生物化学的概念(1)
854生物化学基础背诵手册

854生物化学基础背诵手册摘要:一、前言二、生物化学基本概念1.生物化学定义2.生物化学的研究内容三、生物化学的主要分支1.蛋白质化学2.核酸化学3.碳水化合物化学4.脂类化学5.生物氧化与能量代谢6.生物信息传递7.基因工程与蛋白质工程四、生物化学在医学和生物技术中的应用1.疾病诊断2.药物研发3.生物技术产业五、生物化学研究方法1.化学分析法2.生物物理方法3.生物化学实验技术六、我国生物化学发展概况1.发展历程2.研究成果及应用3.未来发展趋势正文:【前言】生物化学作为生命科学的一个重要分支,主要研究生物体内的化学组成、化学反应和物质代谢等基本问题。
随着科学技术的进步,生物化学在医学、农业、环境保护等领域发挥着越来越重要的作用。
本文将对生物化学的基本概念、主要分支以及在我国的发展情况进行简要介绍。
【生物化学基本概念】生物化学是研究生物体的化学组成、化学反应和物质代谢等基本规律的科学。
生物化学的研究内容主要包括生物大分子的结构与功能、生物能学、生物信息传递、基因工程等方面。
【生物化学的主要分支】生物化学主要包括以下几个分支:1.蛋白质化学:研究蛋白质的组成、结构、功能及其在生命活动中的作用。
2.核酸化学:研究核酸的组成、结构、功能及其在遗传信息传递中的作用。
3.碳水化合物化学:研究碳水化合物的组成、结构、功能及其在生物体内的代谢过程。
4.脂类化学:研究脂类的组成、结构、功能及其在生物体内的作用。
5.生物氧化与能量代谢:研究生物体内氧化还原反应、能量的产生和利用以及物质代谢的途径和调控。
6.生物信息传递:研究生物体内遗传信息、信号传导、生长调控等方面的化学本质。
7.基因工程与蛋白质工程:研究基因和蛋白质的结构、功能及其在生物工程中的应用。
【生物化学在医学和生物技术中的应用】生物化学在医学和生物技术领域具有广泛的应用价值。
例如,在疾病诊断方面,可以通过生物化学方法检测生物样本中的生物标志物,为临床诊断提供依据;在药物研发方面,生物化学可以帮助研究人员筛选活性化合物、研究药物作用机制等;在生物技术产业方面,生物化学在基因工程、蛋白质工程等领域发挥着关键作用。
生物化学复习重点-自整

1.生物化学的概念P1是研究生物体的化学组成和生命过程中的化学变化规律的一门科学。
具体来讲,它是从分子水平来研究生物体(包括人类、动物、植物、微生物)内基本物质的化学组成、结构及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。
2. 生物化学研究的基本内容P1静态生化:研究生物体内物质的化学组成、结构、性质、功能及结构与功能的关系。
发现和阐明构成生命物体的分子基础——生物分子的化学组成、结构和性质。
生物分子的结构、功能与生命现象的关系。
动态生化:研究生物体内物质代谢(新陈代谢)、能量转变及其调控机理生物分子在生物体中的相互作用及其变化规律。
蛋白质的化学3.组成蛋白质的元素P62主要有C(50-55)、H(6-8)、O(19-24)、N(13-19)和S。
有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
4.凯式定氮法及蛋白质含量计算凯氏定氮法是测定化合物或混合物中总氮量的一种方法。
即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气馏出并为过量的酸液吸收,再以标准碱滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
各种蛋白质的含氮量很接近,平均为16%。
蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数×6.25×100即蛋白质的含量= 蛋白质含氮量× 6.255.氨基酸结构通式P63存在自然界中的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外)-氨基酸:各种氨基酸的区别在于侧链R基的不同。
20种基本氨基酸按R的极性可分为非极性氨基酸、极性性氨基酸、酸性氨基酸和碱性氨基酸按R基极性分两类:极性AA:11种亲水性丝、苏、酪甘半光非极性AA:9种疏水性按水溶性酸碱性分为三类:1、中性AA(有极性与非极性15种):2、酸性AA(2种):天冬氨酸、谷氨酸3、碱性AA(3种):组、赖、精谷氨酸:甘氨酸:丝氨酸:半胱氨酸组氨酸6.氨基酸的化学性质P65★两性解离: 等电点:在某一pH环境中,氨基酸解离成阳性离子及阴性离子的趋势相等,所带净电荷为零,在电场中不泳动。
生物化学的概念

第五节
学习方法
1972 Berg(美)在基因工 程基础研究方面作出了杰出 成果,获1980年诺贝尔奖。 1973 Cohen等(美)用核 Paul Berg 酸限制性内切酶EcoR1,首 次基因重组成功。
Herbert Boyer Stanley Cohen
2001 Venter(美)等报道完成了人类基因组草图测序。
