第1章 数字逻辑概论-upload
合集下载
第一章数字逻辑基础(F)

等式两边依次乘以2, 可分别得b-1、b-2…..:
2 (N )d b 1 2 0 b 2 2 1 .. .b . (n . 1 ) .2 . (n 2 ) b n 2 (n 1 ) 2 2 (N )d b 2 2 0 b 3 2 1 .. .b . (n . 2 ). 2 . (n 3 ) b (n 1 ) 2 (n 2 )
算;也可用来表示对立的逻辑状态,这时的“0”和 “1”,不是数值,而是逻辑0和逻辑1。
逻辑“0”和逻辑“1”表示彼此相关又互相对立 的两种状态。例如,“是”与“非”、“真”与 “假”、“开”与“关”、“低”与“高”等等 。 两种对立逻辑状态的逻辑关系称二值数字逻辑,简 称为数字逻辑。
在电路中,可以方便地用电子器件的开关特 性来实现二值数字逻辑,即高、低电平。
周期性 T
① 周期T(频率f):两个相邻脉冲间的时间间隔。 ② 脉冲宽度tW:脉冲波形的宽度,表示脉冲的作用
时间。 ③ 占空比 q: 脉冲宽度占整个周期的百分比。
q(%)= (tW / T)×100%
占空比为50%矩形脉冲,称为方波。
(5)实际的数字信号波形:
O.9Um O.5Um O.1Um tr
第一章 数字逻辑概论 ——§1数字电路和数字信号
2、数字技术的应用
(1)数字技术应用的典型代表是电子计算机,“数字革命”: 从模拟到数字化,用在广播电视、通信、控制、仪表等
(2)照相技术 胶片成像技术到数字照相技术 JPEG——静止图象压缩编码标准
(3)视频记录设备 录像带 VCD (MPEG1压缩方式) DVD (MPEG2)
逻辑电平:表示在电路中,由电子器件的开关特性形成
的离散信号电压或数字电压。是物理量的相对表 示
CMOS器件逻辑电平与电压范围的关系
2 (N )d b 1 2 0 b 2 2 1 .. .b . (n . 1 ) .2 . (n 2 ) b n 2 (n 1 ) 2 2 (N )d b 2 2 0 b 3 2 1 .. .b . (n . 2 ). 2 . (n 3 ) b (n 1 ) 2 (n 2 )
算;也可用来表示对立的逻辑状态,这时的“0”和 “1”,不是数值,而是逻辑0和逻辑1。
逻辑“0”和逻辑“1”表示彼此相关又互相对立 的两种状态。例如,“是”与“非”、“真”与 “假”、“开”与“关”、“低”与“高”等等 。 两种对立逻辑状态的逻辑关系称二值数字逻辑,简 称为数字逻辑。
在电路中,可以方便地用电子器件的开关特 性来实现二值数字逻辑,即高、低电平。
周期性 T
① 周期T(频率f):两个相邻脉冲间的时间间隔。 ② 脉冲宽度tW:脉冲波形的宽度,表示脉冲的作用
时间。 ③ 占空比 q: 脉冲宽度占整个周期的百分比。
q(%)= (tW / T)×100%
占空比为50%矩形脉冲,称为方波。
(5)实际的数字信号波形:
O.9Um O.5Um O.1Um tr
第一章 数字逻辑概论 ——§1数字电路和数字信号
2、数字技术的应用
(1)数字技术应用的典型代表是电子计算机,“数字革命”: 从模拟到数字化,用在广播电视、通信、控制、仪表等
(2)照相技术 胶片成像技术到数字照相技术 JPEG——静止图象压缩编码标准
(3)视频记录设备 录像带 VCD (MPEG1压缩方式) DVD (MPEG2)
逻辑电平:表示在电路中,由电子器件的开关特性形成
的离散信号电压或数字电压。是物理量的相对表 示
CMOS器件逻辑电平与电压范围的关系
[课件]数字逻辑_第一章_数制与码制
![[课件]数字逻辑_第一章_数制与码制](https://img.taocdn.com/s3/m/4adaa1f8aef8941ea76e05d8.png)
