含参不等式的解法
初二-含参不等式以及含参不等式组的解法

35狮子和山羊35狮子和山羊35 狮子和山羊(第一课时)1、在语境中正确认读“狮、央、呆、恭、伐、徒”六个生字;结合字形和字义,重点识记“狮、恭、徒”的字形。
运用各种方法理解并积累“中央、对付、恭敬、信徒” 等词语。
2、正确朗读课文,并根据课文内容,读出狮子和山羊对话时的不同语气。
3、能在老师的引导下边读边思、提出问题,并联系课文内容或课外资料解决问题。
4、能在熟读课文的基础上,同伴合作演一演老山羊智斗狮子的过程,感受山羊的沉着冷静、机智勇敢。
一、训练引入,揭示课题1、拼读词语:shī zi,随机复习整体认读音节,识记“狮”。
2、说话练习,说说狮子和山羊给人的印象①用一个词来说说狮子给你留下的印象。
②板书:山羊说说山羊又给你怎样的印象?3、补齐课题,齐读课题师:看到这样的课题,我们就知道课文讲述的是发生在狮子和山羊之间的故事,这还是一个印度的寓言故事。
二、整体感知课文,理清文章脉络1、出示句子:天渐渐地黑了,一只迷路的老山羊跑到附近的一个山洞去藏身。
(1)指名读句出示词卡:藏身,正音(2)引读,了解故事的起因2、结合课文,说说老山羊遇到的危险(1)交流出示:她刚跑进山洞,就发现有一只狮子正坐在山洞中央。
(2) 借助简笔画理解“中央”,感知老山羊身陷险境师:齐读“中央”。
中央的意思就是——(生:中间),一只迷路的老山羊跑到山洞去藏身(画山洞),没想到刚进洞,就发现(指板书)——狮子正坐在山洞中间,狮子跑得可快了,而且这又是一只——老山羊,根本就——(逃不了)。
师:啊呀,情况危险!(画惊叹号)让我们一起读好这句句子。
3、了解故事的结局师:看来这只老山羊凶多吉少,那么故事的结果是怎样的呢?翻到课文结尾找找。
出示句子:这时候,老山羊快速地溜出山洞,逃出了狮子的爪牙。
★ 正音:爪牙zhǎo(解释为鸟兽的脚趾时念zhǎo)师:最后山羊竟然在狮子的眼皮底下,溜出了山洞,逃出了狮子的爪牙。
板书:溜出逃出4、结合板书,提出问题预设:山羊怎么逃出狮子的爪牙的呢?5、小组形式读课文四人小组合作读,两个小朋友读1-6节,另两个读7-12节,然后小组讨论一下,为什么这么读?6、交流,分清两次遇险的经过第一次是老山羊和狮子,第二次是老山羊、狮子和豺狗。
含参不等式解法

含参不等式题型一:解含参不等式例1解关于x 的不等式)2,1(0)2()1)((≠≠>---a a x x a x 且变式1:解关于x 的不等式)(0)()(2R a a x a x ∈<--例2. 解关于x 的不等式)(12)1(R a x x a ∈>--变式2:解关于x 的不等式0)2)(2(>--ax x题型二:含参不等式与集合运算例1设R B A B A a x x B x x A =∅=≤-=>-= ,},1|2||{},1|12||{,求实数a 的值.变式1:已知集合}02|{2≤--∈=x x R x A ,}3|{+<<∈=a x a R x B 且∅=B A ,则实数a 的取值范围是题型三:不等式的恒成立问题例1若不等式03)1(4)54(22>+---+x a x a a 对一切R x ∈恒成立,求a 的取值范围变式1:设关于x 的不等式04)2(2)2(2<--+-x x x a 的解集为R ,求a 的取值范围例2若a x x >+--|5||2|恒成立,则实数a 的取值范围是____________ _________变式2:若不等式a x x ≤++-|3||4|的解集为空集,则实数a 的取值范围是三、巩固练习1.若不等式)0(02≠<++a a x ax 无解,则a 的取值范围是( )2121.≥-≤a a A 或 21.<a B 2121.≤≤-x C 21.≥a D 2.设集合}044|{},01|{2恒成立对任意实数x mx mxR m Q m m P <-+∈=<<-=,则下列关系式中成立的是( )Q P A ⊂.Q P B =. P Q C ⊂. ∅=Q P D .3.已知0>a ,不等式a x x <-+-|3||4|在实数集R 上的解集不是空集,则正实数a 的取值范围是4.若不等式a x x >++-|3||4|的解集为R ,则实数a 的取值范围是5.设}25|{,},03|{},0325|{2≤<-=∅=≤++=<-+=x x B A B A ax x x B x x x A ,则实数a 的值为6.解关于的不等式01>--x a x7解关于x 的不等式)0(02≠<-a x ax。
含参数的不等式的解法

含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。
常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。
如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。
2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。
对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。
对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。
3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。
