含参不等式的解法

合集下载

初二-含参不等式以及含参不等式组的解法

初二-含参不等式以及含参不等式组的解法

35狮子和山羊35狮子和山羊35 狮子和山羊(第一课时)1、在语境中正确认读“狮、央、呆、恭、伐、徒”六个生字;结合字形和字义,重点识记“狮、恭、徒”的字形。

运用各种方法理解并积累“中央、对付、恭敬、信徒” 等词语。

2、正确朗读课文,并根据课文内容,读出狮子和山羊对话时的不同语气。

3、能在老师的引导下边读边思、提出问题,并联系课文内容或课外资料解决问题。

4、能在熟读课文的基础上,同伴合作演一演老山羊智斗狮子的过程,感受山羊的沉着冷静、机智勇敢。

一、训练引入,揭示课题1、拼读词语:shī zi,随机复习整体认读音节,识记“狮”。

2、说话练习,说说狮子和山羊给人的印象①用一个词来说说狮子给你留下的印象。

②板书:山羊说说山羊又给你怎样的印象?3、补齐课题,齐读课题师:看到这样的课题,我们就知道课文讲述的是发生在狮子和山羊之间的故事,这还是一个印度的寓言故事。

二、整体感知课文,理清文章脉络1、出示句子:天渐渐地黑了,一只迷路的老山羊跑到附近的一个山洞去藏身。

(1)指名读句出示词卡:藏身,正音(2)引读,了解故事的起因2、结合课文,说说老山羊遇到的危险(1)交流出示:她刚跑进山洞,就发现有一只狮子正坐在山洞中央。

(2) 借助简笔画理解“中央”,感知老山羊身陷险境师:齐读“中央”。

中央的意思就是——(生:中间),一只迷路的老山羊跑到山洞去藏身(画山洞),没想到刚进洞,就发现(指板书)——狮子正坐在山洞中间,狮子跑得可快了,而且这又是一只——老山羊,根本就——(逃不了)。

师:啊呀,情况危险!(画惊叹号)让我们一起读好这句句子。

3、了解故事的结局师:看来这只老山羊凶多吉少,那么故事的结果是怎样的呢?翻到课文结尾找找。

出示句子:这时候,老山羊快速地溜出山洞,逃出了狮子的爪牙。

★ 正音:爪牙zhǎo(解释为鸟兽的脚趾时念zhǎo)师:最后山羊竟然在狮子的眼皮底下,溜出了山洞,逃出了狮子的爪牙。

板书:溜出逃出4、结合板书,提出问题预设:山羊怎么逃出狮子的爪牙的呢?5、小组形式读课文四人小组合作读,两个小朋友读1-6节,另两个读7-12节,然后小组讨论一下,为什么这么读?6、交流,分清两次遇险的经过第一次是老山羊和狮子,第二次是老山羊、狮子和豺狗。

第2章含参不等式(教案)

第2章含参不等式(教案)
2.教学难点
(1)含参不等式的图像法:对于一元二次含参不等式,学生需通过图像来理解不等式的解集,这对学生的直观想象能力要求较高。
举例:x^2 - 2ax + a^2 > 0,通过图像分析解集。
(2)含参不等式的证明:学生需要掌握不等式的证明方法,如比较法、综合法、分析法等,这要求学生具备较强的逻辑推理能力。
我反思自己在教学难点和重点的讲解上,可能需要更多的例子和练习来帮助学生巩固。特别是在含参不等式的证明部分,学生们似乎对逻辑推理的要求感到有些困惑。我考虑在下一节课中,引入更多的直观图形和实际情境,以帮助学生们更好地理解证明的步骤和逻辑。
此外,我也认识到在总结回顾环节,我需要更加强调对知识点的整合和应用。学生们需要明白,含参不等式的学习不仅仅是为了解决数学题目,更是为了培养解决实际问题的能力。
3.重点难点解析:在讲授过程中,我会特别强调一元一次含参不等式和一元二次含参不等式的解法这两个重点。对于难点部分,如图像法和判别式法,我会通过具体的例子和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与含参不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制一元二次不等式的图像,以演示其基本原理。
二、核心素养目标
1.理解含参不等式的概念,掌握其基本性质,培养数学抽象和逻辑推理能力;
2.学会一元一次和一元二次含参不等式的解法,提高问题解决能力和数学运算能力;
3.能够运用图像法、判ห้องสมุดไป่ตู้式法等方法解决含参不等式问题,增强直观想象和数学建模能力;
4.通过含参不等式的实际应用,提升数学在实际生活中的应用意识,培养数学素养;
在实践活动中,学生们分组讨论并展示了他们的成果,这部分的互动让我看到了他们的合作精神和解决问题的能力。不过,我也观察到,在讨论含参不等式在实际生活中的应用时,有些学生还是比较拘谨,可能是因为他们对这些概念还不够熟悉,或者是不太敢将自己的想法表达出来。

