思维拓展图形找规律题答案

合集下载

奥数思维拓展-数与形规律探索问题(试题)数学六年级上册苏教版(含答案)

奥数思维拓展-数与形规律探索问题(试题)数学六年级上册苏教版(含答案)

奥数思维拓展-数与形规律探索问题(试题)-小学数学六年级上册苏教版一、选择题1.过2个点可以画出1条线段,过3个点可以画3条线段,过10个点可以画()条线段。

A.10B.54C.45D.无数条2.一些正六边形卡片按下图方式摆放。

如果用n表示第几个图形,用y表示正六边形的个数,下面式子可以表示第几个图形与正六边形个数之间的关系的是()。

A.y=1+2+…+n B.y=l+n C.y=2n-13.如下图,一只蚂蚁从O点出发,沿着半圆的边缘爬了一周,又回到O点,下面可以描述蚂蚁与O点距离变化的是()。

A.B.C.D.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”。

从上图中可以发现:任何一个大于1的“正方形数”都可以看作两个相邻的“三角形数”之和,例如4=1+3。

把“正方形数”36写成两个相邻的“三角形数”之和,正确的是()。

A.36=10+26B.36=12+24C.36=15+21D.36=16+205.如下图所示,用白色小正方形和黑色长方形按照下面的摆法,组成不同的长方形。

当摆5个黑色长方形时,四周需要摆()个白色小正方形。

A.16B.20C.26D.366.如图,按照规律拼成下列图案,第8个图形一共是由()根小棒搭配的。

A.105B.106C.107D.1087.在一个平面上有68个点,一共可以连()条线段。

A.68B.2278C.2346D.11908.观察下面图形的规律,其中第1个图形由4个小正方形组成,第2个图形由7个小正方形组成,第3个图形由10个小正方形组成,……按此规律排列下去,则第n个图形由()个小正方形组成。

A.4n B.2n-1C.3n+1D.3n-1二、填空题9.按照如图所示的图形与对应数的排列规律,第6个图形对应的数是( ),第n个图形对应的数是( )。

……18276410.根据图和字母的规律补充图,bc的图是( )。

二年级思维拓展- 找规律填图

二年级思维拓展- 找规律填图

找规律填图☜知识要点同学们已经认识了许多图形,如果把图形按一定的变化规律排列起来,这就需要我们从图形的多少、图形的大小、图形的位置的变化等多方面观察、分析、才能找出变化规律,再正确地画出图形来。

☜精选例题【例1】:根据前面几幅图的规律,接下去该怎么画?☝思路点拨:观察上图,第一幅图中有1121个2”,第四幅比第三幅图也多了12259☝标准答案:✌活学巧用1、根据前面几幅图的规律,接着画。

2、根据前面几幅画的规律,接着画。

【例2】“?”处应填什么图形?☝思路点拨:仔细观察上图第一、二行可以发现,每行的第二个图形平移到第一个图形内构成一个新的图形。

☝标准答案:✌活学巧用1、想一想,“?”处应填什么图形?2、想一想,“?”处应填什么图形?【例3】:仔细观察下图,找出变化规律,想一想第三组的右框空白格应填什么样的图?☝思路点拨:从第一组图可知,左边一格是一个正方形,把这个正方形平均分成两部分,右格中的图形就是把左格中含有阴影部分的小长方形旋转后放置的。

从第二组图可知,左边一格是一个三角形,把这个三角形平均分成两部分,右格是把左格中含有阴影部分的小三角形按逆时针方向旋转后放置的。

由此得出,图形的变化规律是:每组左边格内的的图形平均分成2份后,把这个图形的右半部分(即阴影部分)按逆时针方向旋转后放置在右边格内。

第三组图,左边格内是一个菱形,把菱形平均分成2份,右格内的图形应该是把左边格内含有阴影部分的图形按顺时针方向旋转放置的。

☝标准答案:活学巧用1.仔细观察下图,找出变化规律,想一想第三组的右框空白格应填什么样的图?2.仔细观察下图,找出变化规律,想一想第三组的右框空白格应填什么样的图?【例4】:仔细观察下图,想一想“?”处应怎样画?☝思路点拨:仔细观察上图每排共有三种图形,它们有黑的,它们的图形排列规律是上一排的最后一个图形是下一排的第一个图形,上一排的第一个图形都是下一排的中间图形;我们还可以看出每一行每一列都分别有白色的,黑色的和条纹的。

图形找规律习题附答案-幼小衔接小学生数学思维

图形找规律习题附答案-幼小衔接小学生数学思维
2/8
找规律图形习题-思维训练
7. 请小朋友说出被大树挡住的彩旗的颜色。
8. 请小朋友在横线上画出相应的图形。
9. 请小朋友画出最后一幅图中的点。
3/8
找规律图形习题-思ห้องสมุดไป่ตู้训练
10. 请小朋友画出最后两个长方形中的图形。
11. 请小朋友把空白图形补全。
4/8
找规律图形习题-思维训练
12. 请小朋友把空白图形补全。
找规律图形习题-思维训练
1. 请小朋友画出装在盒子里的 3 颗珠子。
2. 请小朋友在横线上画出相应的图形。 3. 请小朋友在最后一个正方形里接着画出图形。
1/8
找规律图形习题-思维训练
4. 请小朋友在最后一个正方形里画出图形。
5. 请小朋友把最后一个大正方形中的 4 个图形画全。
6. 请小朋友画出接下来的 6 颗珠子。
5/8
找规律图形习题-思维训练
13. 请小朋友把空白图形补全。
6/8
答案: 1.
找规律图形习题-思维训练
2.
3. 4. 5.
6.
7. 被大树挡住的彩旗分别是黄、蓝、红、绿、绿。 8.
9. 10.
11.
7/8
找规律图形习题-思维训练
12. 13.
8/8

小学思维数学讲义:图形找规律-带详解

小学思维数学讲义:图形找规律-带详解

找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化; ⑵图形形状的变化; ⑶图形大小的变化; ⑷图形颜色的变化; ⑸图形位置的变化; ⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】 观察这几个图形的变化规律,在横线上画出适当的图形.【考点】图形找规律 【难度】1星 【题型】填空【解析】 几个图形的边数依次增加,因此横线上应为一个七边形. 【答案】七边形【例 2】 请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【考点】图形找规律 【难度】1星 【题型】填空【解析】 这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【答案】(4)【例 3】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。

【考点】图形找规律 【难度】2星 【题型】填空例题精讲知识点拨4-1-2.图形找规律【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【答案】【例4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。

【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出“?”处应是圆形.【答案】圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【考点】图形找规律【难度】2星【题型】填空【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【答案】△【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【考点】图形找规律 【难度】2星 【题型】填空【解析】 本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【答案】七个黑三角形【例 6】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【考点】图形找规律 【难度】2星 【题型】填空【解析】 第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【答案】【例 7】 观察下图中的点群,请回答:(1) 方框内的点群包含 个点;(2) 推测第10个点群中包含 个点;(3)前10个点群中,所有点的总数是 。