三、生物化学的分支
人们根据研究对象、目的和需要的不同,创立了 不同的生物化学学科分支。 1.依代谢过程分:静态生物化学、动态生物化学。 2.依研究对象分:植物生物化学、动物生物化学、 微生物化学、医用生物化学、病理生物化学、食品 生物化学。 3.依学科交叉又分:生物物理化学、量子生物学。
动
植
物 生物学 物
学
学
微生物学化学生物Fra bibliotek化生物学
学
第四节
生化魅力
有用
所有生物学科都不是孤立的,而是相互联系、 相互补充、相互渗透,其基础就是“生命的化 学语言”。换而言之,生物化学是联系生物学 科之间的桥梁。
有趣
可实现许多个人愿望。
可成名
20世纪Nobel生理学、化学奖中半数以上在生物 化学领域取得重大突破
可获利
1890-1902 Fischer(德)首次证 明了蛋白质是多肽;发现酶的专一 性,提出并验证了酶催化作用的 “锁-匙”学说;合成了糖及嘌呤。 1902年获诺贝尔奖。
生物化学的创始人埃米尔·费舍尔(Emil Fischer).0-- -
1937年 Krebs(英) 发现三羧酸循环, 1953年获诺贝尔奖。
生物体的化合物组成有:糖类、脂类、蛋白质、 核酸、维生素、激素、 水、无机盐等8类,。
生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry)就是利用化学的原理与方法去探讨生命的一门科学,它就是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:就是生物化学发展的萌芽阶段,其主要的工作就是分析与研究生物体的组成成分以及生物体的分泌物与排泄物。
2.动态生物化学阶段:就是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程就是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也就是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)就是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu与Asp);④碱性氨基酸(Lys、Arg与His)。
二、肽键与肽链:肽键(peptide bond)就是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
生物化学重点内容

生物化学重点内容生物化学重点内容第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法探讨生命活动规律的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述(静态)生物化学阶段:是生物化学发展的萌芽阶段,该阶分析和研究组成生物体的各种化学成分,以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的阶段,这一阶段段的主要工作是研究生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:是现代生物化学阶段,这一阶段的主要研究任务是探讨各种生物大分子的结构和功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢等几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质化学一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经缩水而形成的特殊酰胺键(-CO-NH-)。
生物化学讲义

第一章绪论一、生物化学的概念生物化学是从分子水平研究生物体中各种化学变化规律的科学;因此生物化学又称为生命的化学简称:生化,是研究生命分子基础的学科;生物化学是一门医学基础理论课;二、生物化学的主要内容1.研究生物体的物质组织、结构、特性及功能; 蛋白质、核酸2.研究物质代谢、能量代谢、代谢调节;研究糖、脂、蛋白质、核酸等物质代谢、代谢调节等规律,是本课程的主要内容;3.遗传信息的贮存、传递和表达,研究遗传信息的贮存、传递及表达、基因工程等,是当代生命科学发展的主流,是现代生化研究的重点;三、生物化学的发展史四、生物化学与健康的关系生化是医学的基础,并在医、药、卫生各学科中都有广泛的应用;本课程不仅是基础医学如生理学、药理学、微生物学、免疫学及组织学等的必要基础课,而且也是医学检验、护理等各医学专业的必修课程;五、学好生物化学的几点建议1.加强复习有关的基础学科课程,前、后期课程有机结合,融会贯通、熟练应用;2.仔细阅读、理解本课程的“绪论”,了解本课程重要性,激发起学习生物化学的兴趣和求知欲望;3.每次学习时,首先必须了解教学大纲的具体要求,预读教材,带着问题进入学习;4.学习后及时做好复习,整理好笔记;5.