对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。
对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。
步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。
根据参数的不同取值情况,采用不同的解法。
1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。
-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。
2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。
-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。
3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。
步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。
含参不等式的解法教案

含参不等式的解法教案一、教学目标1. 让学生掌握含参数的不等式的解法,提高解题能力。
2. 培养学生分析问题、解决问题的能力,提高学生的数学思维水平。
3. 通过教学,使学生能够运用含参数的不等式解法解决实际问题。
二、教学内容1. 含参数不等式的概念及特点。
2. 含参数不等式的解法:图像法、代数法、不等式组法等。
3. 典型例题解析及练习。
三、教学重点与难点1. 教学重点:含参数不等式的解法及应用。
2. 教学难点:含参数不等式解法在实际问题中的应用。
四、教学方法1. 采用讲授法、示范法、练习法、讨论法等相结合的教学方法。
2. 利用多媒体辅助教学,直观展示含参数不等式的解法过程。
3. 组织学生进行小组合作学习,培养学生的团队协作能力。
五、教学过程1. 导入新课:复习相关知识点,如不等式的概念、性质等,引出含参数不等式。
2. 讲解含参数不等式的解法:a) 图像法:通过绘制不等式的图像,找出解集。
b) 代数法:运用不等式的性质,求解含参数的不等式。
c) 不等式组法:将多个含参数的不等式组合起来,求解公共解集。
3. 典型例题解析:分析例题,引导学生运用所学解法解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结与反思:对本节课的内容进行总结,提醒学生注意解题中可能出现的问题。
6. 课后作业:布置课后作业,巩固所学知识。
六、教学评价1. 评价目标:检查学生对含参数不等式解法的掌握程度以及解决实际问题的能力。
2. 评价方法:课堂练习、课后作业、小组讨论、个人总结等。
3. 评价内容:a) 学生能理解含参数不等式的概念及特点。
b) 学生能运用图像法、代数法、不等式组法等解法解决含参数不等式问题。
c) 学生能将所学知识应用于实际问题,提高问题解决能力。
七、教学反思1. 教师应在课后对教学效果进行反思,分析学生的反馈意见,调整教学方法及内容。
2. 关注学生在解题过程中的困难,针对性地进行辅导,提高学生的解题技巧。
含参方程与不等式求解

含参方程与不等式求解在数学中,含参方程与不等式是常见的数学问题类型,需要通过一定的方法来解决。
本文将介绍含参方程与不等式的求解方法,帮助读者更好地理解和应用这些知识点。
一、含参方程的求解方法含参方程是指方程中含有未知参数的方程,通过改变参数的值可以得到不同的解。
常见的含参方程有一元一次方程、一元二次方程等。
1. 一元一次方程的求解方法一元一次方程的一般形式为ax + b = 0,其中a和b为已知常数,x 为未知数。
将方程进行变形,可得到x = -b/a。
根据这个公式,可以通过给定的参数值计算出方程的解。
举例说明:对于方程3x + 5 = 0,将参数3代入公式中,可得到x = -5/3。
同理,对于参数为2的情况,解为x = -5/2。
2. 一元二次方程的求解方法一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,x为未知数。
通过求解方程的根可以得到方程的解。
常用的求解一元二次方程的方法有公式法和配方法。
公式法:根据一元二次方程的求解公式x = (-b ± √(b^2 - 4ac))/(2a),我们可以通过给定的参数值计算出方程的解。
配方法:对于一些特殊的一元二次方程,可以通过将其转化为完全平方的形式来求解。
具体的配方法需要根据具体的方程形式进行操作。
举例说明:对于方程x^2 + 3x + 2 = 0,根据公式法,可以得到x = -1和x = -2为其解。
二、含参不等式的求解方法含参不等式是指不等式中含有未知参数的不等式,通过改变参数的值可以得到不同的解。
常见的含参不等式有一元一次不等式、一元二次不等式等。
1. 一元一次不等式的求解方法一元一次不等式的一般形式为ax + b > 0(或<、≥、≤),其中a和b为已知常数,x为未知数。
通过确定不等式的区间可以得到不等式的解。
举例说明:对于不等式3x + 5 > 0,当参数3代入时,解为x > -5/3;当参数2代入时,解为x > -5/2。
初一下册不等式含参

初一下册不等式含参初一下册不等式含参一、引言不等式是数学中的一个重要概念,通过不等式我们可以研究数的大小关系。
