Workbench-Fluent流固耦合分析

合集下载

fluent流固耦合不传热的原因

fluent流固耦合不传热的原因

Fluent流固耦合不传热的原因引言Fluent流固耦合是指在流体流动过程中,与固体表面接触并产生相互作用的现象。

在某些情况下,流固耦合过程中不会传递热量。

本文将探讨这种现象的原因,并对其进行全面、详细、完整且深入的讨论。

流固耦合的概念流固耦合是指流体流动与固体结构相互作用的过程。

在这种过程中,流体对固体表面施加压力,而固体则对流体施加阻力。

这种相互作用会导致流体和固体之间的能量交换,通常包括传热、传质和传动量。

为何不传热然而,在某些情况下,流固耦合过程中不会传递热量。

以下是一些可能的原因:1. 温度差异较小当流体与固体接触时,温度差异较小可能是不传热的原因之一。

如果流体和固体的温度非常接近,热量传递的效率将非常低。

这是因为热量传递是由温度差异驱动的,如果温度差异很小,热量传递将会非常缓慢。

2. 界面热阻较大界面热阻是流体和固体之间热量传递的阻碍。

当界面热阻较大时,流体和固体之间的热量传递将会受到限制。

这可能是由于界面间的接触面积小或者存在不良的热传导路径。

在这种情况下,即使存在温度差异,热量也无法有效地传递。

3. 热量转化为其他形式的能量在一些情况下,流固耦合过程中的热量可能会转化为其他形式的能量,而不是传递给固体或流体。

例如,在流体流动过程中,热量可能被转化为流体的动能,从而增加了流体的速度。

在这种情况下,热量并不会传递给固体。

4. 流体和固体之间的不完全接触如果流体和固体之间存在一定的间隙或不完全接触,热量传递将会受到限制。

在这种情况下,流体和固体之间的能量交换将主要通过传动量的形式进行,而不是通过传热。

结论在某些情况下,流固耦合过程中不会传递热量的原因可能是温度差异较小、界面热阻较大、热量转化为其他形式的能量或流体和固体之间的不完全接触。

这些原因可能单独或同时存在,导致热量无法有效地传递。

对于理解流固耦合现象以及相关工程问题的解决具有重要意义。

参考文献1.Smith, J. A. (2010). Fluid–structure coupling in computationalfluid dynamics. Annual Review of Fluid Mechanics, 42, 413-440. 2.Wang, L., & Liu, Y. (2018). A review on fluid–structureinteraction in microfluidic systems. Microfluidics andNanofluidics, 22(7), 1-25.3.Zhang, Y., & Qu, W. (2019). Fluid–Structure Interaction of aTethered Cylinder in Turbulent Channel Flow. Journal of FluidsEngineering, 141(3), 031102.。