学生应充分利用所提供的相关网站,从因特网上查找学习资料,提高课外学习和主动学习的能力;6.实验实训课是完成本课程的重要环节;亲自动手,认真、仔细完成每步操作过程,观察各步反应的现象,详细、科学、实事求是地记录并分析实验结果,独立完成实验报告;第一章蛋白质的化学一、蛋白质的分子组成一蛋白质的元素组成蛋白质分子主要元素组成:C、H、O、N、S;特征元素:N元素含量比较恒定约为16%故所测样品中若含1克N,即可折算成克蛋白质;实例应用二组成蛋白质的基本单位——氨基酸AA一编码氨基酸的概念和种类:蛋白质合成时受遗传密码控制的氨基酸,共有20种二氨基酸的结构通式:L-α-氨基酸甘氨酸除外三氨基酸根据R基团所含的基团,可分为酸性氨基酸羧基、碱性氨基酸氨基及其衍生基团和极性的中性氨基酸羟基、巯基和酚羟基;二、蛋白质的结构与功能一蛋白质的基本结构1.肽键和肽1肽键:一个氨基酸的α-羧基与另一氨基酸的α-氨基脱水缩合而成的共价键称肽键,肽键是蛋白质分子中氨基酸之间相互连接的主键;2肽:氨基酸通过肽键而成的化合物称肽;3生物活性肽2.蛋白质的一级结构概念:蛋白质肽链中氨基酸残基的排列顺序,是蛋白质分子的基本结构;意义:是空间结构及其功能的基础;实例分析:胰岛素、分子病等二蛋白质的空间结构蛋白质在一级结构的基础上进一步折叠、盘曲而成的三维结构,又称构象;维系空间结构的化学键:氢键、盐键、疏水键和二硫键等空间结构可分下列层次:1.蛋白质的二级结构α-螺旋、β-折叠、β-转角和无规卷曲;2.蛋白质的三级结构特点是多肽链中疏水的氨基酸一般集中在分子内部;有些蛋白质仅有一条三级结构的多肽链,其表面可形成活性中心,具有活性;3.蛋白质的四级结构亚基的概念、数目、种类三、蛋白质的理化性质和分类一、蛋白质的理化性质1.两性电离与等电点蛋白质是两性离子,其分子所带电荷受环境pH的影响;蛋白质的等电点:蛋白质分子呈电中性时的溶液pH值称蛋白质的等电点pI;1蛋白质在pH小于其等电点的溶液中呈阳离子,2蛋白质在pH大于其等电点的溶液中呈阴离子,3蛋白质在pH和其等电点相同的溶液中不带电,此时溶解度最低,易于沉淀析出;临床应用:电泳技术电泳:带电颗粒在电场中朝与其所带电荷相反的方向泳动,称电泳electrophoresis;电泳技术是目前分离、提纯、鉴定蛋白质最常用的方法之一;2.蛋白质的亲水胶体性质临床应用:盐析salt precipitaion、有机溶剂沉淀法3.蛋白质的沉淀1盐析法2有机溶剂沉淀法3生物碱试剂法4重金属沉淀法4.蛋白质的变性:蛋白质在理化因素作用下,使蛋白质分子的空间结构破坏,理化性质及生物学活性丧失的过程;引起蛋白质变形的因素:举例:物理因素、化学因素和生物因素变性的本质:非共价键断裂,使蛋白质分子从严密有规则的空间结构变成松散紊乱的结构状态;蛋白质变性的实际应用举例:应用变性的实例、防止变性的实例5.紫外吸收性质及呈色反应在280 nm具有紫外吸收的特点临床应用:用280nm 吸收值测定对蛋白质进行定性和定量;二蛋白质的分类1.按分子形状分类球状蛋白质、纤维状蛋白质2.按组成分类单纯蛋白质、结合蛋白质第二章核酸的化学核酸的分类、分布与生物学功能一组成成份1.碱基 A G C U T2.戊糖3.磷酸比较两类核酸的化学组成组成成分DNA RNA磷酸磷酸磷酸戊糖2-脱氧核糖核糖碱基 A G C T A G C U二组成核酸的基本单位——核苷酸1.核苷2.核苷酸二、核酸的分子结构一核酸分子的一级结构二核酸分子的空间结构1.DNA的二级结构——双螺旋结构,其主要特点是:1两条链方向相反、相互平行、主链是磷酸戊糖链,处于螺旋外侧;2碱基在螺旋内侧并配对存在,A与T配对的G与C配对,A与T之间二个氢键相连A-T,G与C之间三个氢键相链G-C;3螺旋直径2nm,二个碱基对平面距,10bp为一螺距,距离为;4稳定因素主要是碱基之间的氢键和碱基对平面之间的堆积力;DNA的二级结构的生物学意义:1提出了遗传信息的贮存方式、DNA的复制机理2是DNA复制、转录和翻译的分子基础2.RNA的空间结构tRNA二级结构特点:呈三叶草形,有三环四臂;第三章酶一、酶的概述一酶的概念1.酶的定义:酶是由活细胞产生的生物催化剂,本质为蛋白质,具有高度专一性和高效的催化作用;2.酶促反应、底物和作用物二酶促反应的特点1.高度的催化效率在常温常压及中性pH条件下,酶比一般催化剂的催化效率高107 -1013 倍;2.高度催化专一性酶对所作用的底物有严格的选择性,从酶对底物分子结构要求不同,可分三种专一性:1对专一性:一种E只能催化一种S 脲酶2相对专一性:一种E只能催化一类S 一种化学键/水解酶类3立体异构专一性:一种E只能催化一种S的某一种特定构型LDH --- 乳酸脱氢酶3.高度的不稳定性易受变性因素影响而失活二、酶的结构与功能一酶的分子组成1.单纯蛋白酶如蛋白酶、淀粉酶、脂酶等水解酶;2.结合蛋白酶:酶蛋白+ 辅助因子结合成全酶才有活性1酶蛋白:决定催化反应的特异性选择E催化的S2辅助因子:决定催化反应的类型递电子、氢或一些基团主要有金属离子和有机小分子辅基/辅酶参与组成二酶的活性中心与必需基团1.