数字逻辑复习知识点
数字逻辑电路基础知识整理

数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。
它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。
下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。
3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。
常见的逻辑函数有与函数、或函数、非函数、异或函数等。
4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。
通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。
5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。
顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。
6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。
编码器和解码器可用于信号编码和解码,数据传输和控制等应用。
7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。
数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。
8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。
布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。
总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。
数字逻辑知识点报告总结

数字逻辑知识点报告总结1. 数字逻辑的定义数字逻辑是一种以数字为基础的逻辑学科,它研究数字之间的关系和数字系统的运算规律。
在数字逻辑中,数字通常表示为0和1,这两个数字是数字逻辑中的基本元素。
数字逻辑研究的范围包括数制、逻辑运算、逻辑代数、逻辑函数、数字逻辑电路等。
2. 基本概念在数字逻辑中,有几个基本概念是必须要了解的,包括数制、位权、数字编码、二进制加法和减法、二进制码等。
其中,数制是指用来表示数字的一组符号和表示方法,位权是指数字中各个位上的数值和位置的关系,数字编码是把数字用一定的代码表示出来,二进制加法和减法是对二进制数字进行加减运算。
3. 逻辑门逻辑门是数字逻辑的基本构件,它用来实现逻辑运算功能。
常见的逻辑门包括与门、或门、非门、异或门和与非门等。
这些逻辑门可以根据输入信号的不同,输出不同的逻辑运算结果。
逻辑门是数字逻辑电路的核心部件,它可以实现各种逻辑功能。
4. 布尔代数布尔代数是逻辑代数的一种,它是一种用来表示逻辑运算的代数系统。
在布尔代数中,逻辑运算可以用加法、乘法和求反运算来表示,这些运算具有一些特定的性质,比如交换律、结合律、分配律等。
布尔代数是数字逻辑的数学基础,它可以用来描述和分析各种逻辑函数和逻辑运算。
5. 逻辑功能在数字逻辑中,逻辑功能是指逻辑门实现的具体功能。
常见的逻辑功能包括与运算、或运算、非运算、异或运算等。
这些逻辑功能可以根据实际需求进行组合和变换,从而实现复杂的逻辑运算。
6. 数字逻辑电路数字逻辑电路是数字逻辑的物理实现,它由逻辑门和其他逻辑功能部件组成。
数字逻辑电路可以用来实现各种逻辑运算、逻辑函数和逻辑功能,它是数字系统中的核心部件。
7. 存储器存储器是一种用来存储信息的设备,它可以用来保存数字信息、程序信息和数据信息等。
在数字逻辑中,存储器通常是由触发器组成的,它可以存储和传输数字信号。
8. 计数器和触发器计数器是一种用来计数和累加的设备,它可以用来实现各种计数功能和定时功能。
数字逻辑复习提纲