fluent 流固耦合

fluent 流固耦合

fluent 流固耦合介绍在物理学和工程领域中,流固耦合是指涉及流体与固体之间相互作用的问题。

流固耦合分析是一种综合考虑固体机械结构和流体力学行为的方法。

通过对流体和固体之间的相互作用进行建模和分析,可以更准确地预测各种物理过程和现象的发生和演化。

本文将深入探讨流固耦合的相关概念、方法和应用。

流固耦合的基础理论流体力学基础1.流体的性质–流体的连续性假设–流体的黏性与非黏性–流体的压缩性与非压缩性2.流体力学方程–质量守恒方程–动量守恒方程–能量守恒方程3.流体的边界条件–定义速度边界条件–定义压力边界条件–定义温度边界条件固体力学基础1.固体的性质–固体的应力和应变–固体的弹性与塑性–固体的线性与非线性2.固体力学方程–应力-应变关系–力学平衡方程–边界条件的定义3.固体材料的本构关系–线性弹性本构关系–线性塑性本构关系–非线性本构关系流固耦合的数值模拟方法1.有限差分法2.有限元方法3.边界元方法4.网格方法5.颗粒法流固耦合的应用领域汽车工程1.车辆风阻与空气动力学特性2.燃料注射与燃烧过程3.轮胎与路面的相互作用4.车身结构的振动与噪音特性航空航天工程1.飞行器的气动力学性能2.发动机与燃气轮机的热力学分析3.空气动力装置的设计与优化4.相空间推进器的工作原理与优化能源与环境工程1.燃烧过程与排放特性分析2.石油、天然气与水力能源的开发3.太阳能与风能的利用与储存4.水动力与水文模型的建立与分析生物医学工程1.血流动力学与心脏瓣膜病的研究2.器官移植与人工假肢的设计3.细胞生长与组织工程的模拟与优化4.医用材料与医疗器械的性能测试与分析结论通过对流体力学和固体力学的相互作用进行建模和模拟,流固耦合分析能够更准确地预测各种物理过程和现象的发生和演化。

在不同的工程领域中,流固耦合分析都具有重要的应用价值。

通过不断改进和创新流固耦合分析的方法和技术,可以进一步推动工程领域的发展和进步。

流固耦合分析作为一种综合应用的方法,在未来的研究和实践中,将继续发挥重要的作用。

workbench流固耦合控制方程

workbench流固耦合控制方程

workbench流固耦合控制方程
在流固耦合问题中,可以使用强度假设来刻画流体和固体之间的相互作用。

假设流体是可压缩的、不可旋转的、具有牛顿流体性质的连续介质,固体是线性弹性的、各向同性的、具有线弹性行为的材料。

流固耦合控制方程可以表示为以下形式:
质量守恒方程:
∂ρ/∂t + ∇·(ρv) = 0
动量守恒方程:
ρ(∂v/∂t + v·∇v) = ∇·σ + f
其中,ρ是流体的密度,v是流体的速度,σ是固体的应力张量,f是外部施加在固体上的体力密度。

流体在固体表面施加的力可以通过应力张量的边界条件获得。

弹性固体的应力张量可以通过胡克定律获得:
σ = λ·Tr(ε)·I + 2·μ·ε
其中,λ和μ是固体的弹性参数,Tr(ε)是应变张量的迹,I是单位张量,ε是固体的应变张量,可以通过速度梯度来计算:ε = (∇v + ∇v^T)/2
流体的速度和压力之间存在一个Poisson方程来建立联系:∇·v = 0
通过以上方程组,可以求解流固耦合问题,确定流体和固体的
耦合行为。

具体求解方法可以采用有限差分法、有限元法或其他数值方法进行离散化和求解。

ANSYSWorkbench流-固耦合计算方法解析

ANSYSWorkbench流-固耦合计算方法解析

ANSYSWorkbench流-固耦合计算方法解析流-固耦合主要研究流体流动导致结构变形,而结构变形可能会影响流体流动。

基于ANSYS Workbench可以实现单向和双向流固耦合,而且可以处理结构发生大变形的双向流固耦合计算,流固耦合计算的典型应用包括,机翼颤振,管道振动,导线覆冰振动,含流体容器晃动,结构跌落入水冲击,柔性结构扰流振动等。

目前,ANSYS版本已经更新到了2023R1,各类流固耦合计算功能,更加完善,操作使用更加方便,对于流固耦合根据耦合方式可以分为:(1)单向耦合。

A场对B场有影响,而B场对A场没有影响,常见的问题就是热应力计算,一般的热应力计算中,只考虑温度对结构的影响,而忽律结构变形对温度场的影响;(2)双向耦合。

A场对B场有影响,而B场对A场也有影响,例如气动颤振问题,流场对结构的变形有影响,反过来结构变形也会影响流场。

ANSYS目前主要提供了四种流固耦合仿真策略:(1)Fluent+结构模块(稳态或瞬态)该方法可以完成各类稳态或瞬态的单向流固耦合计算,计算效率高,数据传递稳定,例如,各类流体载荷导致的结构变形和应力,结构在流体作用下的小变形振动等。