活性中心:存在于酶分子表面的局部空间区域构象,由必需基团所组成功能:结合底物并催化底物进行反应2.必需基团:与酶活性中心有关的功能基团酶发挥催化作用所需要基团,一般指分布在酶分子表面的极性基团,包括-COOH、-NH2、-OH、 -SH、咪唑基等;功能:在活性中心内活性中心的组份——有结合基团和催化基团在活性中心外——维持构象稳定三酶原与酶原激活1.概念:在细胞内合成或初分泌时,只是酶的无活性前体——酶原2.酶原激活:在一定条件下,使酶原转化成活性的酶,称酶原的激活;酶原激活的过程通常是在酶原分子中切除部分肽段,从而有利于酶活性中心的形成或暴露;3.意义:在特定条件下被激活,可调节代谢、保护自体避免细胞自身消化,保持血流畅通许多蛋白水解酶如消化腺分泌的蛋白酶、参于血液凝固的酶和溶解纤维蛋白凝块的酶均以酶原形式存在,发挥作用前需先经过加工;实例:胰蛋白酶原激活四同工酶1.概念:催化功能相同,但酶蛋白的组成与结构等均不同的一组酶特点:a. 存在于同一种属或同一个体的不同组成或同一组织同一细胞中;b. 一级结构不同,理化性质包括带电性质不同,免疫学性质不同,但空间结构中的活性中心相同或相似;c. 往往是四级结构的酶类;d. 已发现一百多种酶具有同工酶性质;发现最早研究最多的是乳酸脱氢酶,它有五种同工酶;临床测定同工酶酶谱的变化,多用于疾病的诊断和鉴别诊断;2.组成、分型、分布、命名和医学应用以乳酸脱氢酶为例:LDH是由2种亚基组成的四聚体,共有5种分型;LDH同工酶在诊断中的意义:心肌炎:LDH1↑,肺梗塞:LDH3↑,肝炎:LDH5↑三、酶催化反应的动力学影响酶促反应的因素有酶浓度、底物浓度、pH、温度、激活剂等;必需采用测定反应初速度的条件;一底物浓度的影响——矩形双曲线二酶浓度的影响在底物浓度足够高时,酶促反应速度与酶浓度呈正比;三pH的影响酶活性最高时的pH值称酶的最适pH;大多数酶最适pH值在7左右,亦有偏酸和偏碱的例外;四温度的影响最适温度:最大酶促反应速度时的温度;五激活剂对反应速度的影响1.凡能提高酶活性的物质称激活剂activator;2.通常分必需激活剂和非必需激活剂两类,前者多为金属离子;六抑制剂对酶促反应速度的影响凡使酶活性降低或丧失的作用称抑制作用,使酶活性起抑制作用的物质称抑制剂;根据抑制剂与酶结合的方式不同,抑制作用可分为不可逆抑制和可逆抑制两大类;1.不可逆抑制:例子:重金属离子对巯基酶的抑制作用;有机磷农药对羟基酶如胆碱酯酶的抑制作用; 2.可逆抑制:1竞争性抑制:重要实例:丙二酸对琥珀酸脱氢酶的抑制作用;磺胺类药物的抑菌作用;2非竞争性抑制作用:抑制剂可逆地与酶的非活性中心区结合,由于抑制剂不与底物竞争酶的活性中心,故称非竞争性抑制作用;四、酶与医学的关系一酶与疾病发生酶的质、量异常可致疾病白化病/ 蚕豆黄二酶与疾病诊断酶活性高低可反映疾病主要是血浆中的细胞酶类三酶与疾病治疗多酶片:治疗消化不良尿激酶酶:治疗血栓、抢救心梗糜蛋白酶:治疗老慢支、清创溶酶片:治疗口腔溃疡维生素维生素是人体必需的小分子有机物,在体内不能合成或合成不足,必需由食物提供,一旦缺乏会导致缺乏症;维生素分为脂溶性和水溶性两种;脂溶性维生素包括A、D、K、E;缺乏维生素A易导致夜盲症和干眼病;缺乏维生素D会导致佝偻病及软骨病;维生素E是体内重要的抗氧化剂;维生素K促进多重凝血因子形成;水溶性维生素包括B族维生素和维生素C两大类;缺乏维生素B1会导致脚气病;缺乏维生素B2可引起口角炎等;缺乏维生素PP易导致癞皮病;维生素B6构成转氨酶的辅酶磷酸吡哆醛;生物素是羧化酶辅酶;泛酸构成的HSCoA 是酰基转移酶辅酶;叶酸是一碳单位的载体,维生素B12是甲基转移酶辅酶,缺乏叶酸和B12都会导致巨幼红细胞性贫血;维生素C是羟化酶辅酶,参与胶原蛋白形成及体内多种氧化还原反应,缺乏维生素C导致坏血病;维生素、辅酶与相关酶之间的关系维生素活性形式辅助因子形式相关酶B1焦磷酸硫胺素TPPα-酮酸脱氢酶复合体B2黄素单核苷酸FMN黄素腺嘌呤二核苷酸FAD黄素酶PP 尼克酰胺腺嘌呤二核苷酸NAD+尼克酰胺腺嘌呤二核苷酸磷酸NADP+不需氧脱氢酶B6磷酸吡哆醛、磷酸吡哆胺转氨酶、脱羧酶泛酸辅酶AHSCoA酰基转移酶生物素生物素羧化酶叶酸四氢叶酸FH4一碳单位转移酶B12甲基B12CH3- B12甲基转移酶C L-抗坏血酸羟化酶第四章糖代谢一、糖的分解代谢一糖的酵解1.糖酵解的概念:糖的无氧分解是指葡萄糖或糖原在无氧条件下,分解成乳酸的过程;因其反应过程与酵母的生酵发酵相似,故又称糖酵解;反应部位:在细胞浆内进行,因酵解过程中所有的酶均存于胞浆;2.反应过程:可分二个阶段:第一阶段:葡萄糖分解生成丙酮酸的过程第二阶段:丙酮酸还原成乳酸3.糖无氧氧化的生理意义1糖无氧氧化是机体在缺氧或无氧条件下迅速获得能量的有效方式;2有些组织细胞,如神经、白细胞、骨髓、成熟红细胞、肿瘤等,即使氧供充足,也主要依靠糖无氧氧化获得能量;3成熟红细胞因缺乏线粒体不能依靠糖的有氧氧化来获得能量,所需能量的90%——95%来自于糖酵解;二糖的有氧氧化1.