含参不等式解法

含参不等式解法

含参不等式题型一:解含参不等式例1解关于x 的不等式)2,1(0)2()1)((≠≠>---a a x x a x 且变式1:解关于x 的不等式)(0)()(2R a a x a x ∈<--例2. 解关于x 的不等式)(12)1(R a x x a ∈>--变式2:解关于x 的不等式0)2)(2(>--ax x题型二:含参不等式与集合运算例1设R B A B A a x x B x x A =∅=≤-=>-= ,},1|2||{},1|12||{,求实数a 的值.变式1:已知集合}02|{2≤--∈=x x R x A ,}3|{+<<∈=a x a R x B 且∅=B A ,则实数a 的取值范围是题型三:不等式的恒成立问题例1若不等式03)1(4)54(22>+---+x a x a a 对一切R x ∈恒成立,求a 的取值范围变式1:设关于x 的不等式04)2(2)2(2<--+-x x x a 的解集为R ,求a 的取值范围例2若a x x >+--|5||2|恒成立,则实数a 的取值范围是____________ _________变式2:若不等式a x x ≤++-|3||4|的解集为空集,则实数a 的取值范围是三、巩固练习1.若不等式)0(02≠<++a a x ax 无解,则a 的取值范围是( )2121.≥-≤a a A 或 21.<a B 2121.≤≤-x C 21.≥a D 2.设集合}044|{},01|{2恒成立对任意实数x mx mxR m Q m m P <-+∈=<<-=,则下列关系式中成立的是( )Q P A ⊂.Q P B =. P Q C ⊂. ∅=Q P D .3.已知0>a ,不等式a x x <-+-|3||4|在实数集R 上的解集不是空集,则正实数a 的取值范围是4.若不等式a x x >++-|3||4|的解集为R ,则实数a 的取值范围是5.设}25|{,},03|{},0325|{2≤<-=∅=≤++=<-+=x x B A B A ax x x B x x x A ,则实数a 的值为6.解关于的不等式01>--x a x7解关于x 的不等式)0(02≠<-a x ax。

含参数的不等式的解法

含参数的不等式的解法

含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。

常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。

如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。

2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。

对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。

对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。

3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。

对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。

对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。

步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。

根据参数的不同取值情况,采用不同的解法。

1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。

-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。

2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。

-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。

3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。

步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。

含参不等式的解法教案

含参不等式的解法教案

含参不等式的解法教案一、教学目标1. 让学生掌握含参数的不等式的解法,提高解题能力。

2. 培养学生分析问题、解决问题的能力,提高学生的数学思维水平。

3. 通过教学,使学生能够运用含参数的不等式解法解决实际问题。

二、教学内容1. 含参数不等式的概念及特点。

2. 含参数不等式的解法:图像法、代数法、不等式组法等。

3. 典型例题解析及练习。

三、教学重点与难点1. 教学重点:含参数不等式的解法及应用。

2. 教学难点:含参数不等式解法在实际问题中的应用。

四、教学方法1. 采用讲授法、示范法、练习法、讨论法等相结合的教学方法。

2. 利用多媒体辅助教学,直观展示含参数不等式的解法过程。

3. 组织学生进行小组合作学习,培养学生的团队协作能力。

五、教学过程1. 导入新课:复习相关知识点,如不等式的概念、性质等,引出含参数不等式。

2. 讲解含参数不等式的解法:a) 图像法:通过绘制不等式的图像,找出解集。

b) 代数法:运用不等式的性质,求解含参数的不等式。

c) 不等式组法:将多个含参数的不等式组合起来,求解公共解集。

3. 典型例题解析:分析例题,引导学生运用所学解法解决问题。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结与反思:对本节课的内容进行总结,提醒学生注意解题中可能出现的问题。

