含参不等式(有解、无解问题)(人教版)含答案
含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分)1.若不等式组的解集为,则m的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:含参不等式(组)2.若关于x的不等式组有解,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含参不等式(组)3.若不等式组有解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)4.若关于x的不等式组有解,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含参不等式(组)5.若关于x的不等式组有解,则a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:含参不等式(组)6.关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)7.若关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)8.已知关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:含参不等式(组)9.若关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)10.若关于x的不等式组无解,则m的取值范围是( )A. B.C. D.答案:B解题思路:。
不等式组专题之含参问题

不等式组专题——含参问题一、【知识回顾】不等式解集的表示方法:(1)用不等式表示:如5x>10的解集是x>2,它的解集仍是一个不等式,这种表示法简单明了,容易知道哪些数不是原不等式的解。
(2)用数轴表示:它的优点是数形结合、直观形象,尤其是在解较复杂的不等式或解不等式组时,易于找到正确的答案。
在数轴上表示不等式的解集时,要注意:当解集包括端点时,在端点处画实心圆圈,否则,画空心圆圈。
二、【课前热身】1,已知关于x 的不等式()13a x -≥的解集是31x a≤-,则a 的取值范是__________.2,关于x 的不等式组11x ax b -<⎧⎨+>⎩的解集是01x <<,则a b +=___________.3,在方程组2122x y mx y +=-⎧⎨+=⎩中,若未知数x 、y 满足0x y +>,则m 的取值范围为4,如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <三、【典例讲解】题型一:含参不等式组有解/无解问题 例1:1,若不等式组⎪⎩⎪⎨⎧><-mx x 0121有解,则m 的取值范围是( )A.m>2B.m<2C.m≥2D.m≤22,若不等式组⎩⎨⎧>->+m x x x 148无解,则m 的取值范围 .3,若不等式组有解,则a 的取值范围是 .4,若关于x 的一元一次不等式组⎩⎨⎧>+<-7203m x m x 无解,则m 的取值范围为( )A.57≤mB.57>mC.57->mD.57-≤m题型二:含参不等式组整数解问题例2:1,若关于x 的不等式3<x<a 有3个整数解,则a 的取值范围是( )A.5≤a<6B.5<a≤6C.6<a≤7D.6≤a<72,若关于x 的不等式组⎩⎨⎧≥<-11x a x 的整数解有3个,则a 的取值范围是( )A.3<a ≤4B.2<a ≤3C.2≤a <3D.3≤a <43,关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围是 。
含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)含答案含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分)1.若不等式组的解集为,则m的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:含参不等式(组)2.若关于x的不等式组有解,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含参不等式(组)3.若不等式组有解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)4.若关于x的不等式组有解,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含参不等式(组)5.若关于x的不等式组有解,则a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:含参不等式(组)6.关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)7.若关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)8.已知关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:含参不等式(组)9.若关于x的不等式组无解,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:含参不等式(组)10.若关于x的不等式组无解,则m的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:含参不等式(组)第11页共11页。