3
预备知识
一、数字系统的概念 凡是利用数字技术对信息进行处理、传输 的电子系统均可称为数字系统。 二、数字系统与模拟系统的比较 1、从信号来看 、 模拟信号是连续信号,任一时间段都包含 了信号的信息分量,如正弦信号。 数字信号是离散的,只有“0”和“1”两种 值,即是一种脉冲信号,广义地讲,凡是非正 4 弦信号都称为脉冲信号。
i=−n m−1
(ai = 0 ~ 1)
例:(101.1) =1× 例:(101.1)2 =1×22+0×21+1×20+1×2-1 =5.5
13
1.1.3 八进制计数
(1) 基数为八(计数的符号个数):0~7 基数为八(计数的符号个数):0 ):0~ (2) 位权为: 8 位权为:
(s8 ) = am−18 = ∑ai 8i
19
八进制、 1.2.2 八进制、十六进制与二进制数 的转换
(1) 二进制数转换为八进制数 从小数点起三位一组,整数部分不够三位 的向前添0,小数部分不够三位的向后添0 的向前添0,小数部分不够三位的向后添0。 例1: (1011101.0110101)2=(135.324)8 (2) 二进制数转换为十六进制数 从小数点起四位一组,整数部分不够四位 的向前添0,小数部分不够四位的向后添0 的向前添0,小数部分不够四位的向后添0。 例2:(1011101.0110101)2=(5D.6A)16 : 20
i=−n m−1 m−1
i
如果有m位整数,n 如果有m位整数,n位小数。则:
+ am−28
m−2
+⋅⋅⋅ + a08 + a−18 +⋅⋅⋅a−n 8
0
−1
−n
(ai = 0 ~ 7)
预备知识
一、数字系统的概念 凡是利用数字技术对信息进行处理、传输 的电子系统均可称为数字系统。 二、数字系统与模拟系统的比较 1、从信号来看 、 模拟信号是连续信号,任一时间段都包含 了信号的信息分量,如正弦信号。 数字信号是离散的,只有“0”和“1”两种 值,即是一种脉冲信号,广义地讲,凡是非正 4 弦信号都称为脉冲信号。
i=−n m−1
(ai = 0 ~ 1)
例:(101.1) =1× 例:(101.1)2 =1×22+0×21+1×20+1×2-1 =5.5
13
1.1.3 八进制计数
(1) 基数为八(计数的符号个数):0~7 基数为八(计数的符号个数):0 ):0~ (2) 位权为: 8 位权为:
(s8 ) = am−18 = ∑ai 8i
19
八进制、 1.2.2 八进制、十六进制与二进制数 的转换
(1) 二进制数转换为八进制数 从小数点起三位一组,整数部分不够三位 的向前添0,小数部分不够三位的向后添0 的向前添0,小数部分不够三位的向后添0。 例1: (1011101.0110101)2=(135.324)8 (2) 二进制数转换为十六进制数 从小数点起四位一组,整数部分不够四位 的向前添0,小数部分不够四位的向后添0 的向前添0,小数部分不够四位的向后添0。 例2:(1011101.0110101)2=(5D.6A)16 : 20
i=−n m−1 m−1
i
如果有m位整数,n 如果有m位整数,n位小数。则:
+ am−28
m−2
+⋅⋅⋅ + a08 + a−18 +⋅⋅⋅a−n 8
0
−1
−n
(ai = 0 ~ 7)
《数字逻辑基础》课件

公式化简法
使用逻辑代数公式对逻辑函数进行化简,通过消去多余的项和简化 表达式来得到最简结果。
卡诺图化简法
使用卡诺图对逻辑函数进行化简,通过填1、圈1、划圈和填0的方 法来得到最简结果。
03
组合逻辑电路
组合逻辑电路的分析
组合逻辑电路的输入和输出
分析组合逻辑电路的输入和输出信号,了解它们之间的关系。
交通信号灯控制系统的设计与实现
交通信号灯简介