(2)Fluent+结构模块(稳态或瞬态)该方法在Fluent中完成流场求解,获得流场的压力;在结构模块(稳态或瞬态)完成固体场求解,获得变形,然后通过系统耦合器完成数据的交互传递,该方法,即可以完成单向流固耦合计算,也可以完成双向流固耦合计算,但是在同一时刻,只有一个场在求解,双向流固耦合的求解时间较长。

(3)基于LS-DYNA软件完成流固耦合计算LS-DYNA支持ICFD求解器与其自身的固体力学求解器之间的耦合。

ICFD求解器适用于五大行业多物理场应用:•汽车行业,LS-DYNA传统应用领域,ICFD可针对热-结构耦合的外部空气动力学分析提供解决方案;•制造行业,ICFD可应用于冷却相关分析,例如金属冲压,电池组的冷却等;•能源行业,尤其是风能行业。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例摘要:I.引言- 介绍fluent 软件和流固耦合传热算例II.流固耦合传热的基本概念- 解释流固耦合传热- 说明流固耦合传热在工程领域的重要性III.fluent 软件介绍- 介绍fluent 软件的背景和功能- 说明fluent 软件在流固耦合传热计算方面的应用IV.流固耦合传热算例- 介绍一个具体的流固耦合传热算例- 详细描述算例的步骤和结果V.结论- 总结流固耦合传热算例的重要性- 提出进一步研究的建议正文:I.引言fluent 软件是一款专业的流体动力学模拟软件,广泛应用于航空航天、汽车制造、能源等行业。

