。高一数学(含参不等式的解法)

合集下载

含参不等式

含参不等式

第三讲 含参不等式一、 知识要点1.含参不等式的解法:(1)解含参数不等式:一般是对所含的参数进行恰当的分类和讨论;(2)含参二次不等式的分类标准和讨论步骤:(a)对二次项系数含有参数的一元二次不等式,要注意二次项系数为零转化为一元一次不等式的问题。

(b)对含参数的一元二次不等式,还要分0>∆、0=∆、0<∆讨论。

(c)对一元二次不等式和分式不等式转化为整式不等式后有根,且根为21,x x (或更多)但含参数,要分21x x >、21x x =、21x x <讨论。

(3)对指数、对数不等式要注意对底数分1>a 与10<<a 进行讨论。

2.不等式的恒成立问题(1)一般不等式:a x f >)(恒成立⇔a x f >min )]([ a x f <)(恒成立⇔ a x f >)(解集非空⇔a x f >max )]([ a x f <)(解集非空⇔ a x f >)(无解⇔a x f ≤max )]([ a x f <)(无解⇔ a x f ≥)(恒成立⇔a x f ≥min )]([ a x f ≤)(恒成立⇔ a x f ≥)(解集非空⇔a x f ≥max )]([ a x f ≤)(解集非空⇔ a x f ≥)(无解⇔a x f <max )]([ a x f ≤)(无解⇔(2)二次不等式(设R c b a c bx ax x f ∈++=,,,)(2)(a)0)(>x f 在R x ∈时恒成立⇔ 或 ;(b)0)(≥x f 在R x ∈时恒成立⇔ 或 ;(c)0)(<x f 在R x ∈时恒成立⇔ 或 . (注:若二次项系数含有参数,须分“0=a ”、“0≠a ”讨论)3.补充说明:a x f >)(恒成立⇔a x f >)(的解集为R ⇔ a x f ≤)(无解a x f <)(恒成立⇔a x f <)(的解集为R ⇔a x f ≥)(无解二、考点解析题型一:解含参不等式例1解关于x 的不等式)2,1(0)2()1)((≠≠>---a a x x a x 且变式1:解关于x 的不等式)(0)()(2R a a x a x ∈<--例2. 解关于x 的不等式)(12)1(R a x x a ∈>--变式2:解关于x 的不等式0)2)(2(>--ax x题型二:含参不等式与集合运算例1设R B A B A a x x B x x A =∅=≤-=>-= ,},1|2||{},1|12||{,求实数a 的值.变式1:已知集合}02|{2≤--∈=x x R x A ,}3|{+<<∈=a x a R x B 且∅=B A ,则实数a 的取值范围是题型三:不等式的恒成立问题例1若不等式03)1(4)54(22>+---+x a x a a 对一切R x ∈恒成立,求a 的取值范围变式1:设关于x 的不等式04)2(2)2(2<--+-x x x a 的解集为R ,求a 的取值范围例2若a x x >+--|5||2|恒成立,则实数a 的取值范围是____________ _________变式2:若不等式a x x ≤++-|3||4|的解集为空集,则实数a 的取值范围是三、巩固练习1.若不等式)0(02≠<++a a x ax 无解,则a 的取值范围是( )2121.≥-≤a a A 或 21.<a B 2121.≤≤-x C 21.≥a D2.设集合}044|{},01|{2恒成立对任意实数x mx mx R m Q m m P <-+∈=<<-=,则下列关系式中成立的是( )Q P A ⊂.Q P B =. P Q C ⊂. ∅=Q P D .3.已知0>a ,不等式a x x <-+-|3||4|在实数集R 上的解集不是空集,则正实数a 的取值范围是4.若不等式a x x >++-|3||4|的解集为R ,则实数a 的取值范围是5.设}25|{,},03|{},0325|{2≤<-=∅=≤++=<-+=x x B A B A ax x x B x x x A ,则实数a 的值为 6.解关于的不等式01>--x a x7解关于x 的不等式)0(02≠<-a x ax。

含参不等式的解法

含参不等式的解法

含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。

一. 二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x解:原不等式可化为:(x-1)(x+m )>0(两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当(){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解) 解:()a a 422--=∆(方程有没有根,取决于谁?)()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当(i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21a a a x --+-=,()242)2(22a a a x ----=. ()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x若0>a ,原不等式.0)1)(1(<--⇔x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为:①当0<a 时,{11><x a x x 或};②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时,此时a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--a a a a x 242++-<< (3)当a<0时,原式可化为:012>-+ax xa a 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ;②当0=∆即4-=a 时,解得:21-≠x ;③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,a a a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21);(4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242a a a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如:解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(*1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1); 当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。

