6-4第四节 基本不等式练习题(2015年高考总复习)
基本不等式习题及答案

基本不等式习题及答案基本不等式习题及答案不等式是数学中重要的概念之一,它描述了数值之间的大小关系。
在初等数学中,我们学习了许多基本的不等式,它们在解决实际问题和推导其他数学知识时起着重要的作用。
在本文中,我们将探讨一些基本的不等式习题,并给出相应的答案。
1. 习题一:证明对于任意的正实数a和b,有(a+b)² ≥ 4ab。
解答:我们可以使用平方差公式来证明这个不等式。
根据平方差公式,我们有(a+b)² = a² + 2ab + b²。
由于a和b都是正实数,所以a²和b²都大于等于0。
因此,我们只需要证明2ab大于等于0即可。
由于a和b都是正实数,所以它们的乘积ab也是正实数。
根据乘法的性质,正实数的乘积仍然是正实数,因此2ab大于等于0。
所以,我们证明了(a+b)²≥ 4ab。
2. 习题二:证明对于任意的正实数a,b和c,有(a+b)(b+c)(c+a) ≥ 8abc。
解答:我们可以使用AM-GM不等式来证明这个不等式。
根据AM-GM不等式,对于任意的正实数x和y,有(x+y)/2 ≥ √(xy)。
将x替换为a+b,y替换为b+c,我们有(a+b+b+c)/2 ≥ √((a+b)(b+c))。
进一步简化得到(a+2b+c)/2 ≥ √((a+b)(b+c))。
同样地,将x替换为b+c,y替换为c+a,我们有(b+c+c+a)/2 ≥ √((b+c)(c+a))。
进一步简化得到(2b+2c+a)/2 ≥ √((b+c)(c+a))。
将x替换为c+a,y替换为a+b,我们有(c+a+a+b)/2 ≥ √((c+a)(a+b))。
进一步简化得到(2c+2a+b)/2 ≥ √((c+a)(a+b))。
将上述三个不等式相乘,我们得到((a+2b+c)/2)((2b+2c+a)/2)((2c+2a+b)/2) ≥ (√((a+b)(b+c)))(√((b+c)(c+a)))(√((c+a)(a+b)))。
2015届高考数学总复习 第六章 第四节基本不等式≤ (a,b∈R+ )课时精练试题 文(含解析)

第四节基本不等式: ab ≤a +b2(a ,b ∈R +)1.(2012·临沂一模)已知a >0,b >0,“a +b =2” 是“ab ≤1”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由基本不等式可知,a +b =2⇒ab ≤1,但ab ≤1不能推出a +b =2.故选A. 答案:A2.(2013·常州质检)已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:因为x <0,所以-x >0,所以x +1x -2=-(-x +1-x )-2≤-2-x 1-x -2=-4,当且仅当-x =1-x,即x =-1时,等号成立.答案:C3.(2013·长沙质检)若0<x <1,则当f (x )=x (4-3x )取得最大值时,x 的值为 ( ) A.13 B.12 C.34 D.23解析:因为0<x <1,所以f (x )=x (4-3x )=13×3x (4-3x )≤13×⎝ ⎛⎭⎪⎫3x +4-3x 22=43,当且仅当3x =4-3x ,即x =23时,取得“=”,故选D.答案:D4.(2012·深圳调研)设a ,b ,c ,d ∈R ,若a,1,b 成等比数列,且c,1,d 成等差数列,则下列不等式恒成立的是( )A .a +b ≤2cdB .a +b ≥2cdC .|a +b |≤2cdD .|a +b |≥2cd解析:∵ab =1>0,∴a ,b 同号. ∴|a +b |=|a |+|b |≥2|a ||b |=2.又c +d =2,∴(c +d )2=4,即c 2+d 2+2cd =4.∴4-2cd =c 2+d 2≥2cd ,得2cd ≤2, ∴|a +b |≥2cd .故选D. 答案:D5.(2012·福州质检)已知函数f (x )=2x满足f (m )·f (n )=2,则mn 的最大值为( ) A.12 B.14 C.16 D.18解析:由已知得2m·2n=2m +n=2,所以m +n =1,于是mn ≤⎝⎛⎭⎪⎫m +n 22=14.故选B.答案:B6.(2013·佛山一模)设二次函数f (x )=ax 2-4x +c (x ∈R )的值域为[0,+∞),则1c +9a的最小值为( )A .3 B.92C .5D .7解析:由题意知,a >0,△=16-4ac =0,所以ac =4,c >0,则1c +9a ≥2×9ac=3,当且仅当1c =9a 时取等号,所以1c +9a的最小值是 3.故选A.答案:A7.(2013·山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当z xy取得最小值时,x +2y -z 的最大值为( )A .0 B.98 C .2 D.94解析:由题意知:z =x 2-3xy +4y 2,则z xy =x 2-3xy +4y 2xy =x y +4y x-3≥1,当且仅当x=2y 时取等号,此时z =xy =2y 2.所以x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2≤2.答案:C8.(2013·四川卷)已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________.