交通信号灯是一种用于控制交通流量的电子设备,通常设置在路口或 交叉口处。
设计原理
交通信号灯控制系统的设计基于数字逻辑电路和计算机技术,通过检 测交通流量和车流方向来实现信号灯的自动控制。
实现步骤
首先确定系统架构和功能需求,然后选择合适的元件和芯片,接着进 行电路设计和搭建,最后进行测试和调整。
真值表
通过列出输入和输出信号的所有可能组合,构建组合逻辑电路的真值表,以确定输出信 号与输入信号的逻辑关系。
逻辑表达式
根据真值表,推导出组合逻辑电路的逻辑表达式,表示输入和输出信号之间的逻辑关系 。
组合逻辑电路的设计
确定逻辑功能
根据实际需求,确定所需的逻辑功能,如与、或、非等。
设计逻辑表达式
根据确定的逻辑功能,设计相应的逻辑表达式,用于描述输入和 输出信号之间的逻辑关系。
实现电路
根据逻辑表达式,选择合适的门电路实现组合逻辑电路,并完成 电路的物理设计。
常用组合逻辑电路
01
02
03
04
编码器
将输入信号转换为二进制码的 电路,用于信息处理和控制系
统。
译码器
将二进制码转换为输出信号的 电路,用于数据分配和显示系
统。
多路选择器
使用逻辑代数公式对逻辑函数进行化简,通过消去多余的项和简化 表达式来得到最简结果。
卡诺图化简法
使用卡诺图对逻辑函数进行化简,通过填1、圈1、划圈和填0的方 法来得到最简结果。
03
组合逻辑电路
组合逻辑电路的分析
组合逻辑电路的输入和输出
分析组合逻辑电路的输入和输出信号,了解它们之间的关系。
交通信号灯控制系统的设计与实现
交通信号灯简介
交通信号灯是一种用于控制交通流量的电子设备,通常设置在路口或 交叉口处。
设计原理
交通信号灯控制系统的设计基于数字逻辑电路和计算机技术,通过检 测交通流量和车流方向来实现信号灯的自动控制。
实现步骤
首先确定系统架构和功能需求,然后选择合适的元件和芯片,接着进 行电路设计和搭建,最后进行测试和调整。
真值表
通过列出输入和输出信号的所有可能组合,构建组合逻辑电路的真值表,以确定输出信 号与输入信号的逻辑关系。
逻辑表达式
根据真值表,推导出组合逻辑电路的逻辑表达式,表示输入和输出信号之间的逻辑关系 。
组合逻辑电路的设计
确定逻辑功能
根据实际需求,确定所需的逻辑功能,如与、或、非等。
设计逻辑表达式
根据确定的逻辑功能,设计相应的逻辑表达式,用于描述输入和 输出信号之间的逻辑关系。
实现电路
根据逻辑表达式,选择合适的门电路实现组合逻辑电路,并完成 电路的物理设计。
常用组合逻辑电路
01
02
03
04
编码器
将输入信号转换为二进制码的 电路,用于信息处理和控制系
统。
译码器
将二进制码转换为输出信号的 电路,用于数据分配和显示系
统。
多路选择器
数字电路第1章 数字逻辑概论

H 16 例如:(349)16=3×162+4×161+9×160=(841)10 (3AB.11)16=3×162+A×161+B×160+1×16-1+1×16-2 =(939.0664)10 基数:16 进位:逢十六进一
写法:(H)16 或
( H )16
i i m i
n 1
三、几种常用的进制之间的转换
2 25 2 12 余1 2 6 余0 2 3 余0 2 1 余1 0 余1 ∴ (25)10=(11001)2
最高位
三、几种常用的进制之间的转换
2、十——二转换 (2) 小数部分的转换——乘2取整法(基数乘法)
0.6875 × 2 1.3750 × 2 0.750 × 2 1.50 × 2 1.0 最高位
三、几种常用的进制之间的转换
2、十——二转换 (2) 小数部分的转换——乘2取整法(基数乘法) 例如: (75.5)10=( 113.4 )8
8 75 8 9 8 1 0
余3 余1 余1
0.5 ×8 4.0
取4