含参数的绝对值不等式的解法

含参数的绝对值不等式的解法

含参数的绝对值不等式的解法含参数的绝对值不等式是高中数学中常见的一类问题,解决这类问题需要运用一些特定的方法和技巧。

本文将简要介绍含参数的绝对值不等式的解法,并通过例题进行说明,帮助读者更好地理解和掌握这类问题的解题方法。

一、绝对值不等式的基本概念在开始介绍含参数的绝对值不等式的解法之前,我们先来回顾一下绝对值不等式的基本概念。

对于任意实数x,绝对值|x|的定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。

绝对值的定义告诉我们,无论x是正数还是负数,绝对值都是非负的。

绝对值不等式则是对绝对值进行不等式的运算,即|x|<a或|x|>a,其中a为正实数。

含参数的绝对值不等式的解法与普通的绝对值不等式有一些区别,需要根据参数的取值范围来进行分类讨论。

1. 当参数的取值范围为正数时,我们可以直接根据绝对值的定义进行求解。

例如,对于不等式|x-2|<a,其中a>0,我们可以得到以下解法步骤:(1)当x-2≥0时,|x-2|=x-2,不等式变为x-2<a,解为x<a+2;(2)当x-2<0时,|x-2|=-(x-2),不等式变为-(x-2)<a,解为x>2-a。

综合以上两种情况,得到不等式的解集为2-a<x<a+2。

2. 当参数的取值范围为负数时,同样可以根据绝对值的定义进行求解。

例如,对于不等式|x+3|<b,其中b<0,我们可以得到以下解法步骤:(1)当x+3≥0时,|x+3|=x+3,不等式变为x+3<b,解为x<b-3;(2)当x+3<0时,|x+3|=-(x+3),不等式变为-(x+3)<b,解为x>-3-b。

综合以上两种情况,得到不等式的解集为b-3<x<-3-b。

3. 当参数的取值范围为正负混合时,我们需要分情况讨论。

例如,对于不等式|x-1|<c,其中c可以为正数也可以为负数,我们可以得到以下解法步骤:(1)当x-1≥0时,|x-1|=x-1,不等式变为x-1<c,解为x<c+1;(2)当x-1<0时,|x-1|=-(x-1),不等式变为-(x-1)<c,解为x>1-c。

含参数不等式的解题方法与技巧(一)

含参数不等式的解题方法与技巧(一)