含参不等式取等问题规律

含参不等式取等问题规律含参不等式取等问题规律:在含参不等式中,参数的取值会影响不等式取等号的条件。
当不等式中的参数满足特定条件时,不等式可以取到等号;否则,不等式不能取到等号。
嘿,朋友们!今天咱们要一起来探索一个有点神秘但超级有趣的数学领域——含参不等式取等问题规律。
想象一下,含参不等式就像是一个神秘的魔法盒子,而参数就是那把能打开盒子并决定里面宝贝如何分配的神奇钥匙。
参数在这个魔法盒子里可调皮啦,它总是神出鬼没,影响着不等式取等号的情况。
比如说,参数就像一个挑剔的裁判员,只有当相关条件都满足了,它才会允许不等式取到等号,就好像在一场比赛中,只有运动员完全符合规则,才能获得冠军一样。
咱们来个具体的例子感受一下。
比如不等式:ax + b < c (a 不为0)。
如果我们要让这个不等式能取到等号,那参数 a、b、c 就得按照一定的“规则跳舞”。
假设 a = 2,b = 1,c = 5,那么不等式就是 2x + 1 < 5。
解这个不等式,我们得到 x < 2。
这时候,假如我们想让它能取到等号,比如变成2x + 1 ≤ 5,那么 x 就可以等于 2 啦。
再举个生活中的例子,就像你去超市买东西,手里的钱就是参数。
假如你只有 100 元(这就是参数的值),商品的价格和你想买的数量就构成了不等式。
如果价格太高或者你想买的太多,不等式就不成立,你钱不够买不了;只有价格和数量恰到好处,不等式才能取到等号,你刚好能把想买的东西买回家。
从科学研究的角度来看,含参不等式取等问题在很多领域都有重要应用呢。
比如在工程设计中,工程师们要根据各种参数来确定某个设计方案是否可行,这时候含参不等式取等问题就能大显身手啦。
总结一下,含参不等式取等问题规律虽然有点复杂,但只要我们掌握了其中的诀窍,就能像解开神秘密码一样,轻松应对各种数学难题。
它在我们的日常生活和科学研究中都有着不可小觑的作用。
如果您对这个有趣的数学规律还想了解更多,不妨去看看《数学之美》这本书,或者登录一些数学科普网站,比如“数学中国”。
高一数学新教材解含参一元二次不等式练习及答案

“解含参一元二次不等式”数学练习(9.27)班级:___________ 姓名:___________一、解答题1.解关于x 的不等式:()22210x m x m m -+++<.2.解关于x 的不等式:()210x x a a --->.3.解关于x 的不等式()()21440ax a x a ---<∈R .4.若R a ∈,解关于x 的不等式2(1)10ax a x +++>.5.解关于x 的不等式()222R ax x ax a ≥-∈-.6.当a ≤0时,解关于x 的不等式()21220ax a x +--≥.7.解关于x 的不等式:()2220mx m x +-->.8.解关于x 的不等式22(1)40()ax a x a R -++>∈.9.解关于x 的不等式 220x x a ++>.10.解关于x 的不等式2220ax x a +-+>“解含参一元二次不等式”数学练习参考答案(9.27) 1.(,1)m m +【分析】把已知不等式的左边因式分解,判断出对应方程两根大小后,利用不等式解法求得解集.【详解】解:由题意得:1m m <+又()2221()(1)0x m x m m x m x m -+++=---<∴解得不等式解为:1m x m <<+∴不等式()22210x m x m m -+++<的解集为(,1)m m +.2.见解析【解析】不等式()210x x a a ---可化为()()10x a x a --⎡⎤⎣⎦->,讨论12a >,12a =,12a <三种情况计算得到答案.【详解】不等式()210x x a a ---可化为()()10x a x a --⎡⎤⎣⎦->.①当12a >时,1a a ,解集为{x x a >,或}1x a <-; ①当12a =时,1a a ,解集为12x x ⎧⎫≠⎨⎬⎩⎭; ①当12a <时,1a a <-,解集为{x x a <,或}1x a >-. 综上所述, 当12a >时,原不等式的解集为{x x a >,或}1x a <-; 当12a =时,原不等式的解集为12x x ⎧⎫≠⎨⎬⎩⎭; 当12a <时,原不等式的解集为{x x a <,或}1x a >-. 【点睛】本题考查了含参不等式的解法,考查了分类讨论的数学思想,属于常考题型. 3.答案见解析【分析】分0a =和0a ≠讨论,当0a ≠时,由原不等式可得()140x x a ⎛⎫-+< ⎪⎝⎭,讨论1a 与4-的大小关系即可得出不等式的解.【详解】①当0a =时,原不等式可化为40x --<,解得4x >-;①当0a >时,原不等式可化为()140x x a ⎛⎫-+< ⎪⎝⎭,解得14x a -<<; ①当0a <时,原不等式可化为()140x x a ⎛⎫-+> ⎪⎝⎭, <i>当14a <-,即104a -<<时,解得1x a <或4x >-; <①>当14a =-,即14a =-时,解得4x <-或4x >-; <①>当14a >-,即14a <-时,解得4x <-或1x a>. 