小学数学思维扩展冲剌名校提升试卷-图形找规律-基本图形的面积计算-含答案解析

小学数学思维扩展冲剌名校提升试卷-图形找规律-基本图形的面积计算-含答案解析

图形找规律找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.【例 2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。

【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?例题精讲知识点拨【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例 5】观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)?【例 6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【例 7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。

【例 8】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。

【例 9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【例 10】 在纸上画5条直线,最多可有 个交点。

模块二、图形规律—— 旋转、轮换型规律【例 11】 相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗? ○ □ ☆ △ ○ □ ☆ △ △ ○ □ ☆ △ ○ □ ☆ ☆ △ ○ □ ☆ △ ○ □ ()()()()()()()()【例 12】 下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)?第1组(2)?第1组(3)★★★★★?第1组【例 13】 观察下图的变化规律,画出丙图.甲D B A乙ABC丙【例 14】 图中的三个图形都是由A 、B 、C 、D (线段或圆)中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A★C的图形.A★B C★D A★D【例 15】(希望杯五年级一试第7题,6分)下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。

图形找规律专项练习60题(有标准答案解析)

图形找规律专项练习60题(有标准答案解析)

图形找规律专项练习60 题(有答案)1.按如下方式摆放餐桌和椅子:填表中缺少可坐人数;.2.观察表中三角形个数的变化规律:图形横截线012⋯n条数三角形6??⋯?个数若三角形的横截线有0 条,则三角形的个数是6;若三角形的横截线有n 条,则三角形的个数是(用含n 的代数式表示).3.如图,在线段AB 上,画 1 个点,可得 3 条线段;画 2 个不同点,可得 6 条线段;画 3 个不同点,可得10条线段;⋯照此规律,画10个不同点,可得线段条.4.如图是由数字组成的三角形,除最顶端的 1 以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x 的值是,y的值是.5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有个单位正方形.6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7 个图形中共有根火柴棒.7.图 1是一个正方形,分别连接这个正方形的对边中点,得到图 2 ;分别连接图 2 中右下角的小正方形对边中点,得到图 3;再分别连接图 3 中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n 个图的所有正方形个数是个.8.观察下列图案:它们是按照一定规律排列的,依照此规律,第 6 个图案中共有个三角形.9.如图,依次连接一个边长为 1 的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是;第六个正方形的面积是.10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有 1 个小正方形,第 2 个图形有 3 个小正方形,第 3 个图形有 6 个小正方形,第 4 个图形有10个小正方形⋯,按照这样的规律,则第10 个图形有个小正方形.11.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为.12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n 条“金鱼”需用火柴棒的根数为.13.如图,两条直线相交只有 1 个交点,三条直线相交最多有 3 个交点,四条直线相交最多有相交最多有 10 个交点,六条直线相交最多有个交点,二十条直线相交最多有6 个交点,五条直线个交点.14.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号( 1)(2)(3)火柴根数从左到右依次为___________________________⋯.n15.图( 1)是一个黑色的正三角形,顺次连接三边中点,得到如图( 2)所示的第的正三角形);在图( 2 )的每个黑色的正三角形中分别重复上述的作法,得到如图(2 个图形(它的中间为一个白色3 )所示的第 3 个图形.如此继续作下去,则在得到的第 5 个图形中,白色的正三角形的个数是.16.如图,一块圆形烙饼切一刀可以切成 2 块,若切两刀最多可以切成 4 块,切三刀最多可以切成7 块⋯通过观察、计算填下表(其中S 表示切 n 刀最多可以切成的块数)后,可探究一圆形烙饼切n 刀最多能切成块(结果用 n 的代数式表示).n012345⋯nS124717.如图,是用相同的等腰梯形拼成的等腰梯形图案.第(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为 3,周长为 7;第( 2 )个图案由 3 个等腰梯形拼成,其周长为13;⋯第( n )个图案由( 2n﹣ 1)个等腰梯形拼成,其周长为.(用正整数n 表示)18.下列各图均是用有一定规律的点组成的图案,用S 表示第 n 个图案中点的总数,则S=(用含n的式子表示).19.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n (n≥ 3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S 与 n( n ≥3 )的关系是.20.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.21.现有黑色三角形“”和白色三角形“”共有2011个,按照一定的规律排列如下:则黑色三角形有个.22.假设有足够多的黑白围棋子,按照一定的规律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●⋯ 请问第 2011个棋子是黑的还是白的?答:.23.观察下列由等腰梯形组成的图形和所给表中数据的规律后填空:梯形的个数12345⋯图形的周长58111417⋯当梯形个数为2007 个时,这时图形的周长为_________24.如图,下面是一些小正方形组成的图案,第 4 个图案有个小正方形组成;第n 个图案有个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7 个图形中火柴棒的根数是.26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n ( n≥ 2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s 与 n 之间的关系可用式子表示.27.观察下列图形,它是按一定规律排列的,那么第个图形中,十字星与五角星的个数和为27个.28. 2 条直线最多只有 1 个交点; 3 条直线最多只有 3 个交点; 4 条直线最多只有 6 个交点; 2000 条直线最多只有个交点.29.以下各图分别由一些边长为1 的小正方形组成,请填写图2、图 3 中的周长,并以此推断出图10的周长为.30.如图所示,第 1 个图案是由黑白两种颜色的正六边形地面砖组成,第 2 个,第 3 个图案可以看作是第 1 个图案经过平移而得,那么设第n 个图案中有白色地面砖m 块,则 m 与 n 的函数关系式是.31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第 6 、7 两个图形各有多少颗黑色棋子?(2)写出第 n 个图形黑色棋子的颗数?(3)是否存在某个图形有 2012 颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s 表示每个点阵中点的个数,按照图形中的点的个数变化规律,( 1)猜想第n 个点阵中的点的个数s=.