熔盐电化学原理与应用共43页
熔盐电化学(1)详解

K Tc T
8-7
V 2/3
式中V为分子容积,Tc为临界温度,K为常数。表8-2列出 了某些熔融盐的系数K值。图8-3示出了一些熔融盐的表 面张力与温度的关系,随着温度的升高,表面张力的降 低可能是由于各粒子间的距离增大,而相互间的作用力 减弱。
阳离子
F
Li 0.40~ 0.58
Na 0.52
图8-1 某些氯化物的蒸汽压与温度的关系
熔融盐体系蒸汽压随液相组成的变化,一般说来表现为: 增加液相中某组元的相对含量,会引起蒸气中该组元的 相对含量的增加。此外,在蒸汽压曲线上具有最高点的 体系,它在沸点曲线上具有最低点,反之亦然。
熔融盐体系一定组成时的逸度(蒸汽压)可以由各组元 的蒸气压根据加和规则计算出来,但这只有当体系中各 组元在固态时不形成化合物时才是正确的。熔体的组成 相当于固态化合物的组成时,熔体结构具有较大的规律 性,因此,键的强度也较大,这就使熔体的蒸气压比由 加和规则计算出来的数值低些。
熔融盐溶液的密度通常用流体静力称量法(阿基 米德法)和最大气泡压力法来测定。
纯熔融盐的密度与温度的关系一般可用下式表示:
式中
8-1
—t熔融0盐 在t某 t一0 温度t时的密度;
t —熔点 时的密度;
0 —与熔融t0 盐性质无关的系数
对大部分纯熔融盐来说,上式在其沸点度的关系不是呈
各类液体的粘度范围大致如下:
水(20℃) 有机化合物 熔融盐 液态金属 炉渣 纯铁(1600℃)
1.0005cP 0.3~30 cP 0.01~104 P
0.5~5 cP 0.05~105 P
4.5 cP
测量熔盐粘度的方法主要为毛细管法和扭摆法。
熔融盐的粘度除与自身的本性有关外,还与温度有密切 的关系,图8-2是NaCl-AlCl3混合熔体的粘度随温度的变化。 粘度与温度的关系一般可表示为:
熔盐电化学

总结与展望
以碳作为能量载体的现代工业给人类社会的可持续发展带来了巨大的挑战,开发低碳高效的材料制备和资源 利用技术是应对此挑战的必然选择。采用电子作为能量载体的熔盐电化学冶金新工艺展示出良好的发展前景。今 后仍需从熔盐体系选择、熔盐电解工艺、电极过程机理、电极材料和高温电化学工程等方面进行系统深入的研究 和创新,从而为资源的高效合理利用和节能减排做出实际贡献,同时推动高温熔盐电化学学科的发展 。
08 电裂解固态硫化物
09
熔融碳酸盐体系的电 解冶金
010
超高温熔融氧化物电 解
011 总结与展望
熔盐电化学是指高温熔盐作为一种离子导体,具有很宽的电化学窗口,况且高温下反应动力学速度快,因此 是电化学冶金理想的电解液,电解铝工业是其中成功的典范。此外,碱金属和碱土金属以及低熔点的轻稀土金属 也多采用熔盐电解法生产。但是,涉及高熔点的难熔金属,传统的熔盐电解方法则受限于原料的低溶解度和产物 的枝晶生长,很难大规模电解制备。
熔融碳酸盐体系的电解冶金
与卤化物熔盐相比,熔融碳酸盐的腐蚀性要温和得多。从以往有关熔融碳酸盐燃料电池的研究成果看,一些 金属和陶瓷材料在熔融碳酸盐中均具有令人满意的稳定性,很有希望成为熔融碳酸盐电解冶金可实用化的惰性阳 极。美中不足的是熔融碳酸盐的电化学窗口较之卤化物熔盐窄,难以在熔融碳酸盐中电化学还原稀土、钛锆等的 氧化物,但其电位窗足以满足氧化铁、氧化镍等氧化物的电化学还原,从而有可能实现基于熔融碳酸盐体系的绿 色电解炼钢。
感谢观看
锆基材料由于有小的中子吸收截面、高的机械强度和优良的耐腐蚀性能,超过90%的锆基材料用于核反应堆 的燃料包壳管。一般用做燃料包壳的锆管壁厚不超过1mm,直径在8~15mm之间。采用熔盐电解锆和铌的混合氧化 物预成型管,直接制备了几何尺寸适用于核反应堆的燃料包壳管的金属锆管,而且制备的锆基管具有极低的孔隙 率和较高的机械强度。还可利用在氯化钙熔盐中电解二氧化钛/二氧化锆混合氧化物压片,直接制备出合金片。
熔融盐在光热电站中的应用