糖的有氧氧化的概念:在有氧情况下,葡萄糖或糖原彻底氧化成C02和H20的过程;是糖氧化产能的主要方式;2.糖有氧氧化的过程:分为三个阶段:3.糖有氧氧化的生理意义 1在有氧条件下,人体内大多数组织细胞主要利用糖的有氧氧化获得能量 1分子葡萄糖经有氧氧化可净得38或36分子ATP,是无氧氧化的19或18倍 2三羧酸循环是糖、脂肪和蛋白质彻底氧化分解的共同途径3三羧酸循环是糖、脂肪和蛋白质三大物质代谢相互联系与转化的枢纽; 三磷酸戊糖途径二、糖原合成与分解一糖原的合成由单糖合成糖原的过程称为糖原合成; 二糖原的分解由糖原分解为葡萄糖的过程称为糖原分解,习惯上指肝糖原的分解;三、 糖异生作用糖异生作用是指非糖物质转变为葡萄糖或糖原的过程; 一糖异生途径糖异生途径基本上是糖无氧氧化的可逆过程, 二糖异生的生理意义1.维持空腹或饥饿情况下血糖浓度的相对恒定 2.有利于乳酸的利用 3.调节酸碱平衡;四、 血糖一血糖的来源与去路1.血糖:血液中的葡萄糖;空腹血糖浓度为~L 葡萄糖氧化酶法2.血糖恒定的意义:血糖浓度的相对稳定对保证组织器官,特别是对脑组织的正常生理活动具有重要意义; 二血糖浓度的调节1.组织器官的调节 肝 2.激素的调节调节血糖的激素有两大类,一类是降低血糖的激素,即胰岛素;另一类是升高血糖的激素,有胰高血糖素、肾上腺素、糖皮质激素和生长素等; 三高血糖和低血糖 1.高血糖和糖尿临床上将空腹血糖浓度高于L 称为高血糖;当血糖浓度超过肾糖阈~L 时,一部分葡萄糖从尿中排出,称之为糖尿;引起高血糖和糖尿的原因有生理性和病理性两种; 2.低血糖空腹血糖浓度低于L 称为低血糖;低血糖影响脑组织的功能,会出现头晕、心悸、倦怠无力等,严重时血糖浓度低于L 出现昏迷,称为低血糖休克;如不及时给病人静脉补充葡萄糖,可导致死亡;CO 2+H 2O+ATP葡萄糖或糖原丙酮酸丙酮酸乙酰辅酶A胞液 线粒体第一阶段第二阶段引起低血糖的病因有:①胰性胰岛β-细胞功能亢进、胰岛α-细胞功能低下等;②肝性肝癌、糖原累积病等;③内分泌异常垂体功能低下、肾上腺皮质功能低下等;④肿瘤胃癌等;⑤饥饿或不能进食者等;第六章脂类代谢脂类包括三脂酰甘油甘油三酯及类脂;一、概述一脂类的分布与含量二脂类的生理功能必需脂肪酸:亚油酸、亚麻酸、花生四烯酸;二、甘油三脂的中间代谢一三脂酰甘油的分解代谢1.三脂酰甘油动员2.脂肪酸的氧化产物:二氧化碳和水3.酮体的生成和利用:酮体是脂肪酸在肝内氧化不完全所产生的一类中间产物的统称,包括乙酰乙酸、β-羟丁酸和丙酸1.酮体的生成:生成部位:肝脏2.酮体的利用:利用部位:肝外组织意义:当糖供应不足时,酮体是脑组织的主要能源;饥饿、糖尿病等情况下,脂肪动员增加,肝内生酮增加,血中酮体增加,可产生酮血症、酮尿症甚至酮症酸中毒;二甘油三脂的合成代谢三、类脂代谢一甘油磷脂代谢二胆固醇代谢1. 胆固醇的合成合成部位肝脏合成原料乙酰辅酶A合成过程 1.二羟戊酸的合成 2.鲨烯的生成 3.胆固醇的生成2.胆固醇的转化与排泄转化为:胆汁酸;转化为类固醇激素;转化为维生素D3四、血脂与血浆脂蛋白一血脂的组成与含量血浆中的脂质,包括甘油三酯、磷脂、胆固醇及其酯以及游离脂肪酸;二血浆脂蛋白1.血浆脂蛋白的分类1电脉分类法α-脂蛋白、前β-脂蛋白、β-脂蛋白、乳糜微粒2超速离心法高密度脂蛋白、低密度脂蛋白、极低密度脂蛋白、乳糜微粒2.血浆脂蛋白的性质、组成、功能见表6-2三高脂血症又称高脂蛋白血症;标准:空腹12-14小时血甘油三酯>2;26mmol/L200mg/dl,血胆固醇>6;21mmol/L240mg/dl为标准;第七章氨基酸分解代谢一、蛋白质的营养作用一蛋白质的生理功能1.维持组织细胞的生长、更新和修复2.参与体内各种生理活动3.氧化供能二蛋白质的需要量1.氮平衡 16%2.蛋白质的需要量 80克/天二、氨基酸的一般代谢一氨基酸代谢概况血中氨基酸的来源和去路来源1食物蛋白质消化吸收2组织蛋白质降解3体内合成的非必需氨基酸去路:1合成组织蛋白质此为蛋白质的主要生理功能2分解成CO2 + H2O + 尿素 + 能量;3转变成其它含氮化合物;二氨基酸的脱氨基作用1.转氨基作用重要的转氨酶:谷丙转氨酶/ALT肝脏活性最强和谷草转氨酶/ASP心肌细胞活性最强,这两种酶均为细胞内酶,借此用于临床疾病的诊断;2.氧化脱氨基作用3.联合脱氨基作用——主要方式联合脱氨基作用是指转氨基作用由转氨酶催化和谷氨酸的氧化脱氨基作用由谷氨酸脱氢酶催化偶联的过程;这是体内主要的脱氨基方式;三氨的代谢1.体内氨的来源氨对机体有毒,因此机体必需及时消除氨的毒性作用;氨的来源有三:1氨基酸脱氨生成是NH3的主要来源,2肠道NH3的吸收,此途径的NH3由蛋白质的腐败作用及尿素的肠肝循环产生,酸性的肠道环境可减少NH3的吸收;3肾脏产NH3,部分可吸收入血;2.氨的主要去路——合成尿素尿素生成部位:肝脏生成过程:鸟氨酸循环;尿素合成的意义:NH3有毒,尿素是中性无毒高度溶解的化合物,可随血由肾排出,故尿素的生成是体内解除氨毒的最主要方式,是NH3的主要去路;四α–酮酸的代谢1.