第一章1、数字与模拟离散vs. 连续开关量01码的波形表达方法tr tf tw 周期,非周期2、数制与码制转换,编码,自然,bcd,码字的运算,结果修正3、逻辑函数及其描述取值,描述方法,布尔代数,真值表,逻辑图,卡洛图,波形图,硬件描述语言正负逻辑,三态门4、布尔代数公式,带入规则,反演规则,对偶规则,化简函数5、卡诺图最小项编号规则,结构,化简尽量找包含多的,组合数尽可能少,无关项6、集成电路Coms,ttl,封装类型:插孔装配,平面装配,集成电路命名规则,延迟时间,未使用的空脚处理规模类型:根据包含的门电路或元、器件数量,可将数字集成电路分为:小规模集成(SSI)电路,12个门以下/片中规模集成MSI电路,12~99门/片大规模集成(LSI)电路,100~9999门/片超大规模集成VLSI电路,1万~99999门/片特大规模集成(ULSI)电路,10万门以上/片第二章1、组合逻辑分析逐级电平推导,布尔表达式,数字波形,真值表,竞争毛线,代数法判断,卡洛图法判断,消除方法,加选通脉冲,修改设计2、组合逻辑设计步骤:书上,ppt上,利用任意项,无关项3、组合逻辑电路的等价变换用德摩根定律,4、数据选择器与分配器地址输入,数据输入端,多入单出,单入多出5、译码器和编码器输入二进制信号输出高低电平,相当于输出最小项用来构成逻辑函数,七段译码器,普通编码器(任意时刻只允许一个线上有信号),优先编码器(编码优先次序),6、数据比较器和加法器比较两个数的大小74hc83,半加器,全加器,串行加法器进位信号逐级上传,并行加法器74ls283进位信号并行上传7、奇偶校验器74ls280第三章三个时序方程1、锁存器时序逻辑电路与组合逻辑电路的区别时序电路的分类:同步,异步锁存器的基本特性基本SR锁存器(Set-Reset)n Qn+1RSQ+=门控RS锁存器有使能端门控D锁存器只有一个输入Qn+1=D2、触发器▪边沿触发的,上升沿,下降沿,画法注意,▪SR触发器nn Q+1Q+SR=▪D触发器Qn+1=DJK触发器公式▪T触发器公式直接用jk触发器替换即可3、寄存器和移位寄存器锁存器或者触发器构成的一次能存储多位二进制代码的时序逻辑电路,叫寄存器。
数字逻辑电路基础知识整理

数字逻辑电路基础知识整理数字逻辑电路是由离散的数字信号构成的电子电路系统,主要用于处理和操作数字信息。
它是计算机和其他数字系统的基础。
以下是一些数字逻辑电路的基础知识的整理:1. 逻辑门:逻辑门是数字电路的基本构建单元。
它们根据输入信号的逻辑关系生成输出信号。
常见的逻辑门有与门、或门、非门、异或门等。
其中,与门输出仅当所有输入都为1时才为1;或门输出仅当至少一个输入为1时才为1;非门将输入信号取反;异或门输出仅当输入中的1的数量为奇数时才为1。
2. 逻辑运算:逻辑运算是对逻辑门的扩展,用于实现更复杂的逻辑功能。
常见的逻辑运算包括与运算、或运算、非运算、异或运算等。
与运算将多个输入信号进行AND操作,返回结果;或运算将多个输入信号进行OR操作,返回结果;非运算对输入信号进行取反操作;异或运算将多个输入信号进行异或操作,返回结果。
3. 编码器和解码器:编码器将多个输入信号转换为较少数量的输出信号,用于压缩信息;解码器则将较少数量的输入信号转换为较多数量的输出信号,用于还原信息。
常用的编码器有优先编码器和BCD编码器,常用的解码器有二进制-十进制解码器和译码器。
4. 多路选择器:多路选择器根据选择输入信号从多个输入信号中选择一个信号输出。
它通常有一个或多个选择输入信号和多个数据输入信号。
选择输入信号决定了从哪个数据输入信号中输出。
多路选择器可用于实现多路复用、数据选择和信号路由等功能。
5. 触发器和寄存器:触发器是存储单元,用于存储和传输信号。
常见的触发器有弗洛普触发器、D触发器、JK触发器等。
寄存器由多个触发器组成,用于存储和传输多个比特的数据。
6. 计数器和时序电路:计数器用于计数和生成递增或递减的序列。
它通过触发器和逻辑门组成。
时序电路在不同的时钟脉冲或控制信号下执行特定的操作。
常见的时序电路有时钟发生器、定时器和计数器。
7. 存储器:存储器用于存储和读取数据。
常见的存储器包括随机存取存储器(RAM)和只读存储器(ROM)。
数字逻辑知识点总结

1、三极管的截止条件是V BE <0.5V ,截止的特点是I b =I c ≈0;饱和条件是 I b ≥(E C -Vces )/(β·R C ),饱和的特点是V BE ≈0.7V ,V CE =V CES ≤0.3V 。
2、逻辑常量运算公式3、逻辑变量、常量运算公式4、 逻辑代数的基本定律根据逻辑变量和逻辑运算的基本定义,可得出逻辑代数的基本定律。