在初一下册数学学习中,我们接触到了不等式含参这个新的概念。
不等式含参的学习,不仅可以提高我们的逻辑思维能力,还能够帮助我们理解和解决实际问题。
二、基本概念不等式含参是指在不等式中含有带有参数的表达式。
参数是不确定的数,可以取不同的值,从而使得不等式的解集发生变化。
例如,不等式 |2x - 3| > a 可以称为一个不等式含参,其中 x 是参数,a是给定常数。
当我们确定了不同的 a 值时,不等式的解集也会随之改变。
三、解决方法解决不等式含参的问题,一般需要进行以下几个步骤:1. 化简:首先,我们需要对不等式进行化简,将其转化为简洁的形式。
例如,使用绝对值不等式的性质,可以将 |2x - 3| > a 化简为 2x - 3 > a 或者 2x - 3 < -a。
2. 分类讨论:根据化简得到的不等式,我们可以将其分成几种情况进行讨论。
例如,当 a > 0 时,将 2x - 3 > a 分成 x > (a+3)/2 和 x < (3-a)/2 两种情况。
3. 求解:接下来,我们需要解决每个分类讨论中的不等式。
通过运用代数运算和性质,将不等式化简为 x 的区间表示形式。
例如,在第一种情况 x > (a+3)/2 中,可以化简为 x > (a+3)/2。
4. 综合解集:最后,我们需要将每个分类的解集综合起来,得到不等式含参的解集。
综合解集时,需要考虑各个分类的交集或并集。
四、应用示例不等式含参可以帮助我们解决许多实际问题。
例如,在经济学中,我们可以利用不等式含参来分析商品价格的涨跌幅度。
在生活中,我们可以通过不等式含参来研究食品或药品的安全问题。
五、总结初一下册不等式含参是一个重要的数学概念,在我们的学习中扮演着重要的角色。
通过学习不等式含参,我们可以锻炼逻辑思维能力,理解和解决实际问题。
解答含参不等式问题常用的几种方法

考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。
求解含参不等式恒成立问题的几个“妙招”

乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸思路探寻含参不等式恒成立问题的常见命题形式有:(1)证明含参不等式恒成立;(2)在确保某个含参不等式恒成立的情况下,求参数的取值范围;(3)在已知变量的约束条件的情况下,求含参不等式中参数的取值范围.含参不等式恒成立问题具有较强的综合性,其解法灵活多变,常常令考生头疼不已.对此,笔者将结合实例,介绍求解含参不等式恒成立问题的几个“妙招”.一、分离参数分离参数法是求解含参不等式恒成立问题的常用方法,该方法适用于求参数和变量可分离的情形.运用分离参数法解题的一般步骤为:1.根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;2.将含有变量一侧的式子当成一个函数,判断出函数的单调性,并根据函数的单调性求出函数在定义域内的最值;3.将问题进行等价转化,建立新的不等式,如将a ≥f (x )恒成立转化为a ≥f (x )max ;将a ≤f (x )恒成立转化为a ≤f (x )min .例1.已知函数f (x )=1+ln xx,当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围.解:由f (x )≥k x +1,得1+ln x x ≥k x +1,将其变形可得(x +1)(1+ln x )x≥k ,设g (x )=(x +1)(1+ln x )x,则g ′(x )=[(x +1)(1+ln x )]′·x -(x +1)(1+ln x )x 2=x -ln xx 2,令h (x )=x -ln x ,则h ′(x )=1-1x,当x ≥1时,h ′(x )≥0,所以函数h (x )在[)1,+∞上单调递增,所以h (x )min =h (1)=1>0,从而可得g ′(x )>0,故函数g (x )在[)1,+∞上单调递增,所以g (x )min =g (1)=2,因此k 的取值范围为k ≤2.观察不等式1+ln x x ≥k x +1,发现参数k 可以从中分离出来,于是采用分离参数法,先将参数、变量分离,使不等式变形为(x +1)(1+ln x )x≥k ;再构造函数g (x ),对其求导,根据导函数与函数的单调性判断出函数的单调性,即可求出g (x )在x ∈[)1,+∞上的最小值,使k ≤g (x )min ,即可得到实数的取值范围.通过分离参数,便将含参不等式恒成立问题转化为函数最值问题来求解,这样便可直接利用函数的单调性来解题.二、数形结合数形结合法是解答数学问题的重要方法.在解答含参不等式问题时,将数形结合起来,可有效地提升解题的效率.有些含参不等式中的代数式为简单基本函数式、曲线的方程、直线的方程,此时可根据代数式的几何意义,画出相应的几何图形,通过研究函数图象、曲线、直线、点之间的位置关系,确定临界的情形,据此建立新不等式,从而求得参数的取值范围.例2.已知f (x )=ìíî3x +6,x ≥-2,-6-3x ,x <-2,若不等式f (x )≥2x -m 恒成立,求实数m 的取值范围.解:由题意可设g (x )=2x -m ,则函数g (x )、f (x )的图象如图所示.要使对任意x ,f (x )≥g (x )恒成立,则需使函数f (x )的图象恒在g (x )图象的上方,由图可知,当x =-2时,f (x )的图象与g (x )的图象有交点,而此时函数f (x )取最小值,即f (-2)=0,因此,只需使g (-2)=-4-m ≤0,解得m ≥-4.