( 2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:( 1)填写下表:图形编号123456图中棋子数5811141720( 2)照这样的方式摆下去,写出摆第n 个图形所需棋子的枚数;( 3)其中某一图形可能共有2011枚棋子吗?若不可能,请说明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:( 1)数字“ 30”在个正方形的;(2)请你用含有 n ( n ≥ 1 的整数)的式子表示正方形四个顶点的数字规律;(3)数字“ 2011”应标在什么位置.35.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n > 1)盆花,每个图案中花盆的总数为S.问:①当每条边有 2 盆花时,花盆的总数S 是多少?②当每条边有 3 盆花时,花盆的总数S 是多少?③当每条边有 4 盆花时,花盆的总数S 是多少?④当每条边有10盆花时,花盆的总数S 是多少?⑤按此规律推断,当每条边有n 盆花时,花盆的总数S 是多少?36.如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:( 1)第④、第⑤个“上”字分别需用和枚棋子;( 2)第 n 个“上”字需用枚棋子;( 3)七( 3)班有 50 名同学,把每一位同学当做一枚棋子,能否让这字?若能,请计算最下一“横”的学生数;若不能,请说明理由.50 枚“棋子” 按照以上规律恰好站成一个“上”37.下列表格是一张对同一线段上的个数变化及线段总条数的探究统计.线段上点的个数线段的总条数11+2=31+2+3=6⋯⋯( 1)请你完成探究,并把探究结果填在相应的表格里;( 2)若在同一线段上有10个点,则线段的总条数为;若在同一线段上有n 个点,则有(用含 n 的式子表示)( 3)若你所在的班级有60 名学生, 20 年后参加同学聚会,见面时每两个同学之间握一次手,共握手38.如图是用棋子摆成的“H ”字.( 1)摆成第一个“ H”字需要个棋子;摆第x个“H”字需要的棋子数可用含x 的代数式表示为( 2)问第几个“H”字棋子数量正好是2012 个棋子?条线段次.;39.我们知道,两条直线相交只有一个交点.请你探究:( 1)三条直线两两相交,最多有个交点;( 2)四条直线两两相交,最多有个交点;( 3) n 条直线两两相交,最多有个交点(n 为正整数,且n≥ 2 ).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有 4 张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n 次时,手张共有S 张纸片.根据上述情况:(1)用含 n 的代数式表示 S;(2)当小王撕到第几次时,他手中共有70 张小纸片?41.如图①是一张长方形餐桌,四周可坐 6 人, 2 张这样的桌子按图②方式拼接,四周可坐10 人.现将若干张这样的餐桌按图③方式拼接起来:( 1)三张餐桌按题中的拼接方式,四周可坐人;( 2) n 张餐桌按上面的方式拼接,四周可坐人(用含n 的代数式表示).若用餐人数为26 人,则这样的餐桌需要张.42.用棋子摆出下列一组图形:( 1)填写下表:图形编号123456图形中的棋子(2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数;(用含 n 的代数式表示)(3)如果某一图形共有 99 枚棋子,你知道它是第几个图形吗?43.如图①,图②,图③,图④,⋯,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,( 1)第 5 个“广”字中的棋子个数是.( 2)第 n 个“广”字需要多少枚棋子?44.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:( 1)在第 n 个图中共有块黑瓷砖,块白瓷砖;( 2)是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45.用火柴棒按如图的方式搭三角形.照这样搭下去:( 1)搭 4 个这样的三角形要用( 2)搭 n 个这样的三角形要用根火柴棒; 13 根火柴棒可以搭根火柴棒(用含n 的代数式表示).个这样的三角形;46.观察图中的棋子:( 1)按照这样的规律摆下去,第 4 个图形中的棋子个数是多少?(2)用含 n 的代数式表示第 n 个图形的棋子个数;(3)求第 20 个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.( 1)填出下表中未填的两个空格:阶梯级数一级二级三级石墩块数39( 2)当垒到第n 级阶梯时,共用正方体石墩多少块(用含多少块?四级n 的代数式表示)?并求当n=100 时,共用正方体石墩48.有一张厚度为0.05 毫米的纸,将它对折1次后,厚度为2×0.05 毫米.(1)对折 3 次后,厚度为多少毫米?(2)对折 n 次后,厚度为多少毫米?(3)对折 n 次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:按此规律,第 n 个图形,每一横行有按此规律,铺设了一矩形地面,共用瓷砖块瓷砖,每一竖列有块瓷砖(用含 n 的代数式表示) 506 块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.( 1)在④、⑤和⑥后面的横线上分别写出相应的等式:①222 1=1② 1+3=2③ 1+3+5=3④;⑤;⑥;( 2)通过猜想,写出第n 个星阵图相对应的等式.51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:( 1)完成下表:所剪次数 n12345正方形个数Sn4( 2)剪 n 次共有 S n个正方形,请用含n 的代数式表示S n=;( 3)若原正方形的边长为1,则第 n 次所剪得的正方形边长是(用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n(n> 1)个点(即五角星),每个图案的总点数(即五角星总数)用 S 表示.( 1)观察图案,当n=6 时, S=;( 2)分析上面的一些特例,你能得出怎样的规律?(用n 表示 S)(3)当 n=2008 时,求 S.53.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:( 1)由里向外第 1 个正方形(实线)四条边上的格点个数共有个;由里向外第 2 个正方形(实线)四条边上的格点个数共有个;由里向外第 3 个正方形(实线)四条边上的格点个数共有个;( 2)由里向外第10 个正方形(实线)四条边上的格点个数共有个;( 3)由里向外第n 个正方形(实线)四条边上的格点个数共有个.54.下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有n (n> 1)个花盆,每个图案花盆总数是S.( 1)按要求填表:n2345⋯S4812⋯( 2)写出当 n=10 时, S=.( 3)写出 S 与 n 的关系式: S=.( 4)用 42 个花盆能摆出类似的图案吗?55.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.( 1)在第 1 个图中,共有白色瓷砖块.( 2)在第 2 个图中,共有白色瓷砖块.( 3)在第 3 个图中,共有白色瓷砖块.( 4)在第 10 个图中,共有白色瓷砖块.( 5)在第 n 个图中,共有白色瓷砖块.56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n ( n> 1)盆花,每个图案花盆的总数为S,当 n=2 时, S=3 ;n=3 时, S=6 ; n=4 时, S=10.( 1)当 n=6 时, S=( 2)你能得出怎样的规律?用;n=100 时, S=n 表示 S..57.下面是按照一定规律画出的一系列“树枝”经观察,图(图( 3)比图( 2 )多出 4 个“树枝”,图( 4)比图( 3)多出图( 5)比图( 4)多出个树枝;图( 6)比图( 5)多出个树枝;图( 8)比图( 7)多出个树枝;⋯图( n+1 )比图( n )多出个树枝.2 )比图( 1)多出 2 个“树枝”,8 个“树枝”,按此规律:58.如图是用棋子成的“要8 枚棋子,第三个“T ”字图案.从图案中可以出,第一个“T ”图案需要11枚棋子.T ”字图案需要 5 枚棋子,第二个“T ”字图案需(1)照此规律,摆成第八个图案需要几枚棋子?(2)摆成第 n 个图案需要几枚棋子?(3)摆成第 2010 个图案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:( 1)当黑砖 n=1 时,白砖有( 2)第 n 个图案中,白色地砖共块,当黑砖块.n=2时,白砖有块,当黑砖n=3时,白砖有块.60.