①互非定律: A+A = l ,A • A = 0 ;1=+A A ,0=•A A ; ②重叠定律(同一定律):A • A=A , A+A=A ;③反演定律(摩根定律):A • B=A+B 9 A+B=A • B B A B A •=+,B A B A +=•; ④还原定律: A A =ch2.1、三种基本逻辑是与、或、非。
2、三态输出门的输出端可以出现高电平、底电平和高阻三种状态。
1、组合电路的特点:电路任意时刻输出状态只取决于该时刻的输入状态,而与该时刻前的电路状态无关。
2、编码器:实现编码的数字电路3、译码器:实现译码的逻辑电路4、数据分配器:在数据传输过程中,将某一路数据分配到不同的数据通道上。
5、数据选择器:逻辑功能是在地址选择信号的控制下,从多路数据中选择一路数据作为输出信号。
6、半加器:只考虑两个一位二进制数相加,而不考虑低位进位的运算电路。
7、全加器:实现两个一位二进制数相加的同时,再加上来自低位的进位信号。
8、在数字设备中,数据的传输是大量的,且传输的数据都是由若干位二进制代码0和1组合而成的。
9、奇偶校验电路:能自动检验数据信息传送过程中是否出现误传的逻辑电路。
10、竞争:逻辑门的两个输入信号从不同电平同时向相反电平跳变的现象。
11、公式简化时常用的的基本公式和常用公式有(要记住): 1)()()C A B A BC A ++=+2)B A AB += B A B A +=+ (德.摩根定律) 3)B A B A A +=+4)B A AB BC B A AB +=++5)AB B A B A B A +=+ B A B A AB B A +=+12、逻辑代数的四种表示方法是真值表、函数表达式、卡诺图和逻辑图。
(完整版)数字逻辑复习提纲

(完整版)数字逻辑复习提纲数字逻辑基础复习提纲⒈数制与码制数字系统中常⽤的数制及其互换、符号数表⽰、数字与字符编码。
2. 逻辑代数基础逻辑代数的基本定理及规则,⽤逻辑代数及卡诺图化简逻辑函数的⽅法与技巧。
3. 组合逻辑电路门电路符号及外部特性4. 同步时序电路同步时序电路的特点,触发器及其互换,Mealy 型和Moore型的状态图与状态表,同步时序电路分析与设计的⽅法。
5. 异步时序电路异步时序电路的特点与模型,脉冲异步时序电路分析与设计的⽅法。
电平异步时序电路分析与设计的⽅法。
6. 中、⼤规模集成电路及其应⽤加法器、译码器、编码器、多路选择器、多路分配器、计数器和寄存器等常⽤集成电路的符号、功能表及使⽤⽅法及综合应⽤。
⼀、课程的教学基本要求1.数制与码制要求学⽣熟悉常⽤的⼏种进位计数制(2,8,10,16进制),以及这⼏种数制的相互转换。
数字系统数值数据的表⽰,重点是符号整数的定点数(原码、反码及补码)表⽰。
数字和字符的编码。
2.逻辑代数基础要求学⽣熟悉并掌握逻辑代数基本定理及规则,标准积之和表达式与最⼩项,标准和之积表达式与最⼤项。
熟悉并能应⽤逻辑代数和卡诺图分析和化简逻辑表达式。
3.组合逻辑电路分析与设计要求学⽣熟悉并掌握组合逻辑电路的分析和设计的⽅法;单输出与多输出组合逻辑电路设计⽅法的异同;组合逻辑险象的判断与消除。
要求做门电路及组合逻辑电路实验。
4.同步时序电路分析与设计要求学⽣熟悉并掌握同步时序逻辑电路的分析和设计的⽅法;Mealy型与 Moore型时序电路的状态图与状态表;常⽤的⼏种触发器及其互换。
要求做触发器及同步时序逻辑电路实验。
5.异步时序逻辑电路分析与设计要求学⽣熟悉并掌握脉冲异步时序逻辑电路与点平异步时序电路的分析和设计的⽅法;电平异步时序电路的竞争与险象。
要求做异步时序逻辑电路实验。
6.中规模集成电路应⽤要求学⽣熟悉并掌握常⽤的⼏种中规模集成电路;能够⽤它们设计组和逻辑电路和时序电路,并具有综合设计的能⼒。
数字逻辑知识点总结

数字逻辑知识点总结数字逻辑有着相当丰富的知识点,包括逻辑门的基本原理、布尔代数、数字信号的传输与处理、数字电路的设计原理等。
在这篇文章中,我将对数字逻辑的一些重要知识点进行总结,希望能够为初学者提供一些帮助。
1. 逻辑门逻辑门是数字电路中的基本单元,它可以完成各种逻辑运算,并将输入信号转换为输出信号。
常见的逻辑门包括与门、或门、非门、与非门、或非门、异或门等。
每种逻辑门都有其特定的逻辑功能,通过不同的组合可以完成各种逻辑运算。
在数字电路设计中,逻辑门是构建各种复杂逻辑电路的基础。
2. 布尔代数布尔代数是表示逻辑运算的一种代数系统,它将逻辑运算符号化,并进行了各项逻辑规则的代数化处理。