6. 课后作业:布置课后作业,巩固所学知识。

六、教学评价1. 评价目标:检查学生对含参数不等式解法的掌握程度以及解决实际问题的能力。

2. 评价方法:课堂练习、课后作业、小组讨论、个人总结等。

3. 评价内容:a) 学生能理解含参数不等式的概念及特点。

b) 学生能运用图像法、代数法、不等式组法等解法解决含参数不等式问题。

c) 学生能将所学知识应用于实际问题,提高问题解决能力。

七、教学反思1. 教师应在课后对教学效果进行反思,分析学生的反馈意见,调整教学方法及内容。

2. 关注学生在解题过程中的困难,针对性地进行辅导,提高学生的解题技巧。

含参不等式组问题

含参不等式组问题

含参不等式组问题在数学中,含参不等式组是指一组包含参数的不等式。

这些参数可以是任意实数,通常用来表示问题中的变量或未知数。

含参不等式组的解集通常是关于参数的表达式,通过对参数的取值范围进行分析可以得到不等式组的解集。

对于含参不等式组的求解,通常需要进行以下步骤:1. 分析每个不等式的条件:首先,需要确定每个不等式的条件,即参数的取值范围。

这可以通过对不等式进行化简和变形来获得。

例如,对于形如ax + b > c的不等式,可以将其转化为ax > c - b,然后根据a的正负性确定参数x的取值范围。

2. 求解每个不等式的解集:根据不等式的条件,可以确定每个不等式的解集。

这可以通过绘制数轴图或使用数值法来确定。

例如,对于形如ax + b > c的不等式,可以绘制一个数轴,然后根据a的正负性确定参数x的解集。

3. 综合每个不等式的解集:最后,需要根据每个不等式的解集,确定整个不等式组的解集。

这可以通过对每个不等式的解集进行交集或并集运算来获得。

例如,如果有两个不等式ax + b > c和dx + e < f,可以通过求解这两个不等式的解集,然后取交集来确定不等式组的解集。

含参不等式组在实际问题中的应用非常广泛。

例如,在经济学中,含参不等式组可以用来表示供求关系,帮助决策者制定合理的价格和数量策略。

在物理学中,含参不等式组可以用来描述力学系统的平衡条件,帮助研究者找到系统的稳定解。

总之,含参不等式组是数学中一个重要的概念,在解决实际问题中起着重要的作用。

通过对不等式的条件和解集进行分析,可以得到含参不等式组的解集,从而对问题进行求解和分析。

解答含参不等式问题常用的几种方法

解答含参不等式问题常用的几种方法

考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。

含参分式不等式的解法

含参分式不等式的解法

含参分式不等式的解法含参分式不等式,这听起来就像数学中的一块“硬骨头”,但是别担心,今天咱们就轻松聊聊,绝对让你觉得这事儿没那么复杂。

你知道的,生活中就像做饭,调味料用得对了,味道自然就好。

含参分式不等式的核心就是那些“分母”里有变数的表达式,它们像一个个小魔法师,时不时地变换着自己的形态。

想象一下,你在河边钓鱼,突然一条大鱼游了过来,你得快速反应,这就是你对分式不等式的处理。

就拿一个简单的例子说吧。

假设我们有一个不等式,看起来像是(frac{x+2{x1 > 0),这时候首先要注意的是分母不能为零,简直是个“红灯区”,必须绕过去。

把 (x1=0) 解出来,得到 (x=1),这时候就得小心了,1这个数要在后面特别标记好,像是给自己打个警告牌。

我们就要看看这个不等式到底在什么情况下成立。

想象一下,咱们可以把数轴拿出来,标记一下关键点,分成几段。

然后,我们就得在每一段上试试“水温”。

比方说,如果我们把x 选在小于1的地方,比如0,带进不等式,结果是正数,咱们可以大声欢呼!换个地方,比如2,带进去后发现结果也是正数。

哈哈,真是稳稳的幸福!可是,别忘了,虽然 x=1 的时候不等式是个“空谈”,但它两边的值也得是我们不等式的“通行证”,一旦碰到分母为零的情况,立马就得停下来。

这就像你在公路上开车,碰到红灯,必须停车,绝对不能闯红灯。

含参分式不等式还有个妙处,那就是它们可能有不同的解集。

想象一下,你在聚会上,看到一群老朋友,每个人都有自己的故事,有的开朗,有的内向。

我们处理这些不等式,就像是在听不同的故事。

每个故事的结局都可能不一样,但它们都有一个共同点:要经过“检验”。

对不等式来说,检验就是看数值代入的结果。

别着急,接下来的部分更有趣。

举个更复杂的例子,假设你碰到的是 (frac{x^2 4{x + 1 < 0)。

这可就考验你的“反应能力”了!首先得把分子分解成((x2)(x+2)),这下子可劲儿发挥了!同样,把分母的“状态”也搞清楚,绝对不能有零,得仔细处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参数的一元二次不等式的解法
含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。

一. 二次项系数为常数
例1、解关于x 的不等式:0)1(2>--+m x m x
解:原不等式可化为:(x-1)(x+m )>0(两根是1和-m ,谁大?)
(1)当1<-m 即m<-1时,解得:x<1或x>-m
(2)当1=-m 即m=-1时,不等式化为:0122
>+-x x ∴x ≠1
(3)当1>-m 即m>-1时,解得:x<-m 或x>1