在fluent 中,流固耦合传热是一个重要的计算功能。

本文将介绍fluent 软件和流固耦合传热算例,并通过一个具体的算例详细说明流固耦合传热在工程领域中的应用。

II.流固耦合传热的基本概念流固耦合传热是指在流体流动过程中,由于流体和固体壁面之间的温度差而产生的热传递现象。

在实际工程中,流体和固体之间的热传递过程往往是非常复杂的,需要通过数值模拟来进行分析。

fluent 软件提供了一种流固耦合传热计算的功能,可以帮助工程师更好地理解和优化工程过程中的热传递现象。

III.fluent 软件介绍fluent 软件由美国ANSYS 公司开发,是一款功能强大的流体动力学模拟软件。

fluent 软件可以模拟多种流体流动和传热现象,包括稳态和瞬态模拟、层流和紊流模拟、等温、绝热和热传导模拟等。

在fluent 中,用户可以自定义模型和求解器,以满足不同工程需求。

在流固耦合传热方面,fluent 软件提供了一种耦合求解器,可以将流体流动和固体传热两个问题同时求解。

这种耦合求解器可以大大提高计算效率,并更好地模拟实际工程中的热传递过程。

IV.流固耦合传热算例下面我们通过一个具体的算例来说明fluent 软件在流固耦合传热计算方面的应用。

算例描述:一个矩形通道中,流体流动与固体壁面的热传递过程。

fluent流固耦合设定

fluent流固耦合设定

fluent流固耦合设定一、什么是流固耦合设定?流固耦合是指流体和固体之间相互作用的过程。

在工程领域中,很多问题涉及到流体与固体的相互作用,例如水下管道的抗风荷载、风力发电机的叶片动力响应等。

在这些问题中,不能简单地将流体和固体分离开来考虑,而是需要将它们作为一个整体进行计算。

因此,流固耦合设定就是在计算流体和固体相互作用问题时,将它们进行耦合设定,使它们之间的相互作用能够得到准确的计算和分析。

流固耦合设定是一种数值模拟方法,通过对流体和固体的运动方程和力学方程进行求解,来模拟流体和固体在相互作用过程中的行为。

在流固耦合设定中,流体和固体之间存在力的作用,当流体流过固体时,会对固体施加压力,而固体对流体也会产生阻力。

通过将流体和固体的运动方程相互耦合,可以模拟流体流经固体体积或表面时产生的力和位移。

流固耦合设定可以用于研究湍流、热传导、质量传输等问题,广泛应用于航空航天、水利水电、化工等领域。

二、流固耦合设定的应用领域1. 航空航天工程在航空航天工程中,流固耦合设定被广泛应用于飞行器的气动弹性研究。

在设计飞行器时,需要考虑飞行器的结构是否能够在气动载荷下安全运行。

通过流固耦合设定,可以模拟飞行器在不同空速下的气动载荷,并研究飞行器结构在不同载荷作用下的动力响应。

这有助于优化飞行器的结构设计,提高飞行器的飞行性能和安全性。

2. 水利水电工程在水利水电工程中,流固耦合设定被用于模拟水下建筑物的抗风荷载。

水下建筑物如海底管道、海底电缆等在受到风、流的作用时,会产生振动和应力,可能导致结构破坏。

通过流固耦合设定,可以模拟水下建筑物在风、流作用下的动态响应,为水下工程的设计和施工提供可靠的依据。

3. 化工工程在化工工程中,流固耦合设定被用于模拟颗粒流体化的过程。

例如在粉煤灰输送管道中,颗粒和气体同时存在的情况下,可以使用流固耦合设定来模拟颗粒的运动轨迹和流体的流动状态。

这对于优化输送管道的设计和操作参数的选择非常有帮助。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例【原创实用版】目录1.Fluent 流固耦合传热简介2.Fluent 软件的应用范围3.流固耦合传热的算例分析4.Fluent 软件在流固耦合传热中的应用技巧5.总结正文一、Fluent 流固耦合传热简介流固耦合传热是一种复杂的热传递过程,涉及到流体和固体之间的相互作用。

在这种过程中,流体与固体之间的热传递机制和热流动特性都需要考虑。

Fluent 是一款强大的计算流体力学(CFD)软件,可以模拟流固耦合传热过程,为研究人员和工程师提供可靠的解决方案。

二、Fluent 软件的应用范围Fluent 软件广泛应用于各种流体动力学问题的仿真和分析中,包括流固耦合传热问题。

它可以模拟多种流体流动和传热模式,如强制对流、自然对流和湍流等。

同时,Fluent 也可以考虑固体的热传导和热膨胀等特性,为研究者提供全面的热传递分析手段。

三、流固耦合传热的算例分析在 Fluent 中,可以通过设置耦合界面和热流边界条件来模拟流固耦合传热问题。

例如,可以考虑一个流体与固体相接触的系统,通过调整流体和固体的热传导系数、对流换热系数等参数,观察不同条件下的热传递特性。

四、Fluent 软件在流固耦合传热中的应用技巧为了获得准确的仿真结果,需要注意以下几点:1.网格划分:在仿真中,需要对流体和固体部分进行适当的网格划分,以确保计算精度。