故实数m 的取值范围为m ≥-4.函数f (x )与g (x )都是常见的函数,容易画出其图象,于是采用数形结合法,画出两个函数的图象,将问题转化为函数f (x )的图象恒在g (x )图象的上方时,求参数的取值范围.运用数形结合法求解含参不等式恒成立问题,需将数形结合起来,将问题进行合理的转化,如若对∀x ∈D ,f (x )<g (x )恒成立,则需确保函数f (x )的图象始终在g (x )的下方;若对∀x ∈D ,f (x )>g (x )恒成47立,则确保函数f(x)的图象始终在的上方即可.三、变更主元我们常常习惯性地将x看成是主元,把参数看成辅元.受定式思维的影响,在解题的过程中,我们有时会陷入解题的困境,此时不妨换一个角度,将参数视为主元,将x看作辅元,通过变更主元,将问题转化为关于新主元的不等式问题,这样往往能够取得意想不到的效果.例3.对任意p∈[-2,2],不等式(log2x)2+p log2x+1> 2log2x+p恒成立,求实数x的取值范围.解:将不等式(log2x)2+p log2x+1>2log2x+p变形,得:p(log2x-1)+(log2x)2-2log2x+1>0,设f(p)=p(log2x-1)+(log2x)2-2log2x+1,则问题等价于对任意p∈[-2,2],f(p)>0恒成立,由于f(p)是关于p的一次函数,所以要使不等式恒成立,只需使ìíîf(-2)=-2(log2x-1)+(log2x)2-2log2x+1>0, f(2)=2(log2x-1)+(log2x)2-2log2x+1>0,解得:x>8或0<x<12,故实数x的取值范围为x>8或0<x<12.若将x当成主元进行求解,那么解题的过程将会非常繁琐.由于已知p的取值范围,要求满足不等式条件的实数x的取值范围,所以考虑采用变更主元法,将p看成是主元,构造关于p的一次函数,根据函数的图象建立使不等式恒成立的不等式组,即可求出实数x的取值范围.通过变更主元,便可从新的角度找到解题的思路,从而化难为易.四、分类讨论当不等式左右两边的式子较为复杂,且含有较多的不确定因素时,就需采用分类讨论法来解题.用分类讨论法求解含参不等式恒成立问题,需先确定哪些不确定因素会对参数的取值有影响;然后将其作为分类的对象,并确定分类的标准,对每一种情形进行分类讨论;最后综合所有的结果,就可以得到完整的答案.例4.已知f(x)=x|x-a|-2,若当x∈[0,1]时,恒有f(x)<0成立,求实数a的取值范围.解:①当x=0时,f(x)=-2<0,不等式显然成立,此时,a∈R;②当x∈(0,1]时,由f(x)<0,可得x-2x<a<x+2x,令g(x)=x-2x,h(x)=x+2x,则g′(x)=1+2x2>0,可知g(x)为单调递增函数,因此g(x)max=g(1)=-1;则h′(x)=1-2x2<0,可知h(x)为单调递减函数,因此h(x)min=h(1)=3,此时-1<a<3.综上可得,实数a的取值范围为-1<a<3.本题的函数式中含有绝对值,需对x的取值进行分类讨论,即分为x=0和x∈(0,1]这两种情况进行讨论,建立使不等式恒成立的关系,如当x∈(0,1]时,需使æèöøx-2x max<a<æèöøx+2x min,即可解题.五、利用判别式法判别式法通常只适用于求解二次含参数不等式恒成立问题.运用该方法解题的一般步骤为:首先根据不等式的特点构造一元二次方程;然后运用一元二次方程的判别式对不等式恒成立的情形进行讨论、研究;最后得出结论.一般地,对于二次函数f(x)=ax2+bx+c (a≠0,x∈R),有:(1)若对任意x∈R,f(x)>0恒成立,则ìíîa>0,Δ=b2-4ac<0;(2)对任意x∈R,f(x)<0恒成立,则{a<0,Δ=b2-4ac<0.例5.设f(x)=x2-2mx+2,当x∈[-1,+∞)时,f(x)≥m 恒成立,求实数m的取值范围.解:设F(x)=x2-2mx+2-m,令x2-2mx+2-m=0,则Δ=4m2-4(2-m),当Δ≤0,即-2≤m≤1时,F(x)≥0显然恒成立;当Δ=4m2-4(2-m)>0时,F(x)≥0恒成立的充要条件为:ìíîïïïïΔ>0,F(-1)≥0,--2m2<-1,解得:-3≤m<-2,所以实数m的取值范围为-3≤m≤1.运用判别式法求解含参二次不等式恒成立问题,关键是确保在定义域范围内,二次函数F(x)的图象恒在x轴的上方或下方,根据方程F(x)=0无解,建立关于判别式的关系式.本文介绍了几种求解含参不等式恒成立问题的方法,这些方法的适用情形各不相同.但不论采用何种方法,都要对问题进行具体的分析,针对实际情况,选用最恰当的方法,才能达到事半功倍的效果.(作者单位:广东省东莞市第一中学)思路探寻48。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数的一元二次不等式的解法
含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一. 二次项系数为常数
例1、解关于x 的不等式:0)1(2>--+m x m x
解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)
(1)当1<-m 即m<-1时,解得:x<1或x>-m