合成非必需氨基酸2.转化为糖和脂质3.氧化供能三、个别氨基酸代谢一氨基酸脱羧基作用1.组胺来自于组胺酸组胺有扩血管降血压,促进胃液分泌等作用2.GABA 来自于谷氨酸γ-氨基丁酸为抑制性神经递质3.5-HT 来自于色氨酸 5-羟色胺与睡眠疼痛和体温调节有关二一碳单位的代谢:1.概念:指蛋白质代谢中所生成的含有一个碳原子的有机基团如:-CH3、-CH2-、-CH=、-CHO等;2.转运载体:四氢叶酸FH4;3.生理功用:参与嘌呤、嘧啶和某些重要物质的合成;三芳香族氨基酸的代谢1.苯丙氨酸代谢先天性缺乏苯丙氨酸羟化酶,引起苯丙酮酸尿症;2.酷氨酸代谢先天性缺乏酪氨酸酶,可导致白化病;肝脏生化肝是人体内最大的实质器官,成人约1500克,占体重的%左右;肝有“物质代谢中枢”之称,不仅影响食物的消化、吸收,而且在物质代谢、生物转化及排泄中均具有十分重要作用;溶血性黄疸、肝细胞性黄疸及阻塞性黄疸的鉴别指标正常 溶血性黄疸 肝细胞性黄疸 阻塞性黄疸 血清总胆红素浓度 <1mg/dl >1mg/dl>1mg/dl >1mg/dl 结合胆红素 极少 ↑ ↑↑ 未结合胆红素 0~dl ↑↑ ↑ 尿三胆尿胆红素 - - ++ ++ 尿胆素原 少量 ↑ 不一定 ↓ 尿胆素 少量 ↑ 不一定 ↓ 粪胆素原 40~280mg/24h↑ ↓或正常 ↓或-粪便颜色正常 深变浅或正常完全梗阻时白陶土色肝胆生化。
生物化学基础复习资料
生物化学基础复习资料第一章绪论生物化学的概念:运用化学的原理和方法,在分子水平研究生物体的物质组成和生物体内的化学变化规律,进而深入揭示生命活动本质的一门科学。
生物大分子的概念:是由基本结构单位(单体)按一定顺序和方式连接形成的多聚体。
生物化学的发展概括起来经历了3个阶段:叙述生物化学阶段:萌芽时期(18世纪下半叶-20世纪初);动态生物化学阶段:奠基时期(20世纪初-20世纪中叶);分子生物学阶段:大发展时期(20世纪下叶以后)第二章蛋白质和核酸化学蛋白质主要由C、H、O、N组成,经科学测定蛋白质含氮量很接近,平均为16%。
测量蛋白质含量的方法是凯氏定氮法。
自然界中的氨基酸有300多种,但组成人体蛋白质的氨基酸仅有20种,且大部分属L-α-氨基酸。
氨基酸的分类:非极性氨基酸;非电离的极性氨基酸;碱性氨基酸:组氨酸、赖氨酸、精氨酸;酸性氨基酸:天冬氨酸、谷氨酸。
必需氨基酸:赖氨酸、色氨酸、苏氨酸、苯丙氨酸、蛋氨酸、亮氨酸、异亮氨酸、缬氨酸。
蛋白质的分子结构包括: 一级结构,维持一级结构的主要化学键是肽键,有些还含有二硫键;二级结构,维持二级结构主要的化学键是氢键;三级结构,维持三级结构主要的化学键:氢键、离子键、二硫键、疏水键、范德华力等,其中以疏水键最为重要;四级结构,维持四级结构稳定的非共价键主要为疏水键、氢键、离子键,其中以离子键最为重要。
蛋白质的理化性质:蛋白质的两性解离和等电点;蛋白质的胶体性质;蛋白质的变性、沉淀和凝固。
组成核酸的元素有C、H、O、N、P等五种元素,其中P元素的含量较多并且恒定,约占9~10%。
DNA的二级结构特点:1.DNA分子是由两条反向平行的多核苷酸链以右手螺旋方式围绕同一中心轴盘绕而成的双螺旋结构;2.在两条链中,磷酸与脱氧核糖链位于螺旋外侧,碱基位于螺旋内侧。
两条链之间的碱基处在同一平面,构成碱基平面,碱基平面彼此平行、互相重叠,并垂直于双螺旋的中心轴,螺旋表面形成大沟和小沟;3.双螺旋的直径为2nm,每两个相邻碱基对之间的距离为0.34nm,其旋转夹角为36°,螺旋每旋转一周含10对碱基,螺距为3.4nm;4.两条多核苷酸链之间的碱基通过氢键配对,A-T之间形成2个氢键,G-C之间形成3个氢键。
食品生物化学重点
一、绪论1.生物化学的概念;2.生物化学研究的内容、酶在生物化学中的地位;3.静态生物化学、动态生物化学的区别;二、静态生物化学部分1.糖类化学:1)糖的定义;2)有代表性的单糖、寡糖的名称;3)单糖的两种对映异构体的名称、单糖的环状结构中,含呋喃型吡喃型区别;4)糖的结构异构现象和糖的立体异构现象的区别;5)区别直链淀粉、支链淀粉、纤维素的连接键;6)同聚多糖和杂聚多糖的区别;7)概念:旋光、变旋性、构型、构象;2.脂类化学:1)油脂的皂化值、油脂的酸值;2)生物膜的概念、结构、模型理论;3.蛋白质化学:1)凯氏定氮的原理;2)8种必需氨基酸;3)蛋白质的一级结构、二级结构、超二级结构的概念、二级结构最主要的两种结构方式、四级结构的特点;4)蛋白质具有两性电离性质、等电点地概念;5)蛋白质的变性和稳定性;4.核酸化学:1)核酸的水解产物及各级水解产物;2)嘌呤、嘧啶的种类及在DNA和RNA中的区别;3)核苷酸的连接键;4)核酸的变性与复性;5)有关RNA的概念、RNA的二级结构;6)环核苷酸的代表物;5.酶化学、维生素:1)酶的概念、特点;2)酶的影响因素中底物浓度和PH的影响;3)酶的抑制(竞争性与非竞争性);4)水溶性和脂溶性维生素区别及代表种类;三、动态生物化学部分1.糖代谢:1)糖酵解、厌氧发酵的概念;2)糖酵解产能;3)三羧酸途径中关键的酶的名称和产生位置;4)三羧酸途径中产ATP的步骤、三羧酸途径中几次脱羧、脱氢反应;5)糖异生作用;6)糖代谢各途径之间联系(包括糖酵解、糖异生、磷酸戊糖途径、糖原合成和分解这几条途径的联系);2.脂类代谢:1)脂肪肝产生;2)酮体的概念、脂肪酸的合成过程;3)脂肪酸彻底氧化产物;3.氨基酸和蛋白质代谢、核酸代谢:1)一碳单位的概念、代谢的生理学意义;2)生物体内氨基酸脱氨基的主要方式;3)嘌呤核苷酸从头合成时的关键物质;4.生物氧化:呼吸链的顺序、生物氧化的概念。