下列图案是晋商大院窗格的一部分.其中,“ o”代表窗纸上所贴的剪纸.探索并回答下列问题:( 1)第 6 个图案中所贴剪纸“o”的个数是;( 2)第 n 个图案中所贴剪纸“o”的个数是;( 3)是否存在一个图案,其上所贴剪纸“o”的个数为2012 个?若存在,指出是第几个;若不存在,请说明理由.图形找规律 60 题参考答案:1.结合图形和表格,不难发现:1张桌子座 6 人,多一张桌子多 2 人. 4 张桌子可以座10+2=12.即 n 张桌子时,共座6+2 ( n﹣ 1)=2n+4 .2.当横截线有 n 条时,在 6 个的基础上多了 n 个 6,即三角形的个数共有 6+6n=6 ( n+1 )个.故应填 6(n+1)或 6n+63.∵画 1个点,可得 3 条线段, 2+1=3 ;画2 个点,可得 6 条线段, 3+2+1=6 ;画3 个点,可得 10条线段, 4+3+2+1=10 ;⋯;画n 个点,则可得( 1+2+3+ ⋯ +n+n+1 )=条线段.所以画 10个点,可得=66 条线段;4.根据图形可以发现,第七排的第一个数和第二数与第八排的第二个数相等,而第八排的第二个数就是 x,所以 x=61.另外,由图形可知, x 右边的数是 2×61=122, y 左边的数是 2 ×61+56=178 ,所以 y=178+46=2245.根据题意分析可得:第 1 个图案中正方形的个数2个,第 2 个图案中正方形的个数比第 1 个图案中正方形的个数多 4 个,第 3 个图案中正方形的个数比第 2 个图案中正方形的个数多 6 个⋯,依照图中规律,第六个图形中有 2+4+6+8+10+12=42 个单位正方形6.图形从上到下可以分成几行,第n行中,斜放的火柴有 2n 根,下面横放的有n 根,因而图形中有 n 排三角形时,火柴的根数是:斜放的是2+4+ ⋯ +2n=2 ( 1+2+ ⋯+n )横放的是:1+2+3+ ⋯+n ,则每排放 n 根时总计有火柴数是:3(1+2+ ⋯ +n ) = 3n(n1)把n=7代入就可以求2出.故第 7 个图形中共有=84 根火柴棒7.图 1中,是 1 个正方形;图2 中,是 1+4=5 个正方形;图3 中,是 1+4×2=9 个正方形;依此类推,第n 个图的所有正方形个数是1+4( n ﹣ 1)=4n ﹣ 3.8.∵第 1 个图案中有2×2+2 ×1=6 个三角形;第2 个图案中有 2×3+2 ×2=10 个三角形;第3 个图案中有 2×4+2 ×3=14 个三角形;⋯∴第 6 个图案中有2×7+2 ×6=26 个三角形.故答案为269.∵正方形的边长是1,所以它的斜边长是:= ,所以第二个正方形的面积是:×=,第三个正方形的面积为=()2,以此类推,第 n 个正方形的面积为()n﹣ 1,6﹣ 1所以第六个正方形的面积是()=;故答案为:,.10.∵第一个有 1 个小正方形,第二个有 1+2 个,第三个有1+2+3 个,第四个有 1+2+3+4 ,第五个有 1+2+3+4+5 ,∴则第 10个图形有 1+2+3+4+5+6+7+8+9+10=55 个.故答案为: 5511.依题意得:( 1)摆第 1 个“小屋子”需要 5 个点;摆第 2 个“小屋子”需要 11个点;摆第 3 个“小屋子”需要17个点.当n=n 时,需要的点数为( 6n﹣ 1)个.故答案为 6n﹣ 112.由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8 ;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20 ;⋯;第 n 个金鱼需用火柴棒的根数为:2+n ×6=2+6n .故答案为 2+6n13.6 条直线两两相交,最多有n( n ﹣ 1)= ×6×5=15,20 条直线两两相交,最多有n( n ﹣ 1)=×20×19=190.故答案为: 15, 190.14.如表格所示:图形编( 1)(2)(3)⋯n号火柴根 71217⋯5n+2数15.设白三角形 x 个,黑三角形 y 个,故答案为:白则: n=1 时, x=0 , y=1;23.依题意可求出梯形个数与图形周长的关系为3n+2= n=2 时, x=0+1=1 , y=3 ;周长,n=3 时, x=3+1=4 ,y=9 ;当梯形个数为2007 个时,这时图形的周长为3×n=4 时, x=4+9=13 , y=27 ;2007+2=6023 .当 n=5 时, x=13+27=40 ,故答案为: 6023 .所以白的正三角形个数为:40,24.观察图形知:故答案为: 40第一个图形有2个小正方形;16. n=1 时, S=1+1=2 ,1=1n=2 时, S=1+1+2=4 ,第二个图形有1+3=4=22 个小正方形;n=3 时, S=1+1+2+3=7 ,n=4 时, S=1+1+2+3+4=11 ,第三个图形有1+3+5=9=3 2 个小正方形;⋯所以当切 n 刀时, S=1+1+2+3+4+ ⋯ +n=1+n(n+1 )⋯2第 n 个图形共有 1+2+3+ ⋯ +( 2n ﹣ 1)=n 2 个小正方形,n+1.= n +22n2 +n+1当 n=4 时,有 n =4 =16 个小正方形.故答案为17.根据题意得:故答案为: 16,n2第( 1)个图案只有 1 个等腰梯形,周长为3×1+4=7;25.根据已知图形可以发现:第( 2 )个图案由 3 个等腰梯形拼成,其周长为 3×3+4=13 ;第 2 个图形中,火柴棒的根数是7;第( 3)个图案由 5 个等腰梯形拼成,其周长为 3×5+4=19;第 3 个图形中,火柴棒的根数是10;⋯第 4 个图形中,火柴棒的根数是13;第( n)个图案由( 2n ﹣ 1)个等腰梯形拼成,其周长为∵每增加一个正方形火柴棒数增加3,3( 2n﹣ 1) +4=6n+1 ;∴第 n 个图形中应有的火柴棒数为: 4+3( n ﹣1)=3n+1 .故答案为: 6n+1当 n=7 时, 4+3 ( n ﹣ 1) =4+3 ×6=22 ,18.观察发现:故答案为: 22第 1 个图形有 S=9 ×1+1=10个点,26.观察图形发现:第 2 个图形有 S=9 ×2+1=19 个点,当 n=2 时, s=4 ,第 3 个图形有 S=9 ×3+1=28 个点,当 n=3 时, s=9 ,⋯当 n=4 时, s=16,第 n 个图形有 S=9n+1 个点.当 n=5 时, s=25 ,故答案为: 9n+1⋯19. n=3 时, S=6=3 ×3﹣ 3=3 ,当 n=n 时, s=n 2 ,n=4 时, S=12=4 ×4﹣ 4,n=5 时, S=20=5 ×5﹣ 5,故答案为: s=n2⋯,依此类推,边数为 n 数, S=n ?n﹣n=n ( n ﹣ 1).27.∵第 1 个图形中,十字星与五角星的个数和为3×故答案为: n ( n ﹣ 1).2=6 ,20.结合图形,发现:搭第n 个三角形,需要 3+2 ( n第 2 个图形中,十字星与五角星的个数和为3×3=9 ,﹣ 1) =2n+1 (根).第 3 个图形中,十字星与五角星的个数和为3×4=12,故答案为 2n+1⋯21.因为 2011÷6=335 ⋯ 1.余下的 1 个根据顺序应是黑而 27=3 ×9,色三角形,所以共有 1+335×3=1006.∴第 8 个图形中,十字星与五角星的个数和=3 ×9=27 .故答案为: 1006故答案为: 822 .从所给的图中可以看出,每六个棋子为一个循环,28. 2 条直线最多的交点个数为1,∵ 2011÷6=335 ⋯ 1, 3 条直线最多的交点个数为1+2=3 ,∴第 2011个棋子是白的. 4 条直线最多的交点个数为1+2+3=6 ,5 条直线最多的交点个数为1+2+3+4=10 ,33.( 1)观察图形,得出枚数分别是,5, 8, 11,⋯,⋯每个比前一个多 3 个,所以图形编号为5,6 的棋字子所以 2000条直线最多的交点个数为1+2+3+4+ ⋯数分别为 17, 20.+1999==1999000.故答案为: 17和 20.( 2 )由( 1)得,图中棋子数是首项为5,公差为 3 的故答案为 1999000等差数列,29.∵小正方形的边长是1,所以摆第 n 个图形所需棋子的枚数为:5+3 ( n﹣ 1)∴图 1 的周长是: 1×4=4 ,=3n+2 .图 2 的周长是:2×4=8 ,( 3)不可能图 3 的周长是 3×4=12,由 3n+2=2010 ,⋯解得: n=669,第 n 个图的周长是 4n,∴图 10的周长是10×4=40;∵ n 为整数,故答案为:8, 12, 40∴ n=669 不合题意30.首先发现:第一个图案中,有白色的是6 个,后边是依次多 4 个.故其中某一图形不可能共有2011 枚棋子所以第 n 个图案中,是6+4 ( n ﹣ 1) =4n+2 .34.( 1)由图可知,每个正方形标 4 个数字,∴ m 与 n 的函数关系式是m=4n+2 .∵ 30÷4=7 ⋯ 2,故答案为: 4n+2 .∴数字 30 在第 8 个正方形的第 2个位置,即右上角;31.