综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11
(){}1|,12≠-=x x m 时当
(){}1-|,13><->x m x x m 或时当
例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解) 解:()a a 422--=∆(方程有没有根,取决于谁?)
()()R a a a 时,解集为即当32432404212+<<-<--=∆
()()32432
404222+=-==--=∆a a a a 或时当
(i )13324-≠-=x a 时,解得:当
(ii )13-324-≠+=x a 时,解得:当
()()时或即当32432
404232+>-<>--=∆a a a a 两根为()242)2(21a a a x --+-=
,()242)2(22a a a x ----=. ()()242)2(242)2(22a
a a x a
a a x --+->----<或此时解得:
综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,2
48)2(2a a a ); 二.二次项系数含参数
例3、解关于x 的不等式:.01)1(2<++-x a ax
解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式a
x x a x 1
0)1)(1(<⇔>--⇔或.1>x
若0>a ,原不等式.0)1)(1(<--⇔x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;
(2)当1>a 时,式)(*11<<⇔
x a
; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为:
①当0<a 时,{11><x a x x 或};
②当0=a 时,{1>x x };
③当10<<a 时,{a x x 11<<};
④当1=a 时,φ;
⑤当1>a 时,{11<<x a
x
}.
例4、解关于x 的不等式:.012<-+ax ax
解:.012<-+ax ax
(1)当0=a 时,.01R x ∈∴<-原式可化为
(2)当0>a 时,此时a a 42+=∆>0 两根为a a a a x 2421++-=,a
a a a x 2422+--=. 解得:a a a a 242+--a a a a x 242++-<< (3)当a<0时,原式可化为:012>-+a
x x
a a 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ;
②当0=∆即4-=a 时,解得:2
1-≠x ;
③当0>∆即4-<a 时解得:或a a a a x 242+-->a
a a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,a a a a 242++-); (2)当04≤<-a 时,解集为R ;
(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,2
1);
(4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242a a a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如:
解关于x 的不等式:033)1(22>++-ax x a
解:033)1(22>++-ax x a )(*
1012=⇒=-a a 或1-=a ;
203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;
∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;
当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);
当12-<<-a 时,012>-a 且0>∆,
)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);
当11<<-a 时,012<-a 且0>∆,
)(*解集为(22312322----a a a ,2
2312322
--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);
当21<<a 时,012>-a 且0>∆,
)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);
当2>a 时,012>-a 且0<∆,)(*解集为R .
综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1); 当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,2
2312322
a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,2
2312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).
通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。

相关文档
最新文档