解析:由基本不等式性质,f (x )=4x +a x (x >0,a >0)在4x =ax ,即x 2=a4时取得最小值,由于x >0,a >0,再根据已知可得a4=32,故a =36.答案:369.若对任意x >0,xx +3x +1≤a 恒成立,则a 的取值范围是________.解析:∵x >0,∴x +1x≥2(当且仅当x =1时取等号),∴x x 2+3x +1=1x +1x+3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎢⎡⎭⎪⎫15,+∞10.(2013·商丘模拟)若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y的最小值为__________.解析:依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y=232=6,当且仅当2x =y =1时取等号,因此9x +3y的最小值是6.答案:611. (2012·衡阳八中月考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x ≥0,y ≥0,若目标函数z=ax +by (a >0,b >0)的最大值为6,则log3⎝ ⎛⎭⎪⎫1a +2b 的最小值为________.解析:画出不等式组表示的平面区域,可知当直线z =ax +by 经过点(2,4)时,z 取最大值,∴2a +4b =6,即1=a +2b 3,所以1a +2b =a +2b 3a +a +2b 3b =53+2b 3a +2a 3b ≥2×23+53=3.∴log 3⎝ ⎛⎭⎪⎫1a +2b ≥log 33=2.故log 3⎝ ⎛⎭⎪⎫1a +2b 的最小值为2. 答案:212.(2013·豫西五校联考)已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.解析:依题意得,a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |×|2b |=22|ab |=2100=20(当且仅当|a |=|2b |时取等号),因此|a +2b |的最小值是20.答案:2013.围建一个面积为368 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口(如图所示),已知旧墙的维修费用为180元/m ,新墙的造价为460元/m ,设利用的旧墙的长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.解析:(1)因为利用的旧墙的长度为x 米,则以被利用的那部分旧墙为一边的矩形的另一边长为368xm ,于是y =180x +460(x -2)+460×2×368x=640x +232×82×10x-920=640x +338 560x-920(x >0).(2)∵x >0,∴640x +338 560x≥2640x ×338 560x=29 440.∴y =640x +338 560x-920≥29 440-920=28 520,当且仅当640x =338 560x,即x =23时,等号成立.∴当x =23 m 时,修建围墙的总费用最小,最小总费用是28 520元.14.(2013·苏北四市联考)某开发商用9 000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2 000平方米.已知该写字楼第一层的建筑费用为每平方米4 000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.(1)若该写字楼共x 层,总开发费用为y 万元,求函数y =f (x )的表达式;(总开发费用=总建筑费用+购地费用)(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?解析:(1)由已知,写字楼最下面一层的总建筑费用为: 4 000×2 000=8 000 000(元)=800(万元),从第二层开始,每层的建筑总费用比其下面一层多: 100×2 000=200 000(元)=20(万元),写字楼从下到上各层的总建筑费用构成以800为首项,20为公差的等差数列, 所以函数表达式为:y =f (x )=800x +x x -2×20+9 000=10x 2+790x +9 000(x ∈N *).(2)由(1)知写字楼每平方米平均开发费用为:g (x )=f x 2 000x×10 000=x 2+790x +x=50⎝⎛⎭⎪⎫x +900x+79≥50×(2900+79)=6 950(元).当且仅当x =900x,即x =30时等号成立.答:该写字楼建为30层时,每平方米平均开发费用最低.。
人教A版高中数学 高三一轮第六章 不等式 6-4 基本不等式练习教师版 精品

