.(2021·河北沧州模拟)已知圆C:x2+y2-4x+2my+1=0(m>0),直线l:y=kx+m与直线x+√3y+1=0垂直,则k=,直线l与圆C的位置关系为.答案及解析1.A 解析 由题意,双曲线的一条渐近线方程为y=34x ,即3x-4y=0,点(3,0)到该渐近线的距离为√32+(−4)2=95.故选A . 2.C 解析 直线y=-2x 和y=-2x+5截圆所得弦长相等,且两直线平行,则圆心到两条直线的距离相等且为两条平行直线间距离的一半,故圆心到直线y=-2x 的距离d=12×√4+1=√52,2√r2-d 2=2√r 2-54=2,解得r=32.3.B 解析 设点P (x ,y ),则(x-3)2+(y-4)2≤1,圆心(3,4)到3x+4y+5=0的距离为d=√32+42=6,则点P 到直线3x+4y+5=0的距离的最小值为6-1=5. 4.C 解析 依题意,圆C 1:(x-1)2+(y-2)2=9,圆心C 1(1,2),半径r 1=3.圆C 2:(x-2)2+(y-8)2=64,圆心C 2(2,8),半径r 2=8, 故|MN|max =|C 1C 2|+r 1+r 2=√37+11.5.B 解析 直线过定点(-√3,1),该点在圆上.圆半径为r=2,且|AB|=2,所以△OAB 是等边三角形,圆心O 到直线AB 的距离为√3,所以√3m-1|√1+m 2=√3,m=-√33,直线斜率为k=-m=√33,倾斜角为θ=π6, 所以|CD|=|AB|cosθ=2cosπ6=4√33. 6.A 解析 将圆C 的方程整理为(x-2)2+(y-1)2=4,则圆心C (2,1),半径r=2.将直线l 的方程整理为y=k (x-1)+2,则直线l 恒过定点(1,2),且(1,2)在圆C 内. 最长弦MN 为过(1,2)的圆的直径,则|MN|=4,最短弦PQ 为过(1,2),且与最长弦MN 垂直的弦,∵k MN =2−11−2=-1,∴k PQ =1.直线PQ 方程为y-2=x-1,即x-y+1=0. 圆心C 到直线PQ 的距离为d=√2=√2,|PQ|=2√r 2-d 2=2√4−2=2√2.四边形PMQN 的面积S=12|MN|·|PQ|=12×4×2√2=4√2.7.C 解析 直线x+y+4=0分别与x 轴、y 轴交于A ,B 两点,A (-4,0),B (0,-4),故|AB|=4√2.设圆心(4,0)到直线x+y+4=0的距离为d ,则d=√1+1=4√2.设点P 到直线x+y+4=0的距离为h ,故h max =d+r=4√2+√2=5√2,h min =d-r=4√2−√2=3√2,故h 的取值范围为[3√2,5√2],即△ABP 的高的取值范围是[3√2,5√2],又△ABP 的面积为12·|AB|·h ,所以△ABP 面积的取值范围为[12,20].8.C 解析 对于A,曲线C :x 2+y 2+4x+2my+5=0整理为(x+2)2+(y+m )2=m 2-1,曲线C 要表示圆,则m 2-1>0,解得m<-1或m>1,所以“m>1”是曲线C 表示圆的充分不必要条件,故A 错误;对于B,m=3√3时,直线l :x+√3y+1=0,曲线C :(x+2)2+(y+3√3)2=26, 圆心到直线l 的距离d=√3×(−3√3)+1|√1+3=5,所以弦长=2√r 2-d 2=2√26−25=2,故B错误;对于C,若直线l 与圆相切,圆心到直线l 的距离d=2√9+m 2=√m 2-1,解得m=±3,所以“m=-3”是直线l 与曲线C 表示的圆相切的充分不必要条件,C 正确;对于D,当m=-2时,曲线C :(x+2)2+(y-2)2=3,其圆心坐标为(-2,2),r=√3,曲线C 与圆x 2+y 2=1两圆圆心距离为√(-2-0)2+(2−0)2=2√2>√3+1,故两圆相离,不会有两个公共点,D 错误.9.D 解析 由题意,圆M :(x-2)2+(y-1)2=1的圆心坐标为M (2,1),半径为r 1=1,圆N :(x+2)2+(y+1)2=1的圆心坐标为N (-2,-1),半径为r 2=1.如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线l :y=kx ,则圆心M 到直线l 的距离为√1+k 2=1,解得k=0或k=43.故此时切线方程为y=0或4x-3y=0.另两条切线与直线MN 平行且相距为1,又由l MN :y=12x , 设切线l':y=12x+b ,则√1+14=1,解得b=±√52, 此时切线方程为x-2y+√5=0或x-2y-√5=0. 结合选项,可得D 不正确.10.CD 解析 圆C 方程可化为(x-a )2+y 2=1,则圆心C (a ,0),半径r 1=1;由圆D 方程知圆心D (0,0),半径r 2=2.因为圆C 与圆D 有且仅有两条公切线,所以两圆相交.又两圆圆心距d=|a|,有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3.观察4个选项,可知C,D两项中的a的取值满足题意.11.ABD解析对于A,因为两个圆相交,所以有两条公切线,故A正确;对于B,将两圆方程作差可得-2x+2y-2=0,即得公共弦AB的方程为x-y+1=0,故B正确;对于C,直线AB经过圆O2的圆心(0,1),所以线段AB是圆O2的直径,故圆O2中不存在比AB长的弦,故C错误;对于D,圆O1的圆心坐标为(1,0),半径为2,圆心到直线AB:x-y+1=0的距离为√2=√2,所以圆O1上的点到直线AB的最大距离为2+√2,D正确.12.√5解析因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,-1)都在直线l2上,可得直线l2的方程y-0-1-0=x-20−2,即x-2y-2=0,所以点M到直线l2的距离为d=√1+4=√5.13.(x-6)2+(y-1)2=1解析圆的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.14.2√10解析由题设知:l1∥l2,要使A,B,C,D四点构成正方形ABCD,正方形的边长等于.直线l1,l2之间的距离d,则d=√5若圆的半径为r,由正方形的性质知d=√2r=2√2,故=2√2,即有|m-n|=2√10.√515.√3相离解析x2+y2-4x+2my+1=0,即(x-2)2+(y+m)2=m2+3,圆心C(2,-m),半径r=√m2+3,)=-1,解得k=√3.因为直线l:y=kx+m与直线x+√3y+1=0垂直,所以k·√3=√3+m.直线l:y=√3x+m.因为m>0,所以圆心到直线l的距离d=√3+m+m|√3+1因为d2=m2+2√3m+3>m2+3=r2,所以d>r.所以直线l与圆C的位置关系是相离.。