2.耦合设置:在设置耦合界面时,需要选择正确的耦合方式,如耦合热流或耦合应力等。

3.边界条件:在设置热流边界条件时,需要考虑流体与固体之间的热交换方式,如对流换热或传导换热等。

4.物质属性:需要正确设置流体和固体的物质属性,如比热容、密度和热传导系数等。

五、总结Fluent 软件在流固耦合传热方面的应用具有广泛的实用性,可以模拟各种复杂的热传递过程。

fluent单项流固耦合

fluent单项流固耦合

流固耦合(Fluid-solid interaction,FSI)计算,通常用于考虑流体与固体间存在强烈的相互作用时,对流体流场与固体应力应变的考察。

FSI计算按数据传递方式可分两类:单向耦合与双向耦合。

所谓单向耦合,主要是指数据只从流体计算传递压力到固体,或者只从固体计算传递网格节点位移到流体。

双向耦合则在每一时刻都同时向对方发送相应的物理量(流体计算发送压力数据,固体计算发送位移数据)。

ANSYS Workbench中可以利用Fluent与DS进行单向流固耦合计算。

我们这里来举一个最简单的单向耦合例子:风吹挡板。

我们假定挡板位移可忽略不计,固体变形对流场影响可以忽略,所考虑的是流体压力作用在固体上,固体的应力分布。

当然这里的压力可以换成温度等其他物理量。

1、新建工程。

注意是从Fluent –> Static Structure。

连接图如1所示。

图1 计算工程关系图2 进入DM建模2、进入Fluent中的DM进行模型创建,如图2所示。

流固耦合计算中的几何模型与单纯的流体模型或固体模型不同,它要求同时具有流体和固体模型,而且流体计算中只能有流体模型,固体计算中只能有固体模型。

建好后的模型如图3,4,5所示。

由于固体模型需要从这里导入,所以我们保留固体与流体模型。

图3 实体模型图4 固体模型图5 流体模型3、进入FLUENT网格设置。

在FLUENT工程视图中的Mesh上点击右键,选择Edit…,如图6所示,进入网格划分meshing界面,如图7所示。

我们这里需要去掉固体部分,只保留流体几何。

图6 进入网格划分图7 禁用固体模型4、设置网格方法。

我们采用ICEM CFD进行网格划分,具体方法参看上一篇博客。

设置方式如图8所示,ICEM CFD中的网格如图9所示。

图8 设置网格划分方式图9 最终生成网格5、在meshing中更新网格关闭icem cfd后自动回到model界面。

我们在mesh上点击右键,选择update 进行更新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度 云图
4
关闭Fluent窗口,返回project schematic界面,右击B Fluent project/Solution →Transfer data to new → static structural, 出现新 的C project, 然后鼠标左击A的Geometry并按住不放,拖放到C的 Geometry上松鼠标,这样出现连接线,A的Geometry可以传递到C中。
Fluent计算的温度载荷就插值到新划分的有限元网格上。
6 添加约束,计算。 这仅是个简单演示,具体问题还要涉及到定义材料塑性应力应变数据, 分析的非线性设置,接触的设置等等。
2 关掉Geometry,双击Mesh打开新窗口,按如下设置。
自动创建流固耦合面,将在Fluent里自动设置为 interface
划分固体网格和流体 网格,因为是有限体 积法,所以单元边不 带中间节点
Named selections命令分别创建 Inlet, outlet和wallout. Wallout用来 定义固体外表面与环境的对流换 热边界条件
3
关闭Meshing 窗口返回到project schematic界面,右击Mesh→Transfer Data To New → Fluent, 将建立Fluent的分析项目。 此时Mesh后面变为闪电符号,需右击它再点菜单中update
双击Setup,打开Fluent窗口, 设置材料、流相固相、激活 能量方程、湍流模型、边界 条件等。进口流速1m/s, 600K, 出口0pa,wallout定义对 流换热系数5,环境温度 300K。 右击点update,闪 电符号变为勾号
ANSYS Workbench+Fluent 流固 耦合温度插值方法
以前本人发了一个贴子,关于Fluent计算的温度如何传递到结构网格上,该 方法已经过时,由于ANSYS Workbench功能的日益强大,建议使用更好、 更 box/component systems里选mesh,空白区出现如 下图,然后双击Geometry,导入几何模型,这是一个外部固体包裹内部管流的 简单模型,仅用于演示步骤。任选一个Part, 在Details of Body里有个选项 Fluid/Solid,需要分别定义好流体和固体
5 双击C的model,打开分析窗口,创建网格,关键:在Static structural下面有 imported Load(solution), 右击insert → Body Temperature, 会出现进度条, 稍等则在左下角出现下列图片,Geometry选中固体,CFD Domain选Solid,此 时Imported Body Temperature前出现闪电符号,右击选Import Load,
相关文档
最新文档