高三 一轮复习 6.4 基本不等式(检测教师版)时间:50分钟 总分:70分班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4【答案】C【解析】∵x <0,∴f (x )=-⎣⎡⎦⎤-x +1-x -2≤-2-2=-4,当且仅当-x =1-x, 即x =-1时取等号.2.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为( )A .2B .4C .8D .16【答案】C【解析】∵x =-2时,y =log a 1-1=-1,∴函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点(-2,-1),即A (-2,-1),∵点A 在直线mx +ny +1=0上,∴-2m -n +1=0,即2m +n =1,∵m >0,n >0,1m +2n =2m +n m +4m +2n n =2+n m +4m n +2≥4+2·n m ·4mn =8,当且仅当m =14,n =12时取等号.故选C.3.下列函数中,最小值为4的个数为( )①y =x +4x ;②y =sin x +4sin x (0<x <π);③y =e x +4e -x ;④y =log 3x +4log x 3.A .4B .3C .2D .1【答案】D【解析】 ①中,由于x 的符号不确定,故不满足条件;②中,0<sin x ≤1,而应用不等式时等号成立的条件为sin x =2,故不满足条件;③正确;④中log 3x ,log x 3的符号不确定,故不满足条件,综上只有③满足条件.4.要设计一个矩形,现只知道它的对角线长度为10,则在所有满足条件的设计中,面积最大的一个矩形的面积为( ) A .50 B .25 3C .50 3D .100【答案】A【解析】设矩形的长和宽分别为x 、y ,则x 2+y 2=100.于是S =xy ≤x 2+y 22=50,当且仅当x=y 时等号成立.5.设x ∈R, 对于使-x 2+2x ≤M 成立的所有常数M 中,我们把M 的最小值1叫做-x 2+2x 的上确界. 若a ,b ∈R +,且a +b =1,则-12a -2b 的上确界为( )A .-5B .-4C.92D. -92【答案】D【解析】 因为12a +2b =⎝⎛⎭⎫12a +2b (a +b )=52+b 2a +2a b ≥52+2=92,所以-12a -2b ≤-92,选D. 6.已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1)【答案】B【解析】 由f (x )>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x=23x ,即x =log 32时,等号成立),∴k +1<22,即k <22-1.二、填空题(共4小题,每题5分,共20分)7.若实数a ,b 满足ab -4a -b +1=0(a >1),则(a +1)(b +2)的最小值为________. 【答案】 27【解析】∵ab -4a -b +1=0,∴b =4a -1a -1.∵a >1,∴b >0.∵ab =4a +b -1,∴(a +1)(b +2)=ab +2a +b +2=6a +2b +1=6a +2·4a -1a -1+1=6a +[4(a -1)+3]×2a -1+1=6a +8+6a -1+1=6(a -1)+6a -1+15.∵a -1>0,∴6(a -1)+6a -1+15≥26×6+15=27,当且仅当(a -1)2=1(a >1),即a =2时等号成立.∴所求最小值为27.8.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是________. 【答案】4【解析】∵x 、a 、b 、y 成等差数列,∴a +b =x +y .∵x 、c 、d 、y 成等比数列,∴cd =xy ,则(a +b )2cd =(x +y )2xy =y x +x y +2≥4(x >0,y >0),当且仅当y x =x y 时,取等号.故为4.9.已知向量a =(m ,1),b =(1-n ,1),m >0,n >0,若a ∥b ,则1m +2n的最小值是________.【答案】 3+2 2【解析】向量a ∥b 的充要条件是m ×1=1×(1-n ),即m +n =1,故1m +2n=(m +n )⎝⎛⎭⎫1m +2n =3+n m +2m n ≥3+22,当且仅当n =2m =2-2时等号成立,故1m +2n 的最小值是3+2 2.10.已知x >0,y >0,n >0,nx +y =1,1x +4y 的最小值为16,则n 的值为________.【答案】 4【解析】 ∵x >0,y >0,n >0,nx +y =1,∴1x +4y=(nx +y )⎝⎛⎭⎫1x +4y ≥n +4+2y x ·4ny=n +4+4n ,当且仅当y =2nx 时取等号.∴n +4+4n =16,解得n =4.故答案为:4. 三、解答题(共2小题,每题10分,共20分) 11.已知x >0,y >0,且2x +8y -xy =0,求(1)xy 的最小值; (2)x +y 的最小值. 【答案】见解析【解析】 (1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y≥28x ·2y =8xy, 得xy ≥64,当且仅当x =16,y =4时,等号成立.所以xy 的最小值为64. (2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y )=10+2x y +8yx ≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计).(1)污水处理池的长设计为多少米时,可使总造价最低;(2)如果受地形限制,污水处理池的长、宽都不能超过14.5米,那么此时污水处理池的长设计为多少米时,可使总造价最低. 【答案】见解析【解析】 (1)设污水处理池的长为x 米,则宽为200x 米,总造价f (x )=400×(2x +2×200x)+100×200x +60×200=800×(x +225x)+12 000≥1 600x ·225x+12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立. 即污水处理池的长设计为15米时,可使总造价最低. (2)记g (x )=x +225x(0<x ≤14.5),显然是减函数,∴x =14.5时,g (x )有最小值,相应造价f (x )有最小值,此时宽也不超过14.5米.。