综上所述,当14a <-时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当14a =-时,不等式解集为{}4x x ≠-; 当104a -<<时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当0a =时,不等式解集为{}4x x >-;当0a >时,不等式解集为14x x a ⎧⎫-<<⎨⎬⎩⎭. 4.答案见解析. 【分析】分类讨论求解含参数的一元二次不等式作答.【详解】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>, 当0a <时,1()(1)0x x a ++<,解得11x a-<<-, 当0a >时,1()(1)0x x a++>, 若1a =,则1x ≠-,若01a <<,则1x a<-或1x >-,若1a >,则1x <-或1x a >-, 所以当0a <时,原不等式的解集是{}|11x x a-<<-;当0a =时,原不等式的解集是{|1}x x >-; 当01a <≤时,原不等式的解集是1{|x x a<-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-. 5.详见解析.【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;①当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 6.答案见解析【分析】不等式化简为(ax +1)(x -2)≥0,分类讨论a =0,12a =-,102a -<<及12a <-,求出不等式的解集,即可求出答案.【详解】解:由()21220ax a x +--≥可得(ax +1)(x -2)≥0①当a =0时,原不等式即x -2≥0﹐解得x ≥2﹔①当a <0时,(ax +1)(x -2)≥0,方程(ax +1)(x -2)=0的两根为11x a =-,22x = 当12a =-时,原不等式解为:x =2﹔ 当102a -<<时,12a ->,原不等式的解为;12x a≤≤-, 当12a <-时,12a -<,原不等式的解为:12x a-≤≤, 综上,当a =0时,原不等式的解集为{}2x x ≥; 当12a =-时,原不等式的解集为{}2x x =;当102a -<<时,原不等式的解集为:12x x a ⎧⎫≤≤-⎨⎬⎩⎭; 当12a <-时,原不等式的解为:12x x a ⎧⎫-≤≤⎨⎬⎩⎭. 7.答案见解析【分析】对m 进行分类讨论,结合一元二次不等式的解法求得不等式的解集.【详解】当0m =时,不等式化为220x -->,解得1x <-;当0m >时,不等式化为()()210mx x -+>,解得1x <-,或2x m >; 当20m -<<时,21m <-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m<<-; 当2m =-时,不等式化为()210x +<,此时无解;当2m <-时,21m >-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m-<<; 综上,0m =时,不等式的解集是{}1x x <-;0m >时,不等式的解集是{|1x x <-或2x m ⎫>⎬⎭; 20m -<<时,不等式的解集是21x x m ⎧⎫<<-⎨⎬⎩⎭; 2m =-时,不等式无解;2m <-时,不等式的解集是21x x m ⎧⎫-<<⎨⎬⎩⎭. 8.答案见解析.【分析】对a 分0a =、0a <、01a <<、 1a =和1a >五种情况讨论得解.【详解】当0a =时,不等式240x -+>的解为2x <;当0a ≠时,不等式对应方程的根为2x a=或2, ①当0a <时,不等式22(1)40()ax a x a R -++>∈即 ()()220ax x --+<的解集为2,2a ⎛⎫ ⎪⎝⎭; ①当01a <<时,不等式()()220ax x -->的解集为 2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; ①当1a =时,不等式()220x +>的解集为 (,2)(2,)-∞⋃+∞;①当1a >时,不等式()()220ax x -->的解集为 2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭. 综上所述,当0a =时,不等式解集为(),2-∞;当0a <时,不等式的解集为2,2a ⎛⎫ ⎪⎝⎭; 当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭. 【点睛】易错点睛:解答本题有两个易错点:(1)漏掉0a =这一种情况,因为不确定不等式是不是一元二次不等式,所以要讨论;(2)当0a ≠时,分类出现错误或遗漏. 9.分类讨论,答案见解析.【分析】利用含参一元二次方程不等式的解法求解.【详解】方程220x x a ++=中()4441a a =-=-,①当10a -<即1a >时,不等式的解集是R ,①当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R ,①当10a ->即1a <时,由220x x a ++=解得:1211x x =-=-1a ∴<时,不等式的解集是{|1>-x x 1<-x ,综上,1a >时,不等式的解集是R ,1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|1>-x x 1<-x ,10.