第一个图需棋子 6,故答案为: 8,右上角;第二个图需棋子9,( 2 )左下角是 4 的倍数,按照逆时针顺序依次减1,第三个图需棋子12,即正方形左下角顶点数字:4n,第四个图需棋子15,正方形左上角顶点数字:4n﹣ 1,第五个图需棋子18,正方形右上角顶点数字:4n﹣ 2,⋯正方形右下角顶点数字:4n﹣ 3;第 n 个图需棋子3( n+1)枚.( 3) 2011÷4=502 ⋯3 ,( 1)当 n=6 时, 3×(6+1) =21 ;所以,数字“ 2011”应标第503 个正方形的左上角顶点当 n=7 时, 3 ×(7+1) =24 ;处( 2)第 n 个图需棋子3( n+1 )枚.35.依题意得:① n=2 , S=3=3 ×2﹣ 3.( 3)设第 n 个图形有2012 颗黑色棋子,② n=3 , S=6=3 ×3﹣ 3.根据( 1)得 3( n+1)=2012③ n=4 ,S=9=3 ×4﹣ 3解得 n=,④ n=10, S=27=3 ×10﹣3 .⋯所以不存在某个图形有2012 颗黑色棋子⑤按此规律推断,当每条边有n 盆花时, S=3n ﹣ 3 32.( 1)由点阵图形可得它们的点的个数分别为:1,5,36.( 1)第①个图形中有 6 个棋子;9,13,⋯,并得出以下规律:第②个图形中有6+4=10 个棋子;第一个点数: 1=1+4×(1﹣ 1)第③个图形中有6+2 ×4=14 个棋子;第二个点数: 5=1+4 ×(2 ﹣1)∴第⑤个图形中有 6+3 ×4=18 个棋子;第三个点数: 9=1+4 ×(3﹣ 1)第⑥个图形中有6+4 ×4=22 个棋子.第四个点数: 13=1+4×(4﹣ 1)故答案为 18、 22;(3 分)⋯( 2 )第 n 个图形中有 6+ ( n ﹣1)×4=4n+2 .因此可得:故答案为 4n+2 .(3 分)第 n 个点数: 1+4×(n ﹣ 1) =4n ﹣3 .( 3) 4n+2=50 ,故答案为: 4n﹣ 3;解得 n=12 .( 2)设这个点阵是 x 个,根据(1)得:最下一横人数为2n+1=25 .( 4 分)1+4×(x﹣ 1) =3737.( 1) 5 个点时,线段的条数:1+2+3+4=10 ,解得: x=10. 6 个点时,线段的条数:1+2+3+4+5=15 ;答:这个点阵是10个( 2 )10个点时,线段的条数: 1+2+3+4+5+6+7+8+9=45,n 个点时,线段的条数:1+2+3+ ⋯ + (n﹣ 1)图形 6912151821=;中的棋子(3)60人握手次数 ==1770.( 2 )依题意可得当摆到第n 个图形时棋子的枚数应为:6+3 ( n ﹣1) =6+3n ﹣ 3=3n+3 ;故答案为:( 2) 45,;( 3) 1770.( 3)由上题可知此时3n+3=99 ,∴ n=32 .38.( 1)摆成第一个“ H ”字需要7 个棋子,答:第 32 个图形共有99 枚棋子第二个“ H”字需要棋子12 个;13.由题目得:第 1 个“广”字中的棋子个数是7;第三个“ H”字需要棋子17个;第 2 个“广”字中的棋子个数是7+ (2 ﹣ 1)×2=9 ;⋯第 3 个“广”字中的棋子个数是7+ ( 3﹣ 1)×2=11;第 x 个图中,有7+5 ( x﹣ 1) =5x+2 (个).第 4 个“广”字中的棋子个数是7+ (4﹣ 1)×2=13;( 2)当 5x+2=2012时,解得: x=402 ,发现第 5 个“广”字中的棋子个数是 7+( 5﹣ 1)×2=15⋯故第 402 个“ H”字棋子数量正好是2012 个棋子进一步发现规律:第n 个“广”字中的棋子个数是7+ 39.(1)如图( 1),可得三条直线两两相交,最多有3( n ﹣ 1)×2=2n+5 .个交点;故答案为: 15( 2)如图( 2),可得三条直线两两相交,最多有 6 个44.( 1)在第 n 个图形中,需用黑瓷砖4n+6块,白瓷交点;砖 n(n+1 )块;( 3)由( 1)得,=3 ,( 2 )根据题意得n (n+1 ) =4n+6 ,n2﹣ 3n ﹣6=0 ,由( 2)得,=6 ;此时没有整数解,∴可得, n 条直线两两相交,最多有个交点所以不存在.故答案为: 4n+6 ; n(n+1 )( n 为正整数,且n≥ 2 ).45.(1)结合图形,发现:后边每多一个三角形,则需故答案为3;6;.要多 2 根火柴.则搭 4 个这样的三角形要用3+2 ×3=9 根火柴棒;13根火柴棒可以搭( 13﹣ 3)÷2+1=6 个这样的三角形;( 2 )根据( 1)中的规律,得搭 n 个这样的三角形要用3+2( n ﹣1)=2n+1根火柴棒.故答案为9; 6; 2n+140.( 1)由题目中的“每次都将其中﹣片撕成更小的四46.( 1)第 4 个图形中的棋子个数是13;片”,( 2 )第 n 个图形的棋子个数是3n+1 ;可知:小王每撕一次,比上一次多增加 3 张小纸片.( 3)当 n=20 时, 3n+1=3 ×20+1=61∴ s=4+3 (n ﹣ 1)=3n+1 ;∴第 20 个图形需棋子61 个( 2)当 s=70 时,有 3n+1=70 ,n=23 .即小王撕纸 2347.( 1)第一级台阶中正方体石墩的块数为:次=3 ;41.( 1)结合图形,发现:每个图中,两端都是坐 2 人,剩下的两边则是每一张桌子是 4 人.第一级台阶中正方体石墩的块数为:=9 ;则三张餐桌按题中的拼接方式,四周可坐3×4+2=14(人);第一级台阶中正方体石墩的块数为:;( 2) n 张餐桌按上面的方式拼接,四周可坐(4n+2 )人;⋯若用餐人数为 26人,则 4n+2=26 ,依此类推,可以发现:第几级台阶中正方体石墩的块数解得 n=6 .为: 3 与几的乘积乘以几加1,然后除以 2.故答案为: 14;( 4n+2 ),6阶梯级数一级二级三级四级42.( 1)如图所示:石墩块数391830图形 123456编号( 2)按照( 1)中总结的规律可得:当垒到第n 级阶梯时,共用正方体石墩块;当n=100 时,∴当 n=100 时,共用正方体石墩15150块.答:当垒到第n 级阶梯时,共用正方体石墩块;当 n=100 时,共用正方体石墩15150块48.由题意可知:第一次对折后,纸的厚度为 2×0.05;可以得到折痕为 1 条;第二次对折后,纸的厚度为2×2×0.05=2 2×0.05;可以得到折痕为 3=2 2﹣ 1 条;第三次对折后,纸的厚度为 2 ×2×2×0.05=2 3×0.05;可以3得到折痕为7=2 ﹣ 1 条;第 n 次对折后,纸的厚度为2×2×2 ×2 ×⋯×2×0.05=2 n×0.05.可以得到折痕为 2 n﹣ 1 条.故:(1)对折 3 次后,厚度为 0.4 毫米;(2)对折 n 次后,厚度为 2 n×0.05 毫米;(3)对折 n 次后,可以得到 2n﹣1 条折痕49.由图形我们不难看出横行砖数量为n+3 ,竖行砖数2量为 n+2 ,总数量为n +5n+6 ;若用瓷砖506 块,可以求n2 +5n+6=506 ;所以答案为:( 1)n+3 , n+2 ;( 2)每一行有23 块,每一列有22 块50.等号左边是从 1 开始,连续奇数相加,等号右边是奇数个数也就是 n 的平方.(1)① 1+3+5+7=4 2;2②1+3+5+7+9=5 ;③ 1+3+5+7+9+11=6 2.251.( 1)依题意得:所剪次数 n12345正方形个数 Sn 47101316(2 )可知剪 n 次时, S n=3n+1 .(3) n=1 时,边长 = ;n=2 时,边长 =;n=3 时,边长 =;⋯;剪 n 次时,边长 =.52.(1) S=15(2 )∵ n=2 时, S=3 ×(2﹣ 1)=3 ;n=3 时, S=3 ×(3﹣1) =6 ;n=4 时, S=3 ×(4﹣1) =9 ;⋯∴S=3 ×(n ﹣ 1) =3n ﹣ 3.(3)当 n=2008 时, S=3 ×2008 ﹣ 3=6021.53.第 1 个正方形四条边上的格点共有 4 个第 2 个正方形四条边上的格点个数共有(4+4×1)个第 3 个正方形四条边上的格点个数共有(4+4×2 )个⋯第 10个正方形四条边上的格点个数共有(4+4 ×9) =40个第 n 个正方形四条边上的格点个数共有[4+4 ×(n﹣1)]=4n 个54.由图可知,每个图形为边长是n 的正方形,因此四条边的花盆数为 4n ,再减去重复的四个角的花盆数,即S=4n ﹣ 4;( 1)将 n=5 代入 S=4n ﹣ 4,得 S=16;(2 )将 n=10 入 S=4n ﹣ 4,得 S=36 ;(3) S=4n ﹣ 4;(4)将 S=42 代入 S=4n ﹣ 4 得,4n﹣4=42解得 n=11.5所以用 42 个花盆不能摆出类似的图案55.( 1)在第 1 个图中,共有白色瓷砖1×(1+1)=2 块,( 2 )在第 2 个图中,共有白色瓷砖2×(2+1) =6 块,( 3)在第 3 个图中,共有白色瓷砖3×(3+1) =12 块,( 4)在第10个图中,共有白色瓷砖10×(10+1) =110块,( 5)在第 n 个图中,共有白色瓷砖n ( n+1 )块56.( 1)由分析得:当n=6 时, s=1+2+3+4+5+6=21;当n=100 时, s=1+2+3+ ⋯ +99+100=5050 ;( 2 )用 n 表示 S 得: S=。