生化复习
第一章导论生物化学的概念:生物化学是将生物学与化学结合后产生的交叉学科,主要是利用化学的理论和方法从分子水平上阐明生物的结构与功能,揭示生命本的质的学科。
活生物:有着显著的共同特征或生命属性的生物。
生命属性:1.化学成分的同一性。
2.严整有序的结构。
3.新陈代谢。
4.自我复制能力。
遗传:生物在繁殖新一代的过程中,生物特性传递给后代。
变异:生物在繁殖新一代的过程中,生物性状发生改变。
构型:是用以规定立体异构体中价键在空间的相对取向的。
构象:由于分子中单键自由旋转以及键角有一定的柔性,具有同一结构式和同一构型的分子在空间中可有多种形态,这些形态称为构象。
手性中心:是具有4个不同取代基团的四面体碳原子,也称为不对称碳原子或手性碳原子,常以C*表示。
DL命名系统:主要应用于糖类及有关化合物,以甘油醛为标准,规定右旋构型为D,左旋构型为L。
除甘氨酸无旋光性外,a-氨基酸碳原子的构型都是L型。
RS命名系统:含一个碳原子化合物命名时。
先将手性碳原子所连得的4个基团由大到小排列,将最小的基团放在远离观察者的方向,其余三个由大到小连成一条线,顺时针为R型,逆时针为S型。
(空间与平面相反)静电相互作用:也称离子键、盐键、盐桥,它是发生在带点电荷基团之间的一种相互作用,在带异种电荷基团之间为引力,带同种电荷之间为斥力。
氢键:本质上也是一种静电相互作用。
x-H...y,这里x、y是电负性大的原子(N、O、S等),x-H是共价键,H...y是氢键。
x是H的供体,y是H的接纳体。
氢键具有方向性和饱和性。
范德华力:是几种弱静电相互作用的总称。
例如:氢键。
疏水相互作用:是指在介质水中的疏水基团倾向于聚集在一起,以避开与水的接触。
第二章蛋白质化学蛋白质(protein):是由许多氨基酸通过肽键相连形成的高分子含氮化合物。
蛋白质由20种氨基酸构成的。
这些性质主要包括: 1、聚合能力 2、独特的酸碱性质 3、氨基酸侧链的结构与化学特性4、手性蛋白质的平均含氮量为16%。
生物化学的概念与内容3篇
生物化学的概念与内容生物化学的概念与基本理论生物化学是一门研究生命体系中生物分子结构、功能及其相互作用的科学。
它将有机化学、生物学和物理学的知识应用于解释生命现象和探索生命的本质。
在生物化学领域里,研究的主要对象为生物分子,包括蛋白质、核酸、糖类、脂类和酶等。
生物化学的基本理论包括:生命现象的化学基础、分子结构和它们的生物学性质、细胞代谢过程及其调控机制。
在生物化学中,研究生物大分子的组成、结构、功能及其相互作用,探究生物大分子之间的相互转换和影响,研究生物大分子对生命活动的调节、控制及其与环境的交互作用等。
生物化学主要研究内容1. 蛋白质的结构与函数蛋白质是生命体系中最主要的结构和功能体系,也是生物分子中最基本、复杂的组成部分之一。
蛋白质的三级结构决定了它的功能,大量研究表明,蛋白质的结构与功能密切相关,通过溶液结构分析、结晶学方法、传统的物理化学方法和计算机模拟以及其他的新技术,可以进行蛋白质结构分析,并研究蛋白质的生物化学性质和功能。
2. DNA、RNA的化学结构和生物学功能DNA、RNA是生命体系中非常重要的聚合物,它们的结构和功能是控制生命繁衍的基础,也是进行遗传信息传递和表达的载体。
生物化学家通过研究这些分子的结构、特性和功能,阐明了生命体系的遗传基础和进化过程。
3. 酶的结构和功能酶是生物体内的催化剂,它们可以促进化学反应的进行,使生命物质的合成和分解过程得以顺利进行。
研究酶的结构和功能,可以深入理解生物体内的代谢过程及其调控机理,为开发制造新药物、农药和化妆品等提供基础。
4. 免疫和感染生物体在抵御病原微生物侵入过程中,通过免疫系统的协作作用,产生免疫反应,从而达到抵御感染的目的。
免疫体系中的各种免疫、抗原、细胞因子和相关蛋白质都是生物化学的研究对象。
通过研究免疫系统的分子基础,可以深入了解感染的分子机制、已有的抵抗方法以及开发新的免疫疫苗的原理。
5. 代谢生物体中通常都存在着一些复杂的化学反应链,代谢过程是生命的基础,它包括把有机化合物从食物中提取出来,将它们转换为能量或新的生物聚合物以维持生命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国生物化学的开拓者——吴宪教授
