第十章-卡方检验

合集下载

《卡方检验正式》课件

《卡方检验正式》课件

卡方检验的结果可以直接解释为实际意义 ,例如,如果卡方值较大,则说明观察频 数与期望频数存在显著差异。
缺点
对数据要求高
卡方检验要求数据量较大,且各分类的期望频数不能太小,否则可能 导致结果不准确。
对离群值敏感
卡方检验对离群值比较敏感,离群值可能会对结果产生较大的影响。
无法处理缺失值
卡方检验无法处理含有缺失值的数据,如果数据中存在缺失值,需要 进行适当的处理。
案例二:市场研究中的卡方检验
总结词
市场研究中,卡方检验用于评估不同市 场细分或产品特征与消费者行为之间的 关联。
VS
详细描述
在市场研究中,卡方检验可以帮助研究者 了解消费者对不同品牌、产品或服务的偏 好。例如,通过比较不同年龄段消费者对 某品牌的选择比例,企业可以更好地制定 市场策略和产品定位。
案例三:社会调查中的卡方检验
小,表示两者之间的差异越小。通常根据卡方值的概率水平来判断差异
是否具有统计学显著性。
02
卡方检验的步骤
建立假设
假设1
观察频数与期望频数无显著差异
假设2
观察频数与期望频数有显著差异
收集数据
从样本数据中获取观察频数 确定期望频数,可以使用理论值或预期频数
制作交叉表
将收集到的数据整理成二维表格形式,行和列分别表示分类变量
卡方检验的基本思想
01
基于假设检验原理
卡方检验基于假设检验的原理,通过构建原假设和备择假设,利用观测
频数与期望频数的差异来评估原假设是否成立。
02
比较实际观测频数与期望频数
卡方检验的核心是比较实际观测频数与期望频数,通过卡方值的大小来
评估两者之间的差异程度。
03

第十章卡方检验

第十章卡方检验

2 检验的基本公式,
表,确定其差异是否显著。(常用的方法)
其关键步骤是计算理论次数与确定自由度。 (1)将实际次数分布的统计量代入所选的理论分布函数方程,求各分组 区间的理论频率,然后乘以总数得各分组区间的理论次数;
16 (2)将分组的数目减去计算理论次数时所用统计量的数目即自由度。
[例10-5] 表10-2所列资料是 552 名中学生的身高次数分布,问这些学生的 身高分布是否符合正态分布?
3、去除样本法; 4、使用校正公式。
7
第二节
察次数分布与某理论次数是否有差别。
配合度检验
配合度检验(goodness of fit test)主要用于检验单一变量的实际观
它检验的内容仅涉及一个因素多项分类的计数资料,是一种单因素检验 (one-way test)。
一、配合度检验的问题
(一)统计假设
2、根据各组的理论次数与实际次数计算
2 值,得 2 3.905
3、确定自由度。本题共分 11 组,在计算理论次数时,对最高组和最低
组两极端次数进行了合并,合并后为 9 组。在计算理论次数的过程中共用到
平均数、标准差、总数 3 个统计量,故本题的自由度 df=9-3=6 。 4、查
2 表,得 02.05 12.6, 02.01 16.8
表10-2
身高 分组 169 ~ 166 ~ 163 ~ 160 ~ 157 ~ 154 ~ 151 ~ 148 ~ Xe 170 167 164 161 158 155 152 149 fo 2 7 22 57 110 124 112 80
书中数字错!
552 名学生身高的理论次数分布及卡方检验
x 15.38 12.38 9.38 6.38 3.38 0.38 -2.62 -5.62 Z 3.03 2.44 1.85 1.26 0.67 0.07 -0.52 -1.11 y 0.0040 0.0203 0.0720 0.1840 0.3187 0.3979 0.3484 0.2154 p 0.0023 0.0120 0.0426 0.1088 0.1885 0.2354 0.2061 0.1274 fe 1 7 24 60 104 130 114 70