三、几种常用的进制之间的转换 3、二——八转换
将二进制数的整数部分由小 数点向左,每三位分成一组。最 后不足三位的,前面补零。小数 部分的由小数点向右,每三位分 为一组。最后不足三位的,后面 补零。然后,把每三位二进制数, 用对应的八进制数码代替即可。 二进制数与对应的八进制数
三、几种常用的进制之间的转换
2、十——二转换 (2) 小数部分的转换——乘2取整法(基数乘法)
说明: (1)有些十进制的小数,不能用有限位的二进制小数表示 时,可根据需要,表示到一定位数。 (2)对于具有小数和整数两个部分的十进制数,可以分别 把整数和小数分别换算成二进制数的表示形式,然后相加起 来即可。 例:(215.6531)10≈(11010111.101001)2 (3)基数乘除法也适用于将十进制数转换成其它进制数。
《电子技术基础》第1章数字逻辑概论

101 100
第 i 位的位权为 10i
每一数码处于不同的位置(数位)时,它所代 表的数值不同,这个数值称为位权值 。
0.32 = 310-1 + 210-2 位权: 10-1 10-2
第 i 位的位权为 10i
任意十进制数可表示为:
+
(N)D = Ki · 10i
i =- 其中: i -- 第 i 位 (为 - 到 + 的整数) Ki -- 第 i 位 的系数 10i --第 i 位的位权
周期
周期性数字波形
占空比 Q = tW / T
3、实际的数字信号(脉冲)波形及主要参数
上升时间tr 和下降时间tf -- 从脉冲幅值的10%到90% 上升下 降所经历的时间( 典型值ns )。
脉冲宽度 ( tw ) -- 脉冲幅值的50%的两个时间所跨越的时间。
周期 ( T ) -- 表示两个相邻脉冲之间的时间间隔。 占空比 Q -- 表示脉冲宽度占整个周期的百分比。
位权: 23 22 21 20
(0.11)B = 1 2-1 + 1 2-2 = (0.75)D
位权:
2-1
2-2
三. 二 -- 十进制之间的转换
1. 二进制转换为十进制
规则:把二进制数按位展开,然后将所有各项的数相加
,即得到等值的十进制数。
(1011.11)B = 1 23 + 0 22 + 1 21 +1 20 + 1 2-1 + 1 2-2 = (11.75)D
二. 二进制 (Binary)
1)由0,1两个数字组成。 2)逢2 进1,借1当2 。
例如:1 + 1 = 10 = 1×21 位权: 21
第1章 数字逻辑基础

(179.8)10 = (000101111001. 1000)8421BCD
BCD码表达式中整数部分高位的0和小数部分低位的0 BCD码表达式中整数部分高位的0和小数部分低位的0都是 码表达式中整数部分高位的 不可省略的。 不可省略的。
5421BCD码 也是有权码,各位的权值依次为5 5421BCD码:也是有权码,各位的权值依次为5、4、 5421码的特点是编码的最高位先为 码的特点是编码的最高位先为5 2、1。5421码的特点是编码的最高位先为5个连续 后为5个连续的1 的0,后为5个连续的1。 余3码:每个码字的二进制值比对应的8421码的码 每个码字的二进制值比对应的8421码的码 8421 值大3 码是一种无权BCD BCD码 所谓无权码, 值大3。余3码是一种无权BCD码,所谓无权码,就 是找不到一组权值,满足所有码字。 是找不到一组权值,满足所有码字。
数字设计第1章 24
分别用8421 8421码 5421码 2421码 例1-13 分别用8421码、5421码、2421码、余3码 和余3循环码表示十进制数206.94 206.94。 和余3循环码表示十进制数206.94。 解:
(206.94)10 = (001000000110.10010100)8421BCD = (001000001001.11000100)5421BCD = (001000001100.11110100) 2421BCD = (010100111001.11000111)余3码 = (011100101101.10100100)余3循环码
= (01000111)补 + (10100111)补 = (11101110)补 = (10010010)原 = (−18)10
利用8 例1-12 利用8位二进制补码计算 (−71)10 − (89)10,计 算结果仍表示为十进制数。 算结果仍表示为十进制数。 ( 解:−71)10 − (89)10 = (−71)10 + (−89)10
数电-第一章 数字逻辑概论

例如: 例如:(2A.7F)H= 2×161+10×160+7×16-1+15×16-2 × × × × =(42.4960937)D 各位数的权是16的幂 各位数的权是 的幂
几种进制数之间的对应关系
十进制数 D 二进制数 B 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 八进制数 O 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 十六进制数 H 0 1 2 3 4 5 6 7 8 9 A B C D E F
三,八进制
数码为: ~ ;基数是8.用字母O表示 表示. 数码为:0~7;基数是 .用字母 表示. 运算规律:逢八进一, 运算规律:逢八进一,即:7+1=10. + = . 八进制数的权展开式: 八进制数的权展开式:D=∑ki×8i 例如: (207.04)O= 例如: )
2×82 +0×81+7×80+0×8-1+4 ×8-2 × × × × =(135.0625)D
= 011 (
六,十—十六进制之间的转换
将十六进制数转换成十进制数时, 将十六进制数转换成十进制数时,按权展开再 相加即可. 相加即可.
将十进制数转换成十六进制数时,可先转换成 将十进制数转换成十六进制数时, 二进制数, 二进制数,再将得到的二进制数转换成等值的十 六进制数. 六进制数.
1.2 二进制数的算术运算
二,二进制
数码为:0,1; 数码为: , ; 基数是 .用字母 表示. 基数是2.用字母B表示 表示. 运算规律:逢二进一,即:1+1=10. 运算规律:逢二进一, + = . 二进制数的权展开式: 二进制数的权展开式:D=∑ki×2i
几种进制数之间的对应关系
十进制数 D 二进制数 B 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 八进制数 O 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 十六进制数 H 0 1 2 3 4 5 6 7 8 9 A B C D E F
三,八进制
数码为: ~ ;基数是8.用字母O表示 表示. 数码为:0~7;基数是 .用字母 表示. 运算规律:逢八进一, 运算规律:逢八进一,即:7+1=10. + = . 八进制数的权展开式: 八进制数的权展开式:D=∑ki×8i 例如: (207.04)O= 例如: )
2×82 +0×81+7×80+0×8-1+4 ×8-2 × × × × =(135.0625)D
= 011 (
六,十—十六进制之间的转换
将十六进制数转换成十进制数时, 将十六进制数转换成十进制数时,按权展开再 相加即可. 相加即可.
将十进制数转换成十六进制数时,可先转换成 将十进制数转换成十六进制数时, 二进制数, 二进制数,再将得到的二进制数转换成等值的十 六进制数. 六进制数.