蛋白质研究领域内国际上最具有权威性的综 述性丛书《Advances in Protein Chemistry》第47卷(1995年)发表了美国 哈佛大学教授、蛋白质研究的老前辈J. T. Eddsall的文章“吴宪与第一个蛋白质变性 理论(1931)Hsien Wu and the first Theory of Protein Denaturation(1931)”, 对吴宪教授的学术成就给予了极高的评价。 该卷还重新刊登了吴宪教授六十四年前关于 蛋白质变性的论文。一篇在1931年发表的论 文居然在1995年仍然值得在第一流的丛书上 重新全文刊登,不能不说是国际科学界的一 件极为罕见的大事。
生物化学的概念(1)
2020/11/26
生物化学的概念(1)
第一节
概述
一、生物化学的概念:
简单地讲:就是生命的化学。 即它是以生物体为研究对象,用化学的方法和理论, 从分子水平来研究生物体的化学组成和生命过程中的 化学规律的一门学科。
二、研究内容
1、生物体的化学成份和组成 大量元素:C、H、O、N四种,
生物化学的概念(1)
动 物
生物学
植 物
学
学
微生物学
化学
生
物 化
生物学
学
第四节
生化魅力
生物化学的概念(1)
有用
所有生物学科都不是孤立的,而是相互联系、 相互补充、相互渗透,其基础就是“生命的化 学语言”。换而言之,生物化学是联系生物学 科之间的桥梁。
生物化学的概念(1)
有趣
可实现许多个人愿望。
生物化学的概念(1)
1890-1902 Fischer(德)首次证 明了蛋白质是多肽;发现酶的专一 性,提出并验证了酶催化作用的 “锁-匙”学说;合成了糖及嘌呤。 1902年获诺贝尔奖。
生物化学的创始人埃米尔·费舍尔(Emil Fischer).0-- -
生物化学的概念(1)
1937年 Krebs(英) 发现三羧酸循环, 1953年获诺贝尔奖。
生物化学的概念(1)
第二节
发展简史
1780-1789 Lavoisier (法)研究“生物体内 的燃烧”,指出此类 “燃烧”耗氧并排出二 氧化碳。后人称他是生 物化学之父。
生物化学的概念(1)
1830-1842 Liebig(德)将食 物分为糖、脂、蛋白质类,提 出“代谢”一词,证明动物体 温形成是食物在体内“燃烧” 的缘故。最先写出两本生物化 学相关专著。
根据元素分析 微量元素:Fe、Zn、Cu、Mg等。
生物体的化合物组成有:糖类、脂类、蛋白质、 核酸、维生素、激素、 水、无机盐等8类,。
2、结构和功能的关系 DNA
3、研究生物体内的代谢过程即新陈代谢 分解代谢
物质代谢: 合成代谢
新陈代谢 放能代谢
能量代谢: 吸能代谢
4、新陈代谢的调控: 5、遗传信息的贮存、传递和表达: 6、蛋白质、核酸与生命现象的关系:
生物化学的概念(1)
可成名
20世纪Nobel生理学、化学奖中半数以上在生物 化学领域取得重大突破
生物化学的概念(1)
可获利
➢无形资产 ➢有形资产
生物化学的概念(1)
3rew
演讲完毕,谢谢听讲!
再见,see y化学的概念(1)
二、生物化学与生物其他学科的关系
三、生物化学的分支
人们根据研究对象、目的和需要的不同,创立了 不同的生物化学学科分支。 1.依代谢过程分:静态生物化学、动态生物化学。 2.依研究对象分:植物生物化学、动物生物化学、 微生物化学、医用生物化学、病理生物化学、食品 生物化学。 3.依学科交叉又分:生物物理化学、量子生物学。
生物化学的概念(1)
刘思职
1940 我国生物化学家刘 思职发现抗体、抗原反应 存在定量关系。
生物化学的概念(1)
第三节
内容
生物化学的概念(1)
一、生物化学与化学的关系
由于最初是从有机化学和生理学的基础上发展起来的, 因此它与化学关系最为密切。例如:对生物体组成物质的分 离提取成份鉴定,及结构和代谢过程研究等都离不开化学。
汉斯·克雷勃斯(Hans A. Krebs)
生物化学的概念(1)
1949 Pauling(美)指出 镰刀形红细胞性贫血是一 种分子病,并于1951年提 出蛋白质存在二级结构。 1954年获诺贝尔奖
李纳斯·鲍林(Linus Pauling)
生物化学的概念(1)
1953年 Watson(美)与 Crick(英)提出DNA分子的双 螺旋结构模型,1962年共获诺贝尔奖。
弗朗西斯·克里克(Francis H. Crick)
詹姆斯·沃森(James D. Watson)
Hamilton O. Smith Daniel Nathans Werner Arber
1969-1972, Arber(瑞士),Smith(美)与Nathans(美)在核酸限制 酶的分离与应用方面做出突出贡献,1978年共获诺贝尔奖。
1972 Berg(美)在基因工 程基础研究方面作出了杰出 成果,获1980年诺贝尔奖。 1973 Cohen等(美)用核 Paul Berg 酸限制性内切酶EcoR1,首 次基因重组成功。
Herbert Boyer Stanley Cohen
2001 Venter(美)等报道完成了人类基因组草图测序。