在光热电站开发中,熔盐作为一种性能较好的传热、储热工作介质,已成为当前光热电站实现长时间稳定发电的重要保障。
但其同时也面临着易冻堵、价格波动较大等应用障碍。
熔盐储热渐成主流已经在多个实际电站项目中有应用的传统的熔盐一般由60%的硝酸钠和40%的硝酸钾混合而成,美国和西班牙的多个CSP电站都采用了这种熔盐。
实践证明,配置储热系统可以使光热发电与不稳定的光伏和风电相抗衡。
这样的配置也使CSP电站能够实现24小时持续供电和输出功率高度可调节的特性,也使其有能力与传统的煤电、燃气发电、核电的电力生产方式相媲美,具备了作为基础支撑电源与传统火电厂竞争的潜力。
一直以来,更多的可应用于光热发电的储热介质也在被持续研究和开发,但截至目前,还没有一种可以与熔盐相媲美。
历史已经证明了熔盐在光热电站中的应用价值。
2009年3月,西班牙Andasol槽式光热发电成为全球首个成功运行的,配置熔盐储热系统的商业化CSP电站。
2010年,意大利阿基米德4.9MW 槽式CSP电站运行,成为世界上首个使用熔融盐做传热介质,并做储热介质的光热电站。
2011年7月,Torresol能源公司19.9MW的塔式光热电站Gemasolar全球范围内首次成功实现24小时持续发电,这同样归功于熔盐储热技术的应用。
伴随熔盐储热技术的日渐成熟,越来越多的CSP电站开始使用熔盐技术。
见下表:112与传统的传热介质导热油相比,熔盐的工作温度更高,而且不易燃,无污染,对环境较友好。
伴随熔盐作为传热介质的研发应用,多个CSP电站也将采用熔盐作为传热工质。
下表列出了使用熔盐作传热介质的CSP电站项目:表3:待完成的使用熔盐作传热介质的CSP电站项目列表熔盐的缺点在表2中也已列出,其最大的属性缺陷在于较高的凝固点,这使其较易造成集热管管路堵塞。
西班牙能源环境技术中心的Jesus Fernández-Reche表示,在储热罐中,熔盐的凝固不会引起太大问题,在西班牙已运行电站的熔盐储热系统中,熔盐罐的温度每天仅下降约1摄氏度。
熔盐电化学(1)全解

液体流动时所表现出的粘滞性是流体各部分质点间流动时 所产生内摩擦力的结果。若两层液体,其间的接触面积是S, 两液层间的速度梯度为dV/dx,则两液层间的内摩擦力f可用下 式表示: dV 8-3 f S
dx
式中η—粘度系数。 上式称为牛顿粘度公式。粘度系数表示在单位速度梯度下, 作用在单位面积的流质层上的切应力,其单位为g/cm· s,通常 以泊(P)表示,为了方便使用,有时也用其百分之一表示, 称为厘泊(cP)。遵从上式的流体叫做牛顿流体,一般来说, 当流体中有悬浮物或弥散物时,从粘度看常为非牛顿流体。 各类液体的粘度范围大致如下:
水(20℃) 有机化合物
1.0005cP 0.3~30 cP
熔融盐
液态金属 炉渣
0.01~104 P
0.5~5 cP 0.05~105 P
纯铁(1600℃)
4.5 cP
测量熔盐粘度的方法主要为毛细管法和扭摆法。
熔融盐的粘度除与自身的本性有关外,还与温度有密切 的关系,图8-2是NaCl-AlCl3混合熔体的粘度随温度的变化。 粘度与温度的关系一般可表示为:
§1 熔盐的性质
主要介绍熔盐的密度、粘度、导电率、表面张力、 蒸汽压和迁移数等性质。 一 密度 单位体积的质量称为密度。密度是熔融盐的一个 重要物理化学性质。在熔盐电解中电解质与金属液体 的分离,火法冶金中不同熔体间的分层和分离在生产 中许多动力学现象都与熔融盐溶液的密度有关。密度 测定是研究熔融盐结构的一种间接方法,由准确的密 度值还可以导出膨胀系数和偏克分子体积等性质。
三 粘度 粘度与密度一样是熔融盐的一种特性。粘度与熔融 盐及其混合物的组成及结构之间一定的联系,因此,对 粘度的研究可以提供有关熔体结构的信息。在实际生产 中,金属液滴及固体粒子是否滞留在熔体中,与熔融盐 粘度的大小有关,粘度大的熔融盐电解质及盐类溶剂不 能应用于金属的电解、熔炼及精炼的工业生产中,因为 金属液滴将包裹在这种熔体中很难从液相中分离出来, 粘滞的熔融盐电解质常常具有低的导电度。易流动的熔 融盐电解质与之相反,它们一般都具有高的导电度,并 且能促使金属与熔体很好地分离。
熔盐电化学原理与应用