《卡方检验》课件

《卡方检验》课件

制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。

卡方检验

卡方检验
10.4802
统计决断

双向表的自由度: df=(r -1)(c -1) 查χ2值表,当 df =(3-1)(3-1)=4 时
(24)0.05 9.49
(24)0.01 13.3
9.49 <χ2= 10.48 < 13.3,则 0.05 > P > 0.01 结论:学生是否愿意报考师范大学与 家庭经济状况有显著关系。
1 :2 :1 ?
解:1.提出假设 H0:健康状况好、中、差的人数比例是1:2:1 H1:健康状况好、中、差的人数比例不是1:2:1 2选择检验统计量并计算 对点计数据进行差异检验,可选择χ2检验
(3)计算理论次数
fo
fe
13.5 27.0 13.5
54
好 中 差
总 和
15 23 16
54
4、计算卡方值
5、比较决策 查χ2值表,当 df =k -1=2 时
(22)0.05 5.99
χ2= 1.22 < 5.99,则 P > 0.05
结论:理论频数与实际频数差异不显著,表明该 校老年教师健康状况的人数比例是1:2:1。
χ2的连续性校正
例3:历年优秀学生干部中男女比例为2:8,
今年优秀学生干部中有3个男生,7个女生。 问今年优秀学生干部的性别比例与往年是否 有显著差异?
六、四格表的χ2检验
如果r×c表的χ2检验所作的结论为差异
显著,这并不意味着各组之间的差异都 显著。如果需要进一步知道哪些组差异 显著,哪些组差异不显著,还需进行四 格表的χ2检验。
1、四格表的含义
四格表是只有两行、两列的双向表。也就
是有两个变量,每一个变量各被分为两类
的双向表
变量Ⅰ 变 量 Ⅱ 合计 A C A+C B D B+D 合计 A+B C+D N=A+B+C+D

练习题解答:第十章交互分类与卡方检验

练习题解答:第十章交互分类与卡方检验

第十章 交互分类与2χ检验练习题:1. 为了研究婆媳分居对于婆媳关系的影响,在某地随机抽取了180个家庭,调查结果如下表所示:(1) 计算变量X 与Y 的边际和(即边缘和)X F 和Y F 并填入上表。

(2) 请根据表10-26的数据完成下面的联合分布的交互分类表。

表10-27(3) 根据表10-27指出关于X 的边缘分布和关于Y 的边缘分布。

(4) 根据表10-27指出关于X 的条件分布和关于Y 的条件分布。

解:(1)Y F (从上到下):50;30;100.X F (从左到右):115;65.(2)P 11=15/180;P 21=35/180;1Y F N =50/180;P 12=20/180;P 22=10/180;2Y F N =30/180;P 13=80/180;P 23=20/180;3Y F N =100/180;1X F N =115/180;2X F N =65/180.(3)关于X 的边缘分布:x 分居 不分居 P(x)115/18065/180关于Y 的边缘分布: y 紧张 一般 和睦 P(y)50/18030/180100/180(4)关于X 的条件分布有三个:y=“紧张” x 分居 不分居 P(x)15/5035/50y=“一般” x 分居 不分居 P(x)20/3010/30y=“和睦” x 分居 不分居 P(x) 80/10020/100关于y 的条件分布有两个: X=“分居”y紧张 一般 和睦 P(y)15/11520/11580/115X=“不分居”y紧张 一般 和睦 P(y)35/6510/6520/652. 一名社会学家关于“利他主义”的研究中,对被调查者的宗教信仰情况进行 了分析,得到的结果如下表所示:表10-28(1)根据表10-28的观察频次,计算每一个单元格的期望频次并填入表10-29。