布尔代数是数字逻辑的基础,通过布尔代数可以很方便地表达和推导各种逻辑运算,对于理解数字电路的工作原理非常有帮助。
3. 二进制与十进制的转换在数字逻辑中,我们经常需要进行二进制与十进制的转换。
二进制是计算机中常用的数字表示方法,而十进制则是我们日常生活中常用的数字表示方法。
通过掌握二进制与十进制之间的转换规则,可以方便我们在数字逻辑中进行各种数字运算。
4. 组合逻辑与时序逻辑数字电路可以分为组合逻辑电路与时序逻辑电路。
组合逻辑电路的输出只取决于输入信号的瞬时状态,而时序逻辑电路的输出还受到时钟信号的控制。
理解组合逻辑与时序逻辑的差异对于理解数字电路的工作原理至关重要。
5. 有限状态机有限状态机是数字逻辑中一个重要的概念,它是一种认知和控制系统,具有有限的状态和能够在不同状态之间转移的能力。
有限状态机在数字系统中有着广泛的应用,可以用来设计各种具有状态转移行为的电路或系统。
6. 计数器与寄存器计数器与寄存器是数字逻辑中常用的两种逻辑电路。
计数器用于对计数进行处理,而寄存器则用于存储数据。
理解计数器与寄存器的工作原理和使用方法,对于数字系统的设计和应用具有非常重要的意义。
7. 逻辑电路的设计与分析数字逻辑的一大重点是逻辑电路的设计与分析。
数字逻辑复习大纲

第一章基本知识一、模拟电路和数字电路的区别二、组合逻辑电路和时序逻辑电路的区别:输出只与当时的输入有关,如编码器,比较器等;输出不仅与当时的输入有关,还与电路原来的状态有关。
如:触发器,计数器,寄存器等。
三、数制及其转换1.不同的数制及其各种进制转换方法2.几种常用的编码(1)BCD码用4位二进制代码对十进制数字符号进行编码,简称为二–十进制代码,或称BCD(Binary Coded Decimal)码。
BCD码既有二进制的形式,又有十进制的特点。
常用的BCD码有8421码、5421码、2421码和余3码。
(1--1)8421码:是用4位二进制码表示一位十进制字符的一种有权码,4位二进制码从高位至低位的权依次为23、22、21、20,即为8、4、2、1,故称为8421码。
8421码中不允许出现1010~1111六种组合。
(1--2)5421码:用4位二进制码表示一位十进制字符的另一种有权码,4位二进制码从高位至低位的权依次为5、4、2、1,故称为5421码。
5421码中不允许出现0101、0110、0111和1101、1110、1111六种组合。
(1--3)2421码: 用4位二进制码表示一位十进制字符的另一种有权码,4位二进制码从高位至低位的权依次为2、4、2、1,故称为2421码。
(1--4)余3码:由8421码加上0011形成的一种无权码,由于它的每个字符编码比相应8421码多3,故称为余3码。
例如,十进制字符5的余3码等于5的8421码0101加上0011,即为1000。
(2)可靠性编码(2--1)格雷码:1. 特点:任意两个相邻的数,其格雷码仅有一位不同。
2. 作用:避免代码形成或者变换过程中产生的错误。
掌握二进制和格雷码的转换方法(2--2)奇偶检验码:奇偶检验码是一种用来检验代码在传送过程中是否产生错误的代码。
第二章逻辑代数一、各种逻辑代数定律二、基本逻辑运算符号三、逻辑代数的基本定理和规则三个基本运算规则1.代入规则:任何含有某变量的等式,如果等式中所有出现此变量的位置均代之以一个逻辑函数式,则此等式依然成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字逻辑课程知识点
第一章数字逻辑概论
1.计算机中常见的几种数制及其转换方法(十进制、二进制、十六进制)
2.有符号数的补码表示方法(要求会求符号数的补码或从补码求实际的有符号数)3.掌握ASCII码概念。
知道常用字符(空格、数字0-9和字母A – Z,a- z等)的ASCII 码。
4.掌握8421BCD码的概念,会用BCD码表示十进制数
5.掌握基本逻辑运算(“与”、“或”、“非”、“与非”、“或非”、“异或”以及“同或”等运算)及其逻辑符号。
6.掌握逻辑函数的5种表示方法(真值表表示法、逻辑表达式表示法、逻辑图表示法、波形图表示法、卡诺图表示法)
第二章逻辑代数
1.逻辑代数的基本定律和恒等式(摩根定理)
2.逻辑代数的基本规则(代入规则、反演规则、对偶规则)
3.把“与---或”表达式变换为“与非---与非”和“或非---或非”表达式的方法
4.逻辑函数的代数化简方法:
并项法(A+/A=1)
吸收法(A+AB=A)
消去法(A+/AB=A+B)
配项法(A=A*(B+/B))
5.卡诺图的特点:每个小方格都惟一对应于一个不同的变量组合(一个最小项),而且,上、下、左、右在几何上相邻的方格内只有一个因子有差别。
任何一个函数都等于其卡诺图中为1的方格所对应的最小项之和。
6.掌握用卡诺图化简逻辑函数的方法
7.理解无关项的概念:即实际应用中,在真值表内对应于变量的某些取值,函数的值是可以任意的,或者这些变量的取值根本不会出现,这些变量取值对应的最小项即称为
无关项或任意项,每个无关项的值既可以取0,也可以取1,具体的取值以得到最简的函数表达式为准。
第三章MOS逻辑门电路
1.数字集成电路的分类:
从集成度方面分:小规模(SSI)、中规模(MSI)、大规模(LSI)、超大规模(VLSI)
和甚大规模(ULSI)。
从制造工艺方面分:CMOS、TTL、ECL以及BiCMOS等
2.CMOS的特点:(功耗低、抗干扰能力强、电源范围宽)
3.理解集成电路各种参数的意义:
(1)V IL
(max
)
、V IH(min)、V OH(min)、V OL(max)、I IH
(max)
、I IL
(max)
、I OH
(max)
、I OL
(max)
(2)高电平噪声容限期VNH = V OH(min) —V IH(min)
(3)低电平噪声容限期VNL = V IL
(max)
—V OL(max)
(4)传输延迟时间t PLH、t pHL以及tpd = (t PLH + t pHL)/2
(5)功耗(动态功耗和静态功耗)。
动态功耗P d = (C pd+C L)* V2DD*f
(6)延时--功耗积
(7)扇入数与扇出数
扇入数是指门电路的输入端个数;
扇出数是指正常工作情况下,所能带同类门电路的最大数目。
计算扇出数时,
同时考虑输出高、低电平以及负载门类型三种因素,取最小值。
4.漏极开路门、三态门的作用?
5.CMOS传输门的作用?
6.门电路相接时需要考虑两个问题:
(1)电平兼容问题:V OH(min)≥V IH(min);V OL(max) ≤V IL(max)
(2)扇出(驱动)问题:
灌电流(即驱动门输出为低)时,要求:I
OL(max)
≥I IL(total)
拉电流(即驱动门输出为高)时,要求:I
OH(max)
≥I IH(total)
7.抗干扰措施(P116-P117,多余端的除理、去耦滤波电容、接地)
第4章 组合逻辑电路
1.掌握组合逻辑电路的分析方法
由逻辑电路写逻辑表达式;
由逻辑表达式写出真值表;
确定逻辑电路功能。
2.掌握组合逻辑电路的设计方法
明确功能要求,确定输入、输出变量及表示符号
列出真值表;
由真值表写出逻辑表达式(多个变量时,要借助卡诺图)
画出逻辑图。
3.理解编码器、译码器/数据分配器、数据选择器、比较器、半加器和全加器的工作原理。
4.掌握74LS138、74LS139作为译码器和数据分配器时的应用。
第五章 锁存器和触发器
1.掌握逻辑门控RS 锁存器的工作原理,会画波形图。
2.掌握传输门控D 锁存器的工作原理,会画波形图。
3.掌握D 触发器的工作原理(Q n+1 = D ),会画波形图。
4.掌握J 、K 触发器的工作原理(n n n Q K Q J Q +=+1),会画波形图。
5.掌握 T 触发器以及T ’ 触发器的工作原理及功能,会画波形图。
6.掌握用D 触发器实现J 、K 触发器、T 触发器以及T ’ 触发器的方法(p230)
第六章 时序逻辑电路
1.掌握同步时序逻辑电路的分析方法。
写出三组方程组(输出、激励、和状态方程组)
列出状态表;
画出状态转换图;
确定电路的功能;
2.理解同步时序逻辑电路的设计方法
根据功能要求,建立原始状态图,并对原始状态图进行化简;
建立状态表
状态分配;
确定触发器类型;
确定激励和输出方程组;
画出逻辑图,并检查自启动能力;
3.理解异步时序逻辑电路的分析方法。
4.理解寄存器以及移位寄存器的工作原理。
5.掌握74LS161计数器的工作原理,掌握清零法和置数法设计计数器方法。
第七章存储器
1.掌握存储器的分类、特点以及主要参数的意义。
2.理解ROM和SRAM的工作原理。
3.掌握SRAM存储容量的扩展方法(P354)。
第八章脉冲波形的变换与产生
1.理解单稳态触发器、施密特触发器以及多谐振荡器的工作原理
2.掌握单稳态触发器、施密特触发器的应用。