【一日一题思维拓展训练】小学三年级数学下册思维拓展训练(第5套)附答案.人教版

【一日一题思维拓展训练】小学三年级数学下册思维拓展训练(第5套)附答案.人教版

三年级数学下册思维拓展训练(第5套)班级姓名得分【资料使用建议】:每日1题,坚持训练1. 观察图中各组图形的规律,填出最后一幅图中的图形.2.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?3.如图,长方形ABCD中有一个正方形EFGH,且AF=16厘米,HC=13厘米,求长方形ABCD的周长是多少厘米。

4.朋朋读一本小说,如果每天读30页,则比规定的日期推迟一天读完;如果每天读35页,则最后一天少读5页;如果每天读33页,最后一天读多少页才能按规定日期读完这本书?5.找规律田数:179,278,377,476,(),(),773,8726.小明布置会场,准备的椅子缺少8把,如果增加原来椅子数量的一半,则椅子又多余12把,请问,参加会议的有多少人?7.有一类四位数,任意相邻两位数字之和不大于2,把这样的数从小到大排列,那么倒数第2个数是几?8.现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?9.甲、乙两人共储蓄32元,乙、丙两人共储蓄30元,甲、丙两人共储蓄22元,请问三人各储蓄多少元?10.已知如图所示的乘法竖式成立.那么ABCDE是多少?11.某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如果从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?参考答案1.【答案】2.【答案】解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人) (2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。

3.【答案】由于正方形各边都相等,则AD=EH=EF,BC= FG=GH,于是长方形ABCD的周长=AF+DG+BF+BC+CG+AD=AF+DG+BE+CH=16+16+13+13=32+26=58.巧求周长和面积可以先把要求周长和面积表示出来,然后把未知的进行转化,通常用到特殊四边形的性质,包含于排除(容斥原理)等重要的方法。