历届高考直线与圆试题汇编

历届高考直线与圆试题汇编

历届高考直线与圆试题汇编专题九:解析几何第二十五讲直线与圆一、选择题1.(2018全国卷Ⅲ) 直线 x+y+2=0 分别与 x 轴,y 轴交于 A,B 两点,点 P 在圆 (x-2)²+y²=2 上,则ΔABP 面积的取值范围是:A。

[2,6]B。

[4,8]C。

[2,32]D。

[22,32]2.(2018天津) 已知圆 x+y-2x=0 的圆心为 C,直线 y=3-x相交于 A,B 两点,则ΔABC 的面积为:3.(2018北京) 在平面直角坐标系中,记 d 为点P(cosθ,sinθ) 到直线 x-my-2=0 的距离,当θ,m 变化时,d 的最大值为:A。

1B。

2C。

3D。

44.(2017新课标Ⅲ)已知椭圆C:(x²/a²)+(y²/b²)=1 (a>b>0) 的左、右顶点分别为 A1,A2,且以线段 A1A2 为直径的圆与直线 bx-ay+2ab=0 相切,则 C 的离心率为:A。

√(3/32)B。

1/√(3/32)C。

√(3/8)D。

1/√(3/8)5.(2017新课标Ⅲ)在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上。

若AP=λAB+μAD,则λ+μ 的最大值为:A。

3B。

2√2C。

5D。

26.(2015山东)一条光线从点 (-2,-3) 射出,经 y 轴反射后与圆 (x+3)²+(y-2)²=1 相切,则反射光线所在直线的斜率为:A。

-2/5 或 5/2B。

-5/2 或 2/5C。

-2/3 或 3/2D。

-3/2 或 2/37.(2015新课标2)已知圆 C1:(x-1)²+y²=1,圆 C2:(x-2)²+y²=4,则圆 C1 与圆 C2 的公共弦所在直线的斜率为:A。

1/3B。

1/2C。

2/3D。

3/48.(2015新课标2)过三点 A(1,3),B(4,2),C(1,-7) 的圆交于 y 轴于 M、N 两点,则 MN 的长度为:A。

直线和圆、圆锥曲线综合测试卷(新高考专用)(原卷版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷(新高考专用)(原卷版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷专练
(考试时间:120分钟;满分:150分)
注意事项:
1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷(选择题)
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤。