1.2 二进制数的算术运算
二,二进制
数码为:0,1; 数码为: , ; 基数是 .用字母 表示. 基数是2.用字母B表示 表示. 运算规律:逢二进一,即:1+1=10. 运算规律:逢二进一, + = . 二进制数的权展开式: 二进制数的权展开式:D=∑ki×2i
数字逻辑概论

1.1 数字电路与数字信号
1.1.3 模拟信号和数字信号
3 模拟量的数字表示
由于数字信号便于存储、分析和传输,通常将模 拟信号转换成数字信号。
模数转换的实现
1.1 数字电路与数字信号
1.1.3 模拟信号和数字信号
3 模拟量的数字表示
采样:按一定时间间隔采集模拟 信号,得到离散的取样信号。
量化:选取一个量化单位,将 取样信号除以量化量单位并取 整。
a、设计 在计算机上利用软件平
台进行设计。
原理图输入
输入
HDL文本输入
状态机设计
1.1 数字电路与数字信号
1.1.2 数字电路的分类及特点
3 数字电路的分析、设计与测试
b、测试和仿真 c、下载
d、验证结果
1.1 数字电路与数字信号
1.1.2 数字电路的分类及特点
3 数字电路的分析、设计与测试
(3) 数字电路的测试技术
6
1
1.1 数字电路与数字信号
1.1.4 数字信号的描述方法 2 数字波形 (2) 周期性和非周期性数字波形
(a)非周期性数字波形
(b) 周期性数字波形
1.1 数字电路与数字信号
1.1.4 数字信号的描述方法 2 数字波形 周期性数字波形的参数 周期 (period) T 频率 (frequency) f
脉冲宽度 (pulse width) tW 高电平持续的时间
占空比 (duty ratio) q 脉冲宽度与周期的比值
tW q(% ) 100% T
1.1 数字电路与数字信号
1.1.4 数字信号的描述方法 2 数字波形
例1.1.2 设周期性数字波形的高电平持续6ms,低电平持
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 数制
按位计数制(positional number system):
用一串数码表示一个数,每个数码的位置对应一个权(weight), 所有数码按各自的权展开相加之和等于这个数的值。
一、十进制 1895 = 1000 + 800 + 90 +5 = 1×103+ 8×102 + 9×101 + 5×100 0.618 = 0 + 0.6 + 0.01 +0.008 = 0×100+ 6×10-1 + 1×10-2 + 8×10-3
补码可以让减法变成加法,减少一种运算法则。 加负数等同于减无符号数,用补码处理负数更方便。
天津大学精密仪器与光电子工程学院 School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.2 数制
对于有符号数的加减运算,使用原码并不方便。计算机 等数字电子系统通常采用的是另一种表达方式——补码
天津大学精密仪器与光电子工程学院
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.2 数制
测控电路基础 B
2015.3-6
第一章 数字逻辑概论
吴与光电子工程学院 School of Precision Instrument & Opto-electronics Engineering, Tianjin University
内容提要
在数字电子系统中,一般采用最高 有效位作为符号位区分数值的正负。
46 - 120 ?
减法运算 先比大小
120 - 46 - 74
符号随大数
01001010B = 74 11001010B = -74
符号位
天津大学精密仪器与光电子工程学院
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.2 数制
二进制算术运算
二、二进制减法 借位:110
120 - 46 74
-
B X Y D
01111100 11111000 - 00101110 01001010
12 9 6 3
对于12格表盘,逆 时针拨m格和顺时针拨 12-m格结果相同。 在位宽固定的情况 下,减一个数等于加这 个减数的补数。
������=−������ ������−1
二、二进制 1111B = 1×23+ 1×22 + 1×21 + 1×20 = 15D 二进制数应注脚
标“B”或“2”
1001.01012 = 1×23+ 1×20 + 1×2-2 + 1×2-4 = 9.312510
• 数码符号有两种(0、1) • 每位加计数逢二进一 • 各个位置的权均为2的幂
1.2 数制
三、八进制 13578 = 1×83+ 3×82 + 5×81 + 7×80 = 751D 2046.178 = 2×83+ 4×81 + 6×80 + 1×8-1 + 7×8-2 = 1062.234375 • • • • 数码符号 0~7 逢八进一 权为8的幂 脚标“8”
四、十六进制 327H = 3×162+ 2×161 + 7×160 = 807D
1.1 概述
He is as tall as this… He is 158cm
天津大学精密仪器与光电子工程学院