思维拓展_图形找规律--题+答案

思维拓展_图形找规律--题+答案

思维拓展_图形找规律--题+答案—、填空题1. 下图是按照⼀定规律排列起来的,请按这⼀规律在“ ?”处画出适当的图形2. 按照图形的变化规律,在“?”处画出相符的图形4.下图看似复杂,实际上只要你找到合适的⽅法,你就不费吹灰之⼒就可以解答出来,试试看,好吗?5?请找⼀找图形的变化规律,在空格处画出恰当的图形6.0 0 0 00 0 0 △0 0 △△0 ? △△7. 找⼀下规律,从a, b, c, d, e 中选⼊⼀幅图填⼊空格内思维拓展《图形找规律》姓名: __________pO 3.在图中找出与众不同的那个图形().⑴(2)(3) (4) (5)⑹a b c d e8. 按照下列图形的变化规律,空⽩处应是什么样的图形.10.下⾯⼀组图形的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来?、解答题12. 有⼀个⽴⽅体,每个⾯上分别写上数字1、2、3、4、5、6、,有3个⼈从不同的⾓度观察的结果如下图所⽰,这个⽴⽅体的每⼀个数字的对⾯各是什么数字? ____________________________________ 13. 下⾯是由⼏何图形组成的帆船图形符合规律的⼩帆船?应变为% 'S 4三变成处画出----------------------- 答案 ---------------------------------------1. 这⼀组图形我们应该从两⽅⾯来看:⼀是旗⼦的⽅向,⼆是旗⼦上星星的颗数.⾸先我们看⼀下旗⼦的⽅向?第1⾯旗⼦向右,第2⾯向上,第4⾯向下,可以发现,旗⼦的⽅向是按逆时针旋转的,并依次旋转90 ,所以第3⾯旗⼦应是第2 ⾯逆时针旋转90得来的,旗⼦应向下倒⽴.其次我们看旗上星星的颗数.第1⾯是5颗,第2⾯是4颗,第4⾯是2颗, 可见颗数是依次减少1颗,所以第3⾯旗上应是3颗星星.所以“?”处的图形应为:2. 这组图形的变化只在于正⽅形中阴影部分的位置.通过观察,我们可以发现阴影部分是按照逆时针⽅向依次旋转 90得到的.所以“?”处的图形应为:3. 选(4).因为变化规律是从左到右依次逆时针旋转 90 .4. 在这组图形中,不变的有以下⼏点:⼤⼩正⽅形不变,两条对⾓线不变. 所以“?”处也应有⼤⼩两个正⽅形和两条对⾓线.发⽣变化的有:⼀、阴影部分和⿊⾊部分的位置.通过观察,我们可以看出这两部分都是按逆时针⽅向依次旋转90得到的,所以“?”处的阴影部分应是⼩正⽅形的右边,⿊⾊部分应在⼤正⽅形的下部.⼆、⼩竖线的位置.⼩竖线是从图形中⼼到相应的边所作的⼀条垂线它的变化规律是按逆时针⽅向依次旋转 90 ,这样,整个图形我们就分析完了,下⾯看⼀看你画出的图形和书上的⼀样吗?如果⼀样,就做对了.①③5.因为要填的是第1幅图,我们可以从后往前看?⾸先三⾓形的个数是发⽣变化的,依次是7、5、3.可以发现是从后向前依次减少2个的.所以第1幅图中应有1个三⾓形?其次三⾓形的⽅向也是有变化的,从后⾯观察,三⾓形是按逆时针⽅向依次旋转90 ,所以第1幅图中的三⾓形应向上,阴影部分在右边.如下图所⽰:6.横⾏观察,圆的个数逐次减少1个,所以到第4⾏,圆的个数应为1,所以“ ?”处应是“△”.或者从三⾓形考虑,三⾓形的个数为0、1、2,是逐次增加1,所以第4⾏中三⾓形的个数应为3,所以“?”处应为“△”所以最后的图形为:7.选a.根据对⾓图形规律,可知右下⾓图形是a图.8.分析:先看不变的部分.在整个变化过程中,图形中⼤、⼩两个圆圈没有变化,因此可以肯定空⽩处的图形⼀定也有⼤、⼩两个圆圈,位置⼀⾥⼀外.变化的部分可为两部分:①图形中的直线部分,其变化规律是每次顺时针旋转90 ;②图形中的阴影部分,其变化规律是每次逆时针旋转 90 ,⿊⾊部分交替出现.解:根据上⾯的分析,可画出空⽩处的图形如图所⽰.9.先应找出变化的规律,然后再依此规律,在空⽩处填画出所缺的图形. 从第⼀⾏可以看到,当左边的图形变成右边的图形时,下部图形移到上⾯,⾥⾯的图形移到下⾯,上⾯的外部图形移到⾥⾯,各部分的颜⾊都没有变.根据这⼀规律,我们可以把下⾯图形变为:10.先看第1⾏,阴影部分所在的位置是1、2、3.是逐次向后⼀个,所以第四幅图中第1⾏的阴影部分应在第4格.同样,第2⾏是2、3、再向后应是5 了, 但没有第5个格,所以折回到第1个格.同理可推出第3⾏的阴影部分在第2格, 第4⾏的阴影部分在第3格.还可以这样想:在同⼀⾏中,阴影部分都不在同⼀位置,所以第1⾏已经被占去了第1、2、3格,所以第四幅图的第⼀⾏阴影部分⼀定是第4格,同理推出第2、3、4⾏中阴影部分的位置最后的答案如下图所⽰11. 致,车轮⼀致,车底⼀致,差异就只能在车头、分析:这五辆汽车车窗车⾝部分去寻找?从车⾝看,(3)与众不同,只⽤⼀笔画成,可是它的车头与(1)同;从车头看:(2)与众不同,(因车头(1)与⑶同,(4)与⑸同),但是⑵的车⾝与(1)、⑷、(5)类似.所以从车头、车⾝这些特征⽐较出来的图形,理由不⾜以说服⼈?我们把⽬光转移到笔划多少上,就可以找到与众不⼀的车辆了?解:与众不同的汽车是(1).其他四车均是由⼀个矩形、两个圆以及四条直线段、⼀段弧线画成,⽽(1)多⼀条直线段?12.这个题⽬并不难.但是,推理⽅法不正确的话,也很难看出答案.直接考虑数字1的对⾯是什么数,想不出来.不妨换⼀种思维⽅式,想⼀想1的对⾯不是什么数.从第1个图看出1的对⾯不是4和6;从第2个图看出1的对⾯不是2和 3,所以1的对⾯只能是5.同样的⽅法可以得到,4的对⾯是2;3的对⾯是6.13.因为正锥体的每个顶点连接三个⾯.当正锥体在雪花格纸上按顺时针⽅向旋转时,只有写有1、2、4三⾯所围出的顶点⼀直在雪花格的中⼼,所以只有1、2、4贴纸⾯旋转,雪花格有6个⼩格,正好可以转两圈,所以回到原地各⾯数字仍是原样分布.14.每⼀只⼩帆船都由三部分组成:船体、帆和⼩旗.这三部分都是变化的另外船体的颜⾊也是变化的.下⾯我们逐⼀来分析.V D2 ▽V v①船体的形状:帆船的船体都是由半圆、梯形、三⾓形组成,并且每⼀横⾏(或竖⾏)都没有重复.按照这⼀规律,我们可以确定船体的形状.因为①所在的位置横⾏、竖⾏都只有1个图形,所以不能确定,可以先确定②或③.看②所在的横⾏,船体形状只有和,缺,所以②的船体形状应为梯形.看①所在的竖⾏,有和,缺,所以①的船体形状为.看③所在的竖⾏,有和,缺,所以③的船体形状为 .②船体的颜⾊.每⼀横⾏(或竖⾏)都由阴影、⿊⾊、⽩⾊三⾊组成,并且在同⼀⾏中没有重复颜⾊,根据这⼀规律,确定出①号船体为⽩⾊,②号船体为⿊⾊,③号船体为⿊⾊?③帆船的形状.;④⼩旗的形状?:最后的答案为:①确定⽅法和前⾯⼀样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思维拓展《图形找规律》 :
一、填空题
1.下图是按照一定规律排列起来的,请按这一规律在“?”处画出适当的图形.
2.按照图形的变化规律,在“?”处画出相符的图形.
3.在图中找出与众不同的那个图形( ).
4.下图看似复杂,实际上只要你找到合适的方法,你就不费吹灰之力就可以解答出来,试试看,好吗?
5.请找一找图形的变化规律,在空格处画出恰当的图形.
6..
7.找一下规律,从a ,b ,c ,d ,e 中选入一幅图填入空格.
? 确定方法和前?
8.按照下列图形的变化规律,空白处应是什么样的图形.
9.按规律填图.
如果变成
那么
应变为
10.下面一组图形的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来.
二、解答题
11.图中,哪个图形与众不同?
(1) (2) (3) (4) (5)
12.有一个立方体,每个面上分别写上数字1、2、3、4、5、6、,有3个人
从不同的角度观察的结果如下图所示,这个立方体的每一个数字的对面各是什么数字?
13.下面是由几何图形组成的帆船图形,请按照一定的规律,在标序号处画出符合规律的小帆船.
?
?
1
2
6
1
3
4
———————————————答 案——————————————————————
1. 这一组图形我们应该从两方面来看:一是旗子的方向,二是旗子上星星的颗数.
首先我们看一下旗子的方向.第1面旗子向右,第2面向上,第4面向下,可以发现,旗子的方向是按逆时针旋转的,并依次旋转︒90,所以第3面旗子应是第2面逆时针旋转︒90得来的,旗子应向下倒立.
其次我们看旗上星星的颗数.第1面是5颗,第2面是4颗,第4面是2颗,可见颗数是依次减少1颗,所以第3面旗上应是3颗星星.所以“?”处的图形应为:
2. 这组图形的变化只在于正方形中阴影部分的位置.通过观察,我们可以发现阴影部分是按照逆时针方向依次旋转︒90得到的.所以“?”处的图形应为:
3. 选(4).因为变化规律是从左到右依次逆时针旋转︒90.
4. 在这组图形中,不变的有以下几点:大小正方形不变,两条对角线不变.所以“?”处也应有大小两个正方形和两条对角线.发生变化的有:一、阴影部分和黑色部分的位置.通过观察,我们可以看出这两部分都是按逆时针方向依次旋转︒90得到的,所以“?”处的阴影部分应是小正方形的右边,黑色部分应在大正方形的下部.二、小竖线的位置.小竖线是从图形中心到相应的边所作的一条垂线.它的变化规律是按逆时针方向依次旋转︒90,这样,整个图形我们就分析完了,下面看一看你画出的图形和书上的一样吗?如果一样,就做对了. ① ②