高考数学专题《直线与圆的位置关系》习题含答案解析

高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。

高中直线与圆练习题

高中直线与圆练习题

高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。

2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。

3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。

三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。

2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。

3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。

4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。

5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。

历年高考直线与圆真题以及解析

历年高考直线与圆真题以及解析
(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得 • =(1+k2) + +4=6,解可得k的值,验证是否满足△>0,即可得答案.
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即

直线和圆高考试题集.doc

直线和圆高考试题集.doc

直线和圆高考试题集一、选择题:1. 直线2y x x =关于对称的直线方程为 。

(03年全国卷文⑴题 5分)(A )12y x =- (B )12y x = (C )2y x =- (D )2y x = 2. 已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则 。

(A (B )2(C 1 (D 1 (03年全国卷文⑼题 5分)3.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得弦长为32时,则a 。

(03年全国卷⑸题 5分)(A )2 (B )22- (C )12- (D )12+4. 已知直线1)0(022=+≠=++y x abc c by ax 与圆相切,则三条边长分别为|a |,|b|,|c|的三角形 。

(03年春北京卷⑿题 5分)A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在5. 在x 轴和y 轴上的截距分别为2-、3的直线方程是 。

(03年春安徽卷理⑴题 5分)A.2360x y --=B.3260x y --=C.3260x y -+=D.2360x y -+=6. 圆22460x y x y +-+=截x 轴所得的弦与截y 轴所得的弦的长度之比为 。

A. 23 B. 32 C. 49 D.94(03年春安徽理⑶ 5分) 7. 曲线() 为参数θθθ⎩⎨⎧==sin cos y x 上的点到两坐标轴的距离之和的最大值是 。

21)(A 22)(B 1)(C 2)(D (02年天津理⑴ 5分) 8.平面直角坐标系中,O 为坐标原点,已知两点()()3,1,1,3-B A ,若点C 满足βα+=,其中有R ∈βα,且1=+βα,则点C 的轨迹方程为 。

01123)(=-+y x A ()()521)(22=-+-y x B 02)(=-y x C 052)(=-+y x D (02年天津卷理⑽题 5分)9. 若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 。

直线与圆高考题汇总

直线与圆高考题汇总

直线与圆高考题汇总3.(重庆文,1)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .22(2)1x y +-=B .22(2)1x y ++=C .22(1)(3)1x y -+-=D .22(3)1x y +-=4.(上海文,17)点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是 ( ) A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=【答案】A5. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2【答案】C8. (广东文,13)以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是 . 【解析】将直线6x y +=化为60x y +-=,圆的半径|216|5112r --==+, 所以圆的方程为2225(2)(1)2x y -++=【答案】2225(2)(1)2x y -++= 10. (天津文,14)若圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,则a =________.【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为ay 1= , 利用圆心(0,0)到直线的距离d 1|1|a =为13222=-,解得a =1. 【答案】111.(全国Ⅰ文16)若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是①15o ②30o ③45o ④60o⑤75o 其中正确答案的序号是 .(写出所有正确答案的序号)【解析】解:两平行线间的距离为211|13|=+-=d ,由图知直线m 与1l 的夹角为o 30,1l 的倾斜角为o 45,所以直线m 的倾斜角等于00754530=+o 或00153045=-o 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线和圆高考试题集一、选择题:1. 直线2y x x =关于对称的直线方程为 。

(03年全国卷文⑴题 5分) (A )12y x =- (B )12y x = (C )2y x =- (D )2y x =2. 已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则 。

(A (B )2(C 1 (D 1 (03年全国卷文⑼题 5分) 3.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得弦长为32时,则a 。

(03年全国卷⑸题 5分)(A )2 (B )22- (C )12- (D )12+4. 已知直线1)0(022=+≠=++y x abc c by ax 与圆相切,则三条边长分别为|a |,|b|,|c|的三角形 。

(03年春北京卷⑿题 5分)A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在 5. 在x 轴和y 轴上的截距分别为2-、3的直线方程是 。

(03年春安徽卷理⑴题 5分)A.2360x y --=B.3260x y --=C.3260x y -+=D.2360x y -+=6. 圆22460x y x y +-+=截x 轴所得的弦与截y 轴所得的弦的长度之比为 。

A.23 B. 32 C. 49 D.94 (03年春安徽理⑶ 5分) 7. 曲线() 为参数θθθ⎩⎨⎧==sin cos y x 上的点到两坐标轴的距离之和的最大值是 。

21)(A 22)(B 1)(C 2)(D (02年天津理⑴ 5分) 8.平面直角坐标系中,O 为坐标原点,已知两点()()3,1,1,3-B A ,若点C 满足βα+=,其中有R ∈βα,且1=+βα,则点C 的轨迹方程为 。