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.1 概述
现实世界的信息 是连续的,连续信号 又称为模拟信号。
• • • •
规律: 数码符号有十种(0~9) 每位加计数逢十进一 各个位置的权均为10的幂 幂指数与位置有关,可正可负
r 进制数的数码符号有 r 种,分别为 0~r-1 ( r 为大于1的整数 ), r 称为该计数制的基数(base 或 radix),各位的权为基数的幂,且小 数点左边第一位的幂指数为0,向左逐位加一,向右逐位减一。
2 1 . 2
十六 进制
求和
替换
二进 制
取整 取余
替换
八进 制
求和
十进制
天津大学精密仪器与光电子工程学院 School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.2 数制
二进制算术运算
一、二进制加法 进位:100 逢十进一
1.2 数制
二进制算术运算
三、有符号二进制数的运算 无符号 00…0 ~ 11…1 +0:000…0 -0:100…0 8位无符号数范围: 0~255
机器数
(N位二进制)
0~2N-1 ,共2N个数
有符号 111…1 ~ 100…0 ,000…0 ~ 011…1 - (2N-1-1) ~2N-1-1,共2N-1个数 8位有符号数范围: -127~+127 符号-数值 原码
• • • •
数码符号 0~9,A~F 逢十六进一 权为16的幂 脚标“H”或“16”
3AB.1116 = 3×162+ 10×161 + 11×160 + 1×16-1 + 1×16-2 = 939.0664
天津大学精密仪器与光电子工程学院
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.2 数制
数制的转换
一、非十进制转换为十进制 按权展开求和 ������ = � ������������ ∙ ������ ������
������=−������ ������−1
二、十进制转换为二进制
除以2——二进制数右移1位,乘以2——二进制数左移1位
整数部分除以2取余数,小数部分乘以2取整数。 例:将9.3125转成二进制 取余 最先取整的是最高位 小数部分为:0101B 9.3125D = 1001.0101B 最后的余数是最高位 整数部分为:1001B
1ABC.DEFH = 0001 1010 1011 1100.1101 1110 1111B
1 A B C . D E F
110001.11011B = 0011 0001.1101 1000B = 31.D8H
3 1 . D 8 整数部分高位补零,小数部分低位补零
天津大学精密仪器与光电子工程学院 School of Precision Instrument & Opto-electronics Engineering, Tianjin University
天津大学精密仪器与光电子工程学院 School of Precision Instrument & Opto-electronics Engineering, Tianjin University
第一章 数字逻辑概论
1.1 概述
天津大学精密仪器与光电子工程学院
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.2 数制
四、二进制和八进制的相互转换 3位二进制数串的组合有8种状态,作为整体可等价于八进制数的1位。 000 0 001 1 010 2 011 3 100 4 101 5 110 6 111 7
163.24H = 001 110 011.010 100B
1 6 3 . 2 4
10001.01B = 010 001.010B = 21.2H
171 + 83 254
+
C X Y S
00000110 10101011 + 01010011 11111110
逢二进一
100 171 + 85 256
天津大学精密仪器与光电子工程学院
111111110 10101011 + 01010101 100000000
如果二进制数宽 度限定为8位,那么超 过255就发生溢出。
采样点不连续
天津大学精密仪器与光电子工程学院
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
第一章 数字逻辑概论
1.2 数制
天津大学精密仪器与光电子工程学院
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
天津大学精密仪器与光电子工程学院
取整
School of Precision Instrument & Opto-electronics Engineering, Tianjin University
1.2 数制
三、二进制和十六进制的相互转换 4位二进制数串的组合有16种状态,作为整体可等价于十六进制数的1位。 0000 0 1000 8 0001 1 1001 9 0010 2 1010 A 0011 3 1011 B 0100 4 1100 C 0101 5 1101 D 0110 6 1110 E 0111 7 1111 F