表10-29 (2)根据表10-28和表10-29计算2χ,计算公式为2()2o e ef f f χ-=∑。

卡方检验知识点总结

卡方检验知识点总结

卡方检验知识点总结卡方检验的原理是基于观测值与期望值的差异来进行判断的。

在卡方检验中,我们会对观测频数和期望频数进行比较,从而得出相关性的结论。

下面将详细介绍卡方检验的相关知识点。

1. 卡方检验的基本思想卡方检验的基本思想是比较观测频数与期望频数之间的差异,通过检验这种差异是否显著来判断两个变量之间的关系是否存在。

当观测频数与期望频数之间的差异较大时,可以认为两个变量之间存在相关性;当观测频数与期望频数之间的差异较小时,可以认为两个变量之间不存在相关性。

2. 卡方检验的适用条件在进行卡方检验时,需要满足一定的条件才能得到可靠的结果。

首先,变量的测量水平必须是分类(或者说是定性的)。

其次,样本的观测数据必须是频数形式,而且样本量要足够大(通常要求每个单元的期望频数不小于5)。

最后,在进行卡方检验前,需要明确变量之间的关系是独立的还是相关的。

3. 卡方检验的类型卡方检验有两种类型:独立性检验和拟合优度检验。

独立性检验是用于判断两个分类变量之间是否存在相关性,可以用于解决“两个变量关系是否显著”这类问题;拟合优度检验是用于判断观测频数与期望频数之间是否存在差异,可以用于解决“观测数据是否符合某种理论模型”这类问题。

4. 卡方检验的步骤进行卡方检验时,首先要确定研究的问题类型(是独立性检验还是拟合优度检验),然后计算卡方值,最后根据卡方值进行显著性检验。

具体的步骤如下:- 确定问题类型:根据研究的问题类型选择相应的卡方检验类型,是独立性检验还是拟合优度检验。

- 构建假设:根据问题类型构建原假设和备择假设,通常原假设是变量之间不存在相关性,备择假设是变量之间存在相关性。

- 计算卡方值:根据观测频数和期望频数计算卡方值,通常使用下面的公式进行计算:卡方值= Σ((观测频数-期望频数)² / 期望频数)。

- 计算自由度:根据研究问题的条件计算卡方检验的自由度,一般计算公式为:自由度 = (行数-1) * (列数-1)。

第十章卡方检验

第十章卡方检验
19
第二节 单向表的卡方(χ2)检验
二、一个自由度的χ2检验
检验的步骤:
(2)计算χ2值
本例df=1,两组的理论频数均为ft=38>5。
2

f0 ft 2
ft
表10.4 喜欢与不喜欢体育人数的χ2值计算表
f0 ft f0-ft (f0-ft)2 (f0-ft)2/ ft
喜欢 50 38 12 144 3.79 不喜欢 26 38 -12 144 3.79
f0 ft 2
求χ2=5.202
ft
29
第二节 单向表的卡方(χ2)检验
三、频数分布正态性的χ2检验 检验的步骤: (3)统计决断 正态性χ2检验的自由度df=K-3。K是合并后保留下来的组数。 df=7-3=4。 自由度df=K-3的原因: 1单向表的χ2检验受到∑(f0-ft)=0一个因子的限制。 2应用Z=(X-X)/ σX的公式计算理论频数时,运用了X和 σX两
12 16 4
3.5
12.25 12.25/16=0.77
非团员 8 4 4
3.5
12.25
12.25/4=3.06
总和 20 20
χ2=3.83
25
第二节 单向表的卡方(χ2)检验
二、一个自由度的χ2检验 2、某组理论频数ft<5的情况 检验的步骤: (3)统计决断 根据df=1,查χ2值表,χ2(1)0.05=3.84, 由于χ2=3.83<3.84=χ2(1)0.05,则P>0.05, 于是保留H0而拒绝H1。 其结论为:该校共青团员的比率与全区没有显著性差异。
4
第一节 卡方(χ2)及其分布
比率和比率之差的假设检验,是对二项分布数据的假设检验。 ——处理一个因素分成两类, ——或者两个因素,每个因素都分为两类的资料。 ——最多只能同时比较两组比率的差异。