基本不等式练习题(带答案)

《基本不等式》同步测试一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( ) A.3 B.332- C.3-23 D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B. 63C. 46D. 183 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .11123abc++≥ D .3a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y +≥ C .2xy ≥ D .11xy ≥8. a ,b 是正数,则2,,2a babab a b++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b abab a b+≤≤+ C.22ab a b ab a b +≤≤+ D.22ab a bab a b +≤≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x =+B.4sin sin y x x=+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+二、填空题, 本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上. 11. 函数21y x x =-的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的值恒为正,对吗?答 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤. 15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值. 18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案ABCDCABCCC二.填空题 11.12 12.3600 13. 212- 14.对 三、解答题15.ab 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。
2015高考数学配套课件:6-4 基本不等式

山 东
(2)条件变形进行“1”的代换求目标函数最值.
金 太
阳
书
业
有
限
公
司
菜 单 隐藏
第十九页,编辑于星期五:十五点 八分。
高考总复习 A 数学(理)
抓主干 考点
基本不等式的实际应用
解密
研考向
【例3】 为响应国家扩大内需的政策,某厂家拟在2014年举行促
要点
探 究 销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促
训练
则函数的解析式可化为y=(t+1)+t+1t2+1=2t+2t +3.
山 东
因为t>0,所以2t+2t ≥2
金
2t×2t
=4,当且仅当2t=
2 t
,即t=1,
太 阳
书
也就是x=2时取等号.
业
有
所以2t+2t +3≥4+3=7,即函数f(x)的最小值为f(2)=7.故选D.
限 公
答案:D
司
菜 单 隐藏
10+ xy+1x6y ,因为x,y均为正数,所以由基本不等式得10+ xy+1x6y
山 东 金
≥10+2 16=18,
太 阳
当且仅当x=12,y=3时等号成立.
书
业
答案:18
有
限
公
司
菜 单 隐藏
第六页,编辑于星期五:十五点 八分。
高考总复习 A 数学(理)
抓主干 考点 解密
研考向 要点 探究
悟典题 能力 提升
要点
探究
____________________[通关方略]____________________
悟典题
能力 提升
2015届高考数学总复习第六章 第四节基本不等式≤ (a,b∈R+ )精讲课件 文

第四节 基本不等式: (a,b∈R+)
利用基本不等式比较数(或式)的大小
【例1】 若a>b>1,P=
ln ,试比较P,Q,R的大小.
,Q= (ln a +ln b),R=
自主解答: 解析:∵a>b>1,∴ln a>ln b>0,
点评:如果两个数(式)的关系符合基本不等式的结构形式,
则可以用基本不等式比较大小,如果两个数(式)的关系通过 变形可以变成基本不等式的结构形式,则可以用基本不等
和.
(1)求k的值及f(x)的表达式; (2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
解析:(1)设隔热层厚度为x cm,由题设,每年能源消耗 费用为C(x)= 因此C(x)= ,再由C(0)=8,得k=40,
而建造费用为C1(x)=6x.