01123)(=-+y x A ()()521)(22=-+-y x B02)(=-y x C 052)(=-+y x D (02年天津卷理⑽题 5分)9. 若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 。

(A )1,1- (B )2,2- (C )1 (D )1- (02年全国卷文⑴题 5分) 10. 圆1)1(22=+-y x 的圆心到直线x y 33=的距离是 。

(02年全国卷理⑴题 5分) (A )21 (B )23 (C )1 (D )3 11. 过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是 。

(01年天津卷理⑶题 5分)(A )4)1()3(22=++-y x(B )4)1()3(22=-++y x(C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x12. 若A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是 。

(01年天津理⑹题 5分)(A )05=-+y x(B )012=--y x(C )042=--x y (D )072=-+y x13. 过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 。

(2000年全国卷 5分)(A )x y 3=(B )x y 3-= (C )x y 33=(D )x y 33-= 1,(上海卷15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D )A.弧AB B .弧BC C .弧CD D .弧DA2.(全国一10)若直线1x ya b+=通过点(cos sin )M αα,,则( D ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b+≥3.(全国二5)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( D )A .2-B .4-C .6-D .8-4.(全国二11)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( A )A .3B .2C .13-D .12-5.(北京卷5)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x y z +=的最小值是( B )A .0B .1 CD .96.(北京卷7)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( C ) A .30B .45C .60D .907.(四川卷4)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+8.(天津卷2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为D(A )2 (B )3 (C )4 (D )5 9.(安徽卷8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( C )A.[B.( C.[ D.( 10.(山东卷11)已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为B (A )106(B )206(C )306(D )40611.(山东卷12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是C(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9] 12.(湖北卷9)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有CA.16条B. 17条C. 32条D. 34条13.(湖南卷3)已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( C )A.2B.5C.6D.814.(陕西卷5)直线0y m -+=与圆22220x y x +--=相切,则实数m 等于( C ) AB.C.-D.-15.(陕西卷10)已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( B ) A .7 B .5 C .4D .316.(重庆卷3)圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是B(A)相离(B)相交(C)外切(D)内切17.(辽宁卷3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是( C ) A.(k ∈ B.()k ∈-+ C.(k ∈D.()k ∈-+二、填空题: 1. 已知定点A (0,1),点B 在直线x +y=0上运动,当线段AB 最短时,点B 的坐标是 。

(03年上海卷⑷题 4分) 2. 直线1=y 与直线33+=x y 的夹角为 . (03年春上海卷⑵题 4分)3. 若过两点)0,1(-A 、)2,0(B 的直线l 与圆1)()1(22=-+-a y x 相切,则a = .(03年春上海卷⑺题 4分)1.(天津卷15)已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为__________________.22(1)18x y ++=第1题. (2006湖北理)已知直线5120x y a ++=与圆2220x x y -+=相切,则a 的值为 .答案:18-或8第2题. (2006湖南理)若圆2244100x y x y +---=上至少有三个不同的点到直线0l ax by +=:的距离为l 的倾斜角的取值范围是( )A.ππ124⎡⎤⎢⎥⎣⎦, B.π5π1212⎡⎤⎢⎥⎣⎦C.ππ63⎡⎤⎢⎥⎣⎦,D.π2⎡⎤⎢⎥⎣⎦0,答案: B第3题. (2006湖南文)圆2244100x y x y +---=上的点到直线140x y +-=的最大距离与最小距离的差是( )A.36 B.18C.D.答案:C第4题. (2006江苏)圆()(2211x y -+=的切线方程中有一个是( )A.0x y -=B.0x y +=C.0x =D.0y =答案:C第5题. (2006全国文)从圆222210x x y y -+-+=外一点(32)P ,向这个圆作两条切线,则两切线夹角的余弦值为( )A.12B.35C.2D.0答案:B第6题. (2006陕西理)设直线过点()0a ,,其斜率为1,且与圆222x y +=相切,则a 的值为( ) A.4±B.± C.2±D.答案:B第7题. (2006陕西文)设直线过点(0)a ,,其斜率为1,且与圆222x y +=相切,则a 的值为( ) A.4±B.± C.2±D.答案:C第8题. (2006上海理)已知圆22440x x y --+=的圆心是点P ,则点P 到直线10x y --=的距离是______.第9题. (2006天津理)设直线30ax y -+=与圆()()22124x y -+-=相交于A ,B 两点,且弦AB的长为a =__________.2.(全国一13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .93.(四川卷14)已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为_______。

24.(安徽卷15)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为745.(江苏卷9)在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P (0,p )在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点 E ,F ,一同学已正确算的OE 的方程:11110x y c b p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程: 。

相关文档
最新文档