5. 因为要填的是第1幅图,我们可以从后往前看.首先三角形的个数是发生变化的,依次是7、5、3.可以发现是从后向前依次减少2个的.所以第1幅图中应有1个三角形.其次三角形的方向也是有变化的,从后面观察,三角形是按逆时针方向依次旋转︒90,所以第1幅图中的三角形应向上,阴影部分在右边.如下图所示:
6. 横行观察,圆的个数逐次减少1个,所以到第4行,圆的个数应为1,所以“?”处应是“△”.
或者从三角形考虑,三角形的个数为0、1、2,是逐次增加1,所以第4行中三角形的个数应为3,所以“?”处应为“△”
所以最后的图形为:
7. 选a .根据对角图形规律,可知右下角图形是a 图.
8. 分析:先看不变的部分.在整个变化过程中,图形中大、小两个圆圈没有变化,因此可以肯定空白处的图形一定也有大、小两个圆圈,位置一里一外.
变化的部分可为两部分:①图形中的直线部分,其变化规律是每次顺时针旋转︒90;②图形中的阴影部分,其变化规律是每次逆时针旋转︒90,黑色部分交替出现.
解:根据上面的分析,可画出空白处的图形如图所示.
9. 先应找出变化的规律,然后再依此规律,在空白处填画出所缺的图形. 从第一行可以看到,当左边的图形变成右边的图形时,下部图形移到上面,里面的图形移到下面,上面的外部图形移到里面,各部分的颜色都没有变.根据这一规律,我们可以把下面图形变为:
10. 先看第1行,阴影部分所在的位置是1、2、3.是逐次向后一个,所以第四幅图中第1行的阴影部分应在第4格.同样,第2行是2、3、4.4再向后应是5了,但没有第5个格,所以折回到第1个格.同理可推出第3行的阴影部分在第2格,第4行的阴影部分在第3格.
还可以这样想:在同一行中,阴影部分都不在同一位置,所以第1行已经被占去了第1、2、3格,所以第四幅图的第一行阴影部分一定是第4格,同理推出第2、3、4行中阴影部分的位置.
.
11. ,车轮一致,车底一致,差异就只能在车头、车身部分去寻找.从车身看,(3)与众不同,只用一笔画成,可是它的车头与(1)同;从车头看:(2)与众不同,(因车头(1)与(3)同,(4)与(5)同),但是(2)的车身与(1)、(4)、(5)类似.所以从车头、车身这些特征比较出来的图形,理由不足以说服人.我们把目光转移到笔划多少上,就可以找到与众不一的车辆了.
解:与众不同的汽车是(1).其他四车均是由一个矩形、两个圆以及四条直线段、一段弧线画成,而(1)多一条直线段.
12. 这个题目并不难.但是,推理方法不正确的话,也很难看出答案.直接考虑数字1的对面是什么数,想不出来.不妨换一种思维方式,想一想1的对面不是什么数.从第1个图看出1的对面不是4和6;从第2个图看出1的对面不是2和3,所以1的对面只能是5.同样的方法可以得到,4的对面是2;3的对面是6.
13. 因为正锥体的每个顶点连接三个面.当正锥体在雪花格纸上按顺时针方向旋转时,只有写有1、2、4三面所围出的顶点一直在雪花格的中心,所以只有1、2、4贴纸面旋转,雪花格有6个小格,正好可以转两圈,所以回到原地各面数字仍是原样分布.
14.每一只小帆船都由三部分组成:船体、帆和小旗.这三部分都是变化的, 另外船体的颜色也是变化的.下面我们逐一来分析.
①船体的形状:帆船的船体都是由半圆、梯形、三角形组成,并且每一横行(或竖行)都没有重复.按照这一规律,我们可以确定船体的形状.因为①所在的位置横行、竖行都只有1个图形,所以不能确定,可以先确定②或③.看②所在的横行,船体形状只有和 ,缺 ,所以②的船体形状应为梯形.看①所在的竖行,有和 ,缺 ,所以①的船体形状为 .看③所在的竖行,有和 ,缺 ,所以③的船体形状为 .
②船体的颜色.每一横行(或竖行)都由阴影、黑色、白色三色组成,并且在同一行中没有重复颜色,根据这一规律,确定出①号船体为白色,②号船体为黑色,
③号船体为黑色.
③帆船的形状. ④小旗的形状. 最后的答案为:

确定方法和前面一样
.。

相关文档
最新文档