最后得隔热层建造费用与 20 年的能源消耗费用之和为 f(x)=20C(x)+C1(x)=20× (2)由(1)知f(x)= +6x(0≤x≤10), -10=80-10=70,
C.9
B.3
D.不存在
(2)(2012· 佛山一中期中)下列结论正确的是(
A.当x>0且x≠1时,lg x+ B.当x>0时, C.当x≥2时,x+ ≥2 的最小值为2 无最大值 ≥2
)
D.当0<x≤2时,x-
思路点拨:对于(1),根据等比数列所给的等式,找出m,n的
关系m+n=3,将所找的关系与
则t∈(0,1],y=t+ 在(0,1]上为减函数, 故当t=1时,y取最小值5,∴③错误.故选B. 答案:B
点评:利用基本不等式判断一个不等式的正误,主要看该
不等式是否满足基本不等式成立的条件.
变式探究
历年高三数学高考考点之基本不等式必会题型及答案

历年高三数学高考考点之<基本不等式>必会题型及答案体验高考1.(2015·四川)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25 D.812答案 B解析 ①当m =2时,∵f (x )在[12,2]上单调递减, ∴0≤n <8,mn =2n <16.②m ≠2时,抛物线的对称轴为x =-n -8m -2. 据题意得,当m >2时,-n -8m -2≥2,即2m +n ≤12, ∵2m ·n ≤2m +n 2≤6, ∴mn ≤18,由2m =n 且2m +n =12得m =3,n =6.当m <2时,抛物线开口向下,据题意得,-n -8m -2≤12,即m +2n ≤18, ∵2n ·m ≤2n +m 2≤9, ∴mn ≤812, 由2n =m 且m +2n =18得m =9>2,故应舍去.要使得mn 取得最大值,应有m +2n =18(m <2,n >8).∴mn =(18-2n )n <(18-2×8)×8=16,综上所述,mn 的最大值为18,故选B.2.(2015·陕西)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q 答案 C解析 ∵0<a <b ,∴a +b 2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln a +12ln b =ln(ab )12=f (ab )=p .故p =r <q .选C.3.(2015·天津)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.答案 4解析 log 2a ·log 2(2b )=log 2a ·(1+log 2b )≤⎝⎛⎭⎪⎫log 2a +1+log 2b 22=⎝ ⎛⎭⎪⎫log 2ab +122 =⎝ ⎛⎭⎪⎫log 28+122=4, 当且仅当log 2a =1+log 2b ,即a =2b 时,等号成立,此时a =4,b =2.4.(2016·江苏)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.答案 8解析 在△ABC 中,A +B +C =π,sin A =sin[π-(B +C )]=sin(B +C ),由已知,sin A =2sin B sin C ,∴sin(B +C )=2sin B sin C .∴sin B cos C +cos B sin C =2sin B sin C ,A ,B ,C 全为锐角,两边同时除以cos B cos C 得:tan B +tan C =2tan B tan C .又tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C =tan B +tan C tan B tan C -1. ∴tan A (tan B tan C -1)=tan B +tan C .则tan A tan B tan C -tan A =tan B +tan C ,∴tan A tan B tan C =tan A +tan B +tan C=tan A +2tan B tan C ≥22tan A tan B tan C , ∴tan A tan B tan C ≥22,∴tan A tan B tan C ≥8.5.(2016·上海)设a >0,b >0.若关于x ,y 的方程组⎩⎪⎨⎪⎧ ax +y =1,x +by =1无解,则a +b 的取值范围是________.答案 (2,+∞)解析 由已知,ab =1,且a ≠b ,∴a +b >2ab =2.高考必会题型题型一 利用基本不等式求最大值、最小值1.利用基本不等式求最值的注意点(1)在运用基本不等式求最值时,必须保证“一正,二定,三相等”,凑出定值是关键.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错.2.结构调整与应用基本不等式基本不等式在解题时一般不能直接应用,而是需要根据已知条件和基本不等式的“需求”寻找“结合点”,即把研究对象化成适用基本不等式的形式.常见的转化方法有:(1)x +bx -a =x -a +bx -a +a (x >a ).(2)若a x +b y =1,则mx +ny =(mx +ny )×1=(mx +ny )·⎝ ⎛⎭⎪⎫a x +b y ≥ma +nb +2abmn (字母均为正数).例1 (1)已知正常数a ,b 满足1a +2b=3,则(a +1)(b +2)的最小值是________. 答案 509解析 由1a +2b =3,得b +2a =3ab , ∴(a +1)(b +2)=2a +b +ab +2=4ab +2,又a >0,b >0,∴1a +2b ≥22ab ,∴ab ≥89(当且仅当b =2a 时取等号), ∴(a +1)(b +2)的最小值为4×89+2=509. (2)求函数y =x 2+7x +10x +1(x >-1)的最小值. 解 设x +1=t ,则x =t -1(t >0),∴y =t -12+7t -1+10t=t +4t+5≥2 t ·4t +5=9. 当且仅当t =4t,即t =2,且此时x =1时,取等号, ∴y min =9.