答案不唯一,具体见解析【分析】原不等式可化为()()120x ax a +-+>.然后分0a =,0a >和0a <三种情况求解不等式【详解】解:关于x 的不等式2220ax x a +-+>可化为()()120x ax a +-+>.(1)当0a =时,()210x +>,解得{}|1x x >-.(2)当0a >,所以()210a x x a -⎛⎫+-> ⎪⎝⎭. 所以方程()210a x x a -⎛⎫+-= ⎪⎝⎭的两根为-1和2a a -, 当21a a --<,即1a >时,不等式的解集为{|1x x <-或2a x a ->}, 当21a a --=,即1a =时,不等式的解集为{}|1x x ≠-. 当21a a -->,即01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或1x >-},. (3)当0a <时,()210a x x a -⎛⎫+-< ⎪⎝⎭. 因为方程()210a x x a -⎛⎫+-= ⎪⎝⎭的两根为—1和2a a -, 又因为2211a a a-=->,所以21a a --<,. 即不等式()210a x x a -⎛⎫+-< ⎪⎝⎭的解集是2|1a x x a -⎧⎫-<<⎨⎬⎩⎭, 综上所述:当0a <时,不等式的解集为2|1a x x a -⎧⎫-<<⎨⎬⎩⎭ 当0a =时,不等式的解集为{}1x x -,当01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或1}x >- 当1a =时,不等式的解集为{}|1x x ≠-,当1a >时,不等式的解集为{|1x x <-或2a x a->},。
含参不等式习题及答案

含参不等式习题及答案一.选择题(共20小题)1.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<02.已知关于x的不等式(a﹣2)x>1的解集为x<,则a的取值范围()A.a>2B.a≥2C.a<2D.a≤23.如果不等式(2﹣a)x<a﹣2的解集为x>﹣1,则a必须满足的条件是()A.a>0B.a>2C.a≠1D.a<14.关于x的不等式(1﹣m)x<m﹣1的解集为x>﹣1,那么m的取值范围为()A.m>1B.m<1C.m<﹣1D.m>﹣1 5.如果关于x的不等式(1﹣a)x≥3解集为x≤,则a的取值范围是()A.a≤1B.a≥1C.a>1D.a<16.如果关于x的不等式(1﹣k)x>2可化为x<﹣1,则k的值是()A.1B.﹣1C.3D.﹣37.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1 8.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣29.若关于x的一元一次不等式组有解,则a的取值范围是()A.a>1B.a≥1C.a<1D.a≤110.已知关于x的不等式组有解,则m的取值范围为()A.m>6B.m≥6C.m<6D.m≤6 11.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<312.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥313.已知关于x的不等式组无解,则实数a的取值范围是()A.B.C.D.14.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣315.若不等式组无解,那么m的取值范围是()A.m>2B.m<2C.m≥2D.m≤216.若不等式组有三个整数解,则a的取值范围是()A.﹣3<a≤﹣2B.2<a≤3C.2<a<3D.a<317.若关于x的不等式组的整数解只有3个,则a的取值范围是()A.6≤a<7B.5≤a<6C.4<a≤5D.5<a≤6 18.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19 19.关于x的不等式组恰好只有4个整数解,则a的取值范围为()A.﹣2≤a<﹣1B.﹣2<a≤﹣1C.﹣3≤a<﹣2D.﹣3<a≤﹣2 20.如果不等式组恰有3个整数解,则a的取值范围是()A.a≤1B.a<﹣1C.﹣2<a≤﹣1D.﹣2≤a<﹣1二.填空题(共10小题)21.若不等式组有解,则a的取值范围是.22.若关于x的一元一次不等式组有解,则a的取值范围是.23.已知关于x的不等式组有解,则a的取值范围是.24.若不等式组无解,则a的取值范围是.25.若不等式组无解,则a的取值范围是.26.不等式组有3个整数解,则实数a的取值范围是.27.若关于x的不等式组有2个整数解,则a的取值范围是.28.关于x的不等式组无整数解,则a的取值范围为.29.已知关于x的不等式组恰有三个整数解,则t的取值范围为.30.已知关于x的不等式组恰好有2个整数解,则整数a的值是.含参不等式习题及答案参考答案与试题解析一.选择题(共20小题)1.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<0解:∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,即m<﹣1,故选:A.2.