卡方检验1011ppt课件

卡方检验1011ppt课件
n R nC
多个样本率的比较
例11.3 某研究者欲比较A、B、C 三种方案治疗轻、中度高血压 的疗效,将年龄在50~70岁的240例轻、中度高血压患者随机等 分为3组,分别采用三种方案治疗。一个疗程后观察疗效,结果 见表11.4。问三种方案治疗轻、中度高血压的有效率有无差别?
表11.4 三种方案治疗轻、中度高血压的效果
编号
组别
编号
1
乙药
67
2
甲药
68
3
乙药
69
4
甲药
70
5
乙药
71
6
甲药
72
7
甲药
73
8
乙药
74
9
甲药
75
10
乙药
76
11
甲药
77
组别 甲药 乙药 乙药 甲药 乙药 甲药 甲药 甲药 乙药 乙药 甲药
患儿编号 1 2 3 4 5
.
.
Table. 结果记录表 处理 乙药 甲药 乙药 甲药 乙药
. .
疗效 有效 有效 无效 有效 无效
对子 2
C
随机
T
对子 3
C
配对设计
✓ 自身配对 a. 同一对象给予两种不同处理 b. 同一对象处理前后
例11.6 某研究者欲比较心电图和生化测定 诊断低钾血症的价值,分别采用两种方法 对79名临床确诊的低钾血症患者进行检查 ,结果见表11.9。问两种方法的检测结果是 否不同?
患者编号 1 2 3 4 5
表11.9 两种方法诊断低血钾的结果
心电图
+ - 合计
生化测定


45
25
4
5
49
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计方法的选择(不同情况有简便公式) 结果及解释

差异显著说明有关联
二、四格表的独立性检验
独立样本四格表卡方检验

利用基本公式或简捷公式 例题:p.347
相关样本四格表卡方检验
Hale Waihona Puke 用简捷公式较为简单 例题:p.349
二、四格表的独立性检验
四格表卡方值的近似校正

当四格表的任一格理论次数小于5时,要用Yates连续 性校正公式计算卡方值(具体公式见书p.349)。
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
独立性检验
独立性检验主要用于两个或两个以上因素多项 分类的计数资料分析,也就是研究两类变量之 间的关联性和依存性问题。 如果两变量无关联即相互独立,说明对于其中 一个变量而言,另一变量多项分类次数上的变 化是在无差范围之内;如果两变量有关联即不 独立,说明二者之间有交互作用存在。
举例:正态分布吻合性检验
例题:p.336
四、比率或百分数的配合度检验
如果计数资料用百分数表示,最后计算 出来的卡方值要乘以100/N后,再与查表 所得的临界值进行比较。 例题:p.337
五、二项分类的配合度检验与比 率显著性检验的一致性
二者实质相同,只是表示方式不同。 相比较而言,配合度检验计算方法更为 简单。 例题:p.338
六、卡方的连续性校正
当某一期望次数小于5时,应该利用校正 公式计算卡方值。 2 ( f f 1 / 2 ) 0 e 2 公式(p.340) fe 例题:p.341 如果三项分类或更多时,出现某一单元 格内的理论次数小于5的情况,则不需要 进行校正也能得到较为准确的结果。
主要内容
独立性检验的两个母总体指的是两个变量所代 表的概念母总体,而非人口学上的母总体。
一、独立性检验的一般问题与步骤
统计假设

虚无假设:多因素之间独立 备择假设:多因素之间有关联或者说差异显著
单元格所对应的行的总合乘以对应的列的总合,然后 再除以总数 df=(R-1)(C-1)
理论次数的计算