随着电极电势逐渐变正,电极附近可氧化的R粒
子的浓度较大,在电势接近并通过
0 平
时,表
面上的电化学平衡应当向着越来越有利于生成R
的方向发展。于是R开始被氧化,并且电流增大
到引峰 起值 电氧 流化 衰电 降流。Ipa,随后又由于R的显著消耗而
从循环伏安图中可测得阴极峰电流 ipc 和峰电位 pc、 阳极峰电流 ipa 和峰电位pa。对于可逆反应,则曲线
流)
电极反应的控制步骤
⑴ 反应离子由熔体向双电层移动并继续经双电层向电极表面 靠近。这一阶段在很大程度上靠扩散实现,扩散则是由于 导电离子在熔体和双电层外界的浓度差别引起的。
⑵ 反应离子在电极表面进行电极反应前的转化过程,如表面 吸附等。
⑶ 在电极上的电子传递 -- 电化学氧化或电化学还原反应。 ⑷ 反应产物在电极表面进行反应后的转化过程,例如自电极
上下对称,此时上下峰电流的比值及峰电位的差值分 别为:
i pa / i pc 1
a
c
2.2 RT zF
56 mV z
( 25C )
从峰电流比可以推断反应是否可逆;峰电位差与扫描 速率无关,可以求得可逆反应的条件电极电位
(pa+pc)/2。
当电极反应完全可逆时:
I pc 0.4463(nF)C0O D0vnF / RT Randles-Sevcik方程
'
液
固1
(s/l)
'气
(l/g)
(s/l)
(s/g)
液
(l/g) (s/g) ' 液
固2
(s/l) ' 气
熔盐法的原理与应用解析

熔盐法反应过程示意图
Stage 1 Mixing of Oxides and Salt
Stage 2 Melting and wetting of salt, Rearrangment and Diffusion of oxides
Stage 3 Nucleation and growth of perovskite phase
从上我们可以得知:在熔盐法中,粉体颗粒通过其在液 相中的传质过程而形成和长大,因此可以通过调节合成 温度以及盐的含量和种类来控制粉体颗粒的形状和尺寸。
Cahn根据自己的研究,提出颗粒的形状是由其生长机制 决定的,由扩散机制控制的生长过程,颗粒容易发育成 球形,而由界面反应控制的生长过程,颗粒则按一定的 取向生长,表现出各向异性。
另外,熔盐法的反应过程以及随后的清洗 过程中,也会有利于杂质的消除,形成高 纯的反应产物。
因此,有人认为熔盐法是合成高纯的符合 化学计量比的多组分氧化物粉体最简单的 方法。
几种无机材料合成方法比较
固相法
成本
低-中
操作
简单
成分控制 差
形貌控制 差
粉末活性 差
纯度(%) <99
煅烧
需要
Sol-gel 高 复杂 优 一般 好
>ቤተ መጻሕፍቲ ባይዱ9.9 需要
化学沉淀法 水热法
中
高
复杂
复杂
好
好
一般
好
好
好
>99.5 需要
>99.5 不需要
熔盐法 中 简单 优 好 好 >99.5
不需要
熔盐法的基本原理
熔盐法合成粉体可以分为两个过程:粉体 颗粒的形成过程和生长过程。
稀土氧化物熔盐电解

稀土氧化物熔盐电解
稀土氧化物熔盐电解是一种重要的稀土元素提取技术,它利用稀土氧化物在高温下的溶解性和电化学性质,通过电解的方式将稀土元素从氧化物中提取出来。
这种技术具有高效、环保、节能等优点,已经成为稀土元素提取的主要方法之一。
稀土氧化物熔盐电解的基本原理是将稀土氧化物与一定比例的氯化钠混合,加热至高温后,通过电解的方式将稀土元素从氧化物中还原出来。
在这个过程中,氯化钠起到了熔剂的作用,使得稀土氧化物能够在高温下溶解,并且提供了电解质,使得电流能够通过溶液中的稀土元素,从而实现稀土元素的提取。
稀土氧化物熔盐电解的优点在于它能够高效地提取稀土元素,同时还能够减少环境污染和能源消耗。
相比于传统的稀土元素提取方法,稀土氧化物熔盐电解不需要使用大量的有机溶剂和酸碱等化学试剂,因此能够减少对环境的污染。
同时,稀土氧化物熔盐电解还能够利用高温下的热能,将其转化为电能,从而实现能源的节约。
稀土氧化物熔盐电解技术的应用范围非常广泛,它可以用于提取各种稀土元素,包括镧系、钇系、铈系、铕系、钆系、铽系、镝系、钬系和铒系等。
同时,稀土氧化物熔盐电解还可以用于处理各种稀土废料和废水,从中提取有价值的稀土元素,实现资源的再利用。
稀土氧化物熔盐电解是一种高效、环保、节能的稀土元素提取技术,
它已经成为稀土元素提取的主要方法之一。
随着技术的不断发展和完善,相信稀土氧化物熔盐电解技术将会在未来的稀土元素提取中发挥越来越重要的作用。
熔盐法的原理与应用共27页文档

35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
熔盐法的原理与应用
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
Hale Waihona Puke