已知关于x的不等式(a﹣2)x>1的解集为x<,则a的取值范围()A.a>2B.a≥2C.a<2D.a≤2解:∵不等式(a﹣2)x>1的解集为x<,∴a﹣2<0,∴a的取值范围为:a<2.故选:C.3.如果不等式(2﹣a)x<a﹣2的解集为x>﹣1,则a必须满足的条件是()A.a>0B.a>2C.a≠1D.a<1解:∵不等式(2﹣a)x<a﹣2的解集是x>﹣1,∴2﹣a<0,解得a>2.故选:B.4.关于x的不等式(1﹣m)x<m﹣1的解集为x>﹣1,那么m的取值范围为()A.m>1B.m<1C.m<﹣1D.m>﹣1解:∵关于x的不等式(1﹣m)x<m﹣1的解集为x>﹣1,∴1﹣m<0,﹣m<﹣1,解得:m>1,故选:A.5.如果关于x的不等式(1﹣a)x≥3解集为x≤,则a的取值范围是()A.a≤1B.a≥1C.a>1D.a<1解:∵关于x的不等式(1﹣a)x≥3解集为x≤,∴1﹣a<0,解得,a>1,故选:C.6.如果关于x的不等式(1﹣k)x>2可化为x<﹣1,则k的值是()A.1B.﹣1C.3D.﹣3解:∵不等式(1﹣k)x>2可化为x<﹣1,∴1﹣k=﹣2解得:k=3.故选:C.7.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.8.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣2解:∵关于x的不等式组有解,∴a<2,∵0<2,1<2,﹣2<2,∴a的取值可能是0、1或﹣2,不可能是2.故选:C.9.若关于x的一元一次不等式组有解,则a的取值范围是()A.a>1B.a≥1C.a<1D.a≤1解:解不等式①得,x>a,解不等式②得,x<1,∵不等式组有解,∴a<1,故选:C.10.已知关于x的不等式组有解,则m的取值范围为()A.m>6B.m≥6C.m<6D.m≤6解:不等式组由①得x>m﹣3,由②得x<,∵原不等式组有解∴m﹣3<解得:m<6故选:C.11.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<3解:解不等式x+1<4,得:x<3,∵x>a且不等式组有解,∴a<3,故选:D.12.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥3解:∵关于x的不等式组无解,∴a﹣1≥2,∴a≥3,故选:D.13.已知关于x的不等式组无解,则实数a的取值范围是()A.B.C.D.解:由不等式|x+1|<4x﹣1得x>,关于x的不等式组无解,所以a≤,故选:B.14.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣3解:∵不等式组无解,∴2a﹣5≥3a﹣2,解得:a≤﹣3,故选:D.15.若不等式组无解,那么m的取值范围是()A.m>2B.m<2C.m≥2D.m≤2解:由①得,x>2,由②得,x<m,又因为不等式组无解,所以根据“大大小小解不了”原则,m≤2.故选:D.16.若不等式组有三个整数解,则a的取值范围是()A.﹣3<a≤﹣2B.2<a≤3C.2<a<3D.a<3解:,解不等式x+a≥0得:x≥﹣a,解不等式1﹣2x>x﹣2得:x<1,∵此不等式组有3个整数解,∴这3个整数解为﹣2,﹣1,0,∴a的取值范围是﹣3<a≤﹣2.故选:A.17.若关于x的不等式组的整数解只有3个,则a的取值范围是()A.6≤a<7B.5≤a<6C.4<a≤5D.5<a≤6解:解不等式x﹣a≤0,得:x≤a,解不等式5﹣2x<1,得:x>2,则不等式组的解集为2<x≤a,∵不等式组的整数解只有3个,∴5≤a<6,故选:B.18.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.19.关于x的不等式组恰好只有4个整数解,则a的取值范围为()A.﹣2≤a<﹣1B.﹣2<a≤﹣1C.﹣3≤a<﹣2D.﹣3<a≤﹣2解:不等式组整理得:,解得:a+1<x<,由解集中恰好只有4个整数解,得到整数解为0,1,2,3,∴﹣1≤a+1<0,解得:﹣2≤a<﹣1,故选:A.20.如果不等式组恰有3个整数解,则a的取值范围是()A.a≤1B.a<﹣1C.﹣2<a≤﹣1D.﹣2≤a<﹣1解:∵不等式组恰有3个整数解,∴﹣2≤a<﹣1,故选:D.二.填空题(共10小题)21.若不等式组有解,则a的取值范围是a>2.解:解不等式x+2a≥5得:x≥5﹣2a,解不等式1﹣2x>x﹣2得:x<1,∵该不等式组有解,∴5﹣2a<1,解得:a>2,故答案为:a>2.22.若关于x的一元一次不等式组有解,则a的取值范围是a<1.解:∵关于x的一元一次不等式组有解,∴a<1,故答案为:a<1.23.已知关于x的不等式组有解,则a的取值范围是a<8.解:,由不等式①,得x>﹣2,由不等式②,得x≤,∵关于x的不等式组有解,∴﹣2<,解得,a<8,故答案为:a<8.24.若不等式组无解,则a的取值范围是a≥2.解:,由①得,x<1+a,由②得,x>2a﹣1,由于不等式组无解,则2a﹣1≥1+a解得:a≥2.故答案为:a≥2.25.若不等式组无解,则a的取值范围是a≥2.解:4﹣2x>0,解得:x<2,∵不等式组无解,∴无解,则a的取值范围是:a≥2.