自由度的确定
若多个列联表呈现的结果一致,可以将 数据合并;若不一致,则需要各自进行 分别的解释。
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
同质性检验
同质性检验目的在于检验不同人群母总体在某 一个变量的反应是否具有显著差异。 同质性检验与独立性检验的方法基本相同,但 检验的目的不同。
第十章 卡方检验
教学目标
了解卡方检验的一般原理; 掌握卡方检验的具体方法,例如配合度 检验、独立性检验和同质性检验。
卡方检验适用情况
对计数数据进行统计分析,应该用卡方 检验。 如果测量数据的总体分布形态不清楚, 也可以用卡方检验等非参数检验的方法 进行分析。
主要内容
第一节 第二节 第三节 第四节 卡方检验的原理 配合度检验 独立性检验 同质性检验
独立性检验

同质性检验

三、卡方检验的基本公式
( f0 fe ) fe
2
2
f0为实际观察次数 fe为理论次数
四、期望次数的计算
在配合度检验时,期望值为总体的实际 数值,或是某一理论存在的数值。 在独立性检验和同质性检验中,如果两 个变量或两个样本无关联时,期望值为 列联表中各单元格的理论次数,即各个 单元格对应的两个边缘次数的积除以总 次数。
四格表的Fisher精确概率检验方法


在理论次数小于5时,也可用费舍精确概率检验法, 代替卡方检验法。 公式和例题(p.350)
三、R*C表独立性检验
基本方法与四格表的独立性检验相同。
四、多重列联表分析
如果有三个自变量,可以将其中一个人 口学变量看作控制变量,对于控制变量 的不同水平进行单个列联表分析。
配合度检验
配合度检验主要用于检验单一变量的实 际观察次数分布与某理论次数分布是否 有差别。
一、配合度检验的一般问题
统计假设

虚无假设:实际数等于理论数 备择假设:实际数不等于理论数 通常为分类数减去1 根据某种经验或理论
自由度的确定

理论次数的计算

二、配合度检验的应用
1、检验无差假说 理论次数=总数*1/分类项数 例题p.332
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
为什么叫作卡方检验
计数数据一般应用属性统计方法,因为 这类数据是按照事物属性进行多项分类 的。 而且,对这些计数数据的统计分析是根 据卡方分布进行的。
卡方检验的功能
处理一个因素两项或多项分类的实际观 察频数与理论频数分布是否相一致的问 题,或者说有无显著差异的问题。 关于实际次数和理论次数
五、小期望次数的连续性校正
如果个别单元格的理论次数小于5,处理 方法有以下四种:

1、单元格合并法 2、增加样本数 3、去除样本法 4、使用校正公式
六、应用卡方检验应注意取样设计
注意取样的代表性
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验


独立性检验是对同一样本的若干变量关联情形的检 验,目的在于判明数据资料是相互关联还是彼此独 立。 同质性检验是对两个样本同一变量的分布状况的检 验,是对几个样本数据是否同质作出统计决断。
一、单因素分类数据的同质性检验
步骤和例题(p.355)
二、列联表形式的同质性检验
方法与单因素的相同。 具体方法和例题(p.357)
2、检验假设分布的概率 理论次数的计算按照理论分布求得 例题p.333
三、连续变量分布的吻合性检验
对于连续随机变量的计量数据,有时在 实际研究中预先不知道其总体分布,而 是要根据对样本的次数分布来判断是否 服从某种指定的具有明确表达式的理论 次数分布。 关于分布的假设检验方法有很多,运用 卡方值所做的配合度检验是最常用的一 种。


实际频数:指在实验或调查中得到的计数资 料。 理论次数:指根据概率原理、某种理论、某 种理论次数分布或经验次数分布计算出来的 次数。
一、卡方检验的假设
分类相互排斥、互不包容; 观测值相互独立; 每一个单元格中的期望次数至少为5。
二、卡方检验的类别
配合度检验

主要用来检验一个因素多项分类的实际观察数与某 理论次数是否接近。 用来检验两个或两个以上因素各种分类之间是否有 关联或是否具有独立性的问题。 主要目的在于检定不同人群母总体在某一个变量的 反应是否具有显著差异。
相关文档
最新文档