含参数不等式的解题方法与技巧(一)含参数不等式的解题方法与技巧1. 确定参数的范围在解析含参数不等式时,首先需要确定参数的范围。

通过观察不等式中的条件,可以得出参数的取值范围,以便后续的推导和解题。

2. 代入法一个常用的解决含参数不等式的方法是代入法。

当不等式中的参数有特定限制时,我们可以选择代入一些特定的值进行计算,从而得到不等式的解集。

3. 分类讨论对于一些较为复杂的含参数不等式,可以进行分类讨论。

通过对参数的不同取值进行分类,可以将原问题拆分为多个简化的子问题,从而更容易找到解集。

4. 画图法对于一些几何形状相关的不等式问题,可以使用画图法来辅助解题。

根据不等式的条件,将其转化为几何图形并进行分析,可以更直观地理解问题并找到解集。

5. 推导法通过一系列的推导和变换,可以将含参数不等式转化为一种等价的形式,从而更容易求解。

在推导过程中,需要灵活运用不等式的性质和常用的等价关系。

6. 使用不等式性质不等式中存在一些常用的性质,如加法性质、乘法性质、倒数性质、平方性质等。

在解题过程中,可以运用这些性质对不等式进行简化和转换,以求得解集。

7. 求导法对于一些含参数的函数不等式,可以通过求导来研究其变化趋势。

通过求导的结果,可以判断函数的单调性和极值点,从而确定不等式的解集。

8. 极值法求解含参数不等式的另一种常用方法是使用极值法。

通过构造一个与不等式相关的函数,并通过求导和求极值来确定不等式的解集。

9. 不等式链法对于一些复杂的含参数不等式,可以通过构造不等式链来求解。

将原不等式转化为一系列含参不等式,通过对每个不等式进行推导和分析,最终得出原不等式的解集。

以上是解决含参数不等式的常用方法和技巧。

在实际解题过程中,需要根据具体问题选择合适的方法,并灵活运用不等式的性质和等价关系。

10. 反证法反证法也是解决含参数不等式的常用方法之一。

假设原不等式不成立,通过推导和分析,找出与之矛盾的条件,从而得出原不等式的解集。

解答含参不等式问题常用的几种方法

解答含参不等式问题常用的几种方法

考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。

高考导数:含参不等式的整数解问题

高考导数:含参不等式的整数解问题

:上综 ≤a 2e<13即,),(得使,,时当 ⎩-≥⎨∃>∈-⇒≤⎧δδa 2e f(1)0(2)x>00x 0f(x)<0,<1;3f(0)<0,增递上),0(在,时当)(->->∞a a a x 1x>0f (x)=(2x+1)e 10,f(x)+f(0)<0,<1;'高考导数:含参不等式的整数解问题成都实验外国语学校:王琳鑫含参不等式的整数解个数问题,一般采用数形结合的方法来解决,主要的策略是通过构造函数,分离参数,分离函数,研究函数图像的位置关系,寻找临界状态,具体操作: (1)构造函数:通过特殊点,或单调性或函数值符号可以快速解决; (2)分离参数:将含参不等式转化为像的位置关系,寻找临界状态,求解参数的范围.(3)分离函数:通过变形将原不等式转化成形如进而研究两个函数图像的位置关系,寻找临界状态,求解参数的范围. (4)有时候也可从特殊点着手;典型例题【解析】法一:(分类讨论)法二:(分离参数).解题技巧的前提下,无解只有一个整数解需有≤<a 13f x ()<'f x ()0<-x 2≤<ea 213≥-f (2)0>f x ()0≥x 0-1<f x ()0-=-+<f a (1)10e2[,1)3 ==ek k l l 21,312 l l ,12=y ax h x ()g x ()=y x g x ()-=--=-e g g (1)1,(2)3=-=g x g 2()()3min -+∞2(,)3-∞-2(,)3g x ()=+'+g x e x x ()(23)1=y ax g x () =+=+g x e x h x ax x ()(21),()1e2[,1)3e 24[,)33-e 24[,)33-e 2[,1)3<f x 0)(<a 1=⋅+-+f x ex ax x 211)()(,故选D(斜率的计算略)变式题:【15年课标一卷12改编】 设函数,其中,若的整数解有且唯一,则实数a 的取值范围( ) A. B. C. D. 【法一】设,问题转化为的图像在直线的下方的部分只存在一个x 的值为整数,则,因此在单调递减,在单调递增 所以,过原点作图像的切线,易求得切线方程为(另一条舍去) 在同一坐标系中作出和的图像如下: 由图可知,当直线夹于之间时符合题意所以实数a 的取值范围为【法二】因为,所以的唯一整数解就是 当时,, 为满足题意,必须成立,所以 又当时,,此时必为正,只需,即可满足题意.⎣⎭⎢⎪⎡⎫e 3,ln62⎣⎭⎢⎪⎡⎫3ln6,ln21⎝⎦⎥ --⎛⎤e 3,1ln6⎝⎦⎥ --⎛⎤3ln2,ln61+>fx af x 02)()(=xf x x ln 2)()(:述所上综∈a [0,2][3,8];2:以所;立成数整一唯在存(x):即≤f < a x < a 8 得使,数整一唯在存 ,(x),时x 当)2((x)<≥>xx 0;0f 0?f -a;0:即,数整个一有只(x)<≤<a f x a 3得使(x)>x0;f -a,数整一唯在存x例3. 【17四川泸州四诊】已知函数,关于的不等式只有两个整数解,则实数的取值范围是( )A. B. C. D. 【答案】选A专题练习1.函数若不等式则a的取值范围是( )2.设函数则实数m的取值范围是3.在关于x2的整数,则a的取值范围是( )B. D.4.已知函数3,则a的取值范围是( )D.5.a的取值范围是6.设函数则a的取值范围是( )A.。

含参数不等式的解法(含答案)

含参数不等式的解法(含答案)

含参数不等式的解法典题探究例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。

例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。

如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。

演练方阵A 档(巩固专练)1.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________.3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.4. 解不等式)0( 01)1(2≠<++-a x aa x 5. 解不等式06522>+-a ax x ,0≠a6.已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2. (1)求p 、q 之间的关系式;(2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.解不等式log a (1-x1)>18.设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.9.设124()lg,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。

含参不等式的解法教案

含参不等式的解法教案

一、教学目标:1. 让学生掌握含参不等式的解法,能够独立解决相关问题。

2. 培养学生的逻辑思维能力和解决实际问题的能力。

3. 通过对含参不等式的解法的学习,使学生体会数学与实际生活的联系。

二、教学内容:1. 含参不等式的定义及其性质。

2. 含参不等式的解法:图像法、代入法、不等式法等。

3. 含参不等式在实际问题中的应用。

三、教学重点与难点:1. 教学重点:含参不等式的解法及其应用。

2. 教学难点:含参不等式解法的选择和运用。

四、教学方法:1. 采用讲授法,讲解含参不等式的定义、性质和解法。

2. 利用案例分析法,分析含参不等式在实际问题中的应用。

3. 组织学生进行小组讨论和练习,巩固所学知识。

五、教学过程:1. 引入:通过生活中的实例,引导学生关注含参不等式的问题。

2. 讲解:讲解含参不等式的定义、性质和解法。

3. 案例分析:分析含参不等式在实际问题中的应用。

4. 练习:布置相关的练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调重点和难点。

6. 作业布置:布置适量的作业,巩固所学知识。

六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。

2. 练习完成情况:检查学生练习题的完成质量,评估学生对含参不等式解法的掌握程度。

3. 小组讨论:评估学生在小组讨论中的表现,包括合作意识、交流能力和解决问题能力。

七、教学资源:1. PPT课件:制作含参不等式解法的PPT课件,用于讲解和展示相关内容。

2. 练习题:准备适量的练习题,用于巩固学生对含参不等式解法的掌握。

3. 案例素材:收集一些与含参不等式相关的实际问题,用于案例分析。

八、教学进度安排:1. 第一课时:讲解含参不等式的定义、性质和解法。

2. 第二课时:分析含参不等式在实际问题中的应用,进行案例分析。

3. 第三课时:进行练习和总结,布置作业。

九、课后反思:1. 回顾本节课的教学内容,评估学生对含参不等式解法的掌握情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档