(2)当1=-m 即m=-1时,不等式化为:0122
>+-x x ∴x ≠1
(3)当1>-m 即m>-1时,解得:x<-m 或x>1
综上,不等式的解集为:
(){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当
(){}1-|,13><->x m x x m 或时当
例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解) 解:()a a 422--=∆ (方程有没有根,取决于谁?)
()()R a a a 时,解集为即当32432404212+<<-<--=∆
()()32432404222+=-==--=∆a a a a 或时当
(i )13324-≠-=x a 时,解得:当
(ii )13-324-≠+=x a 时,解得:当
()()时或即当32432
404232+>-<>--=∆a a a a 两根为()242)2(21a
a a x --+-=,()242)2(22a a a x ----=
. ()()242)2(242)2(22a a a x a
a a x --+->----<或此时解得:
综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,2
48)2(2a a a ); 二.二次项系数含参数
例3、解关于x 的不等式:.01)1(2<++-x a ax
解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式a
x x a x 1
0)1)(1(<⇔>--⇔或.1>x
若0>a ,原不等式.0)1)(1(<--⇔x a
x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;
(2)当1>a 时,式)(*11<<⇔
x a
; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为:
①当0<a 时,{11
><x a x x 或};
②当0=a 时,{1>x x };
③当10<<a 时,{a x x 1
1<<};
④当1=a 时,φ;
⑤当1>a 时,{11
<<x a x }.
例4、解关于x 的不等式:.012<-+ax ax
解:.012<-+ax ax
(1)当0=a 时,.01R x ∈∴<-原式可化为
(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,a a
a a x 2422+--=.
解得:a a
a a 242+--a a
a a x 242++-<<
(3)当a<0时, 原式可化为:01
2>-+a x x
a a 4
+=∆此时
①当0<∆即04<<-a 时,解集为R ;
②当0=∆即4-=a 时,解得:21
-≠x ;
③当0>∆即4-<a 时解得:或a a a a x 242+-->a
a
a a x 242
++-<
综上,(1)当0>a 时,解集为(a a a a 242+--,a a
a a 242++-);
(2)当04≤<-a 时,解集为R ;
(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,2
1);
(4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242a a a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如:
解关于x 的不等式:033)1(22>++-ax x a
解:033)1(22>++-ax x a )(*
1012=⇒=-a a 或1-=a ;
203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;
∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;
当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);
当12-<<-a 时,012>-a 且0>∆,
)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);
当11<<-a 时,012<-a 且0>∆,
)(*解集为(22312322----a a a ,2
2312322
--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);
当21<<a 时,012>-a 且0>∆,
)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);
当2>a 时,012>-a 且0<∆,)(*解集为R .
综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1); 当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,2
2312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).
通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。