故答案为:a≥2.26.不等式组有3个整数解,则实数a的取值范围是13≤a<18.解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有3个整数解,∴其整数解为3,4,5,则5≤<6,解得:13≤a<18,故答案为:13≤a<18.27.若关于x的不等式组有2个整数解,则a的取值范围是0≤a<1.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.28.关于x的不等式组无整数解,则a的取值范围为a≥2.解:不等式组整理得:不等式组的解集是:a<x<,∵不等式组无整数解,∴a≥2.29.已知关于x的不等式组恰有三个整数解,则t的取值范围为.解:解不等式①得:x>,解不等式②得:x<3﹣2t,则不等式组的解集为:<x<3﹣2t,∵不等式组有3个整数解,∴一定存在一个整数k,满足满足下列关系:,解不等式组①得,,解不等式组②得,,(1)当,即时,则,于是,,解得,,∴<k≤,∵k为整数,∴k=3,此时,;(2)当时,即时,不存在整数k,∴此时无解;(3)当,此时无解;(4)当,即k时,则,于是,,解得,,∴,不存在整数k,∴此时无解.综上,<t≤.故答案为:.30.已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣4,﹣3.解:不等式组,由①得:ax<﹣4,当a<0时,x>﹣,当a>0时,x<﹣,由②得:x<4,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是﹣<x<4,即整数解为2,3,∴1≤﹣<2(a<0),解得:﹣4≤a<﹣2,则整数a的值为﹣4,﹣3,故答案为:﹣4,﹣3.。
人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
含参不等式以及含参不等式组的解法知识分享

含参不等式以及含参不等式组的解法
含参不等式以及含参不等式组的解法
不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。
本节课我们就重点讲讲如何读题去寻找解题思路。
含参不等式:
解不等式5(x-1)<3x+1
通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式57x -<3
2-x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>
831,故可以得出最小整数为4.
那么含参不等式如下:
在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。
例题:1、求不等式kx+2>2x-3的解集
移项、合并同类项、讨论取值
2、(1)求不等式解集mx+a>nx+b
移项、合并同类项、讨论取值
(2)(m-1)x>a2+1对于任意x都成立,则参数m的值为
2、解关于x 的不等式组⎩
⎨⎧+->+-<-8)21(563x m x mx mx mx
3、如果一元一次不等式组⎪⎩⎪⎨⎧≥≤≤-a
x x 432
(1)有解,求a 的取值范围。
(2)无解,求a 的取值范围。
(3)有且只有一个解,求a 的取值范围。
(4)只有两个整数解,求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分)
1.若不等式组的解集为,则m的取值范围是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:含参不等式(组)
2.若关于x的不等式组有解,则a的取值范围是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:含参不等式(组)
3.若不等式组有解,则a的取值范围是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:含参不等式(组)
4.若关于x的不等式组有解,则a的取值范围是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:含参不等式(组)
5.若关于x的不等式组有解,则a的取值范围是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:含参不等式(组)
6.关于x的不等式组无解,则a的取值范围是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:含参不等式(组)
7.若关于x的不等式组无解,则a的取值范围是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:含参不等式(组)
8.已知关于x的不等式组无解,则a的取值范围是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:含参不等式(组)
9.若关于x的不等式组无解,则a的取值范围是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:含参不等式(组)
10.若关于x的不等式组无解,则m的取值范围是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:含参不等式(组)。