点评 求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.变式训练1 已知x >0,y >0,且2x +5y =20,(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,即xy ≤10,当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧ x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2x y时等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =10 10-203,y =20-4103. ∴1x +1y 的最小值为7+2 1020. 题型二 基本不等式的综合应用例2 (1)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件答案 B 解析 平均每件产品的费用为y =800+x 28x =800x +x 8≥2 800x ×x 8=20,当且仅当800x =x 8,即x =80时取等号,所以每批应生产产品80件,才能使平均到每件产品的生产准备费用与仓储费用之和最小.(2)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?解 设铁栅长为x 米,一侧砖墙长为y 米,则顶部面积S =xy ,依题设,得40x +2×45y +20xy =3 200,由基本不等式得 3 200≥2 40x ·90y +20xy =120 xy +20xy =120 S +20S ,则S +6S -160≤0,即(S -10)·(S +16)≤0,故0<S ≤10,从而0<S ≤100,所以S 的最大允许值是100平方米,取得此最大值的条件是40x =90y 且xy =100,解得x =15,即铁栅的长应设计为15米.点评 基本不等式及不等式性质应用十分广泛,在最优化实际问题,平面几何问题,代数式最值等方面都要用到基本不等式,应用时一定要注意检验“三个条件”是否具备.变式训练2 (1)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是________. 答案 92 解析 圆的方程变形为(x -1)2+(y -2)2=5,由已知可得直线ax +by -6=0过圆心O (1,2),∴a +2b =6(a >0,b >0),∴6=a +2b ≥22ab ,∴ab ≤92(当且仅当a =2b 时等号成立), 故ab 的最大值为92. (2)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. ①写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;②当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 ①当0<x <80时, L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250. 当x ≥80时, L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x). ∴L (x )=⎩⎪⎨⎪⎧ -13x 2+40x -2500<x <80,1 200-x +10 000x x ≥80.②当0<x <80时,L (x )=-13x 2+40x -250. 对称轴为x =60,即当x =60时,L (x )最大=950(万元).当x ≥80时,L (x )=1 200-(x +10 000x)≤1 200-2 10 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元),综上所述,当x =100时,年获利最大.高考题型精练1.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值 eC .有最小值eD .有最小值 e答案 C解析 ∵x >1,y >1,且14ln x ,14,ln y 成等比数列,∴ln x ·ln y =14≤⎝ ⎛⎭⎪⎫ln x +ln y 22,∴ln x +ln y =ln xy ≥1⇒xy ≥e.2.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6答案 C解析 方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x5y +12y5x ≥135+125=5(当且仅当3x 5y =12y5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5.方法二 由x +3y =5xy 得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y=135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15 ≥135+2 3625=5, 当且仅当y =12时等号成立, ∴3x +4y 的最小值是5.3.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1B .6C .9D .16 答案 B解析 ∵正数a ,b 满足1a +1b=1, ∴b =a a -1>0,解得a >1.同理可得b >1, ∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥2 1a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴最小值为6.故选B.4.已知a >0,b >0,若不等式m 3a +b -3a -1b≤0恒成立,则m 的最大值为( ) A .4 B .16 C .9 D .3答案 B解析 因为a >0,b >0,所以由m 3a +b -3a -1b ≤0恒成立得m ≤(3a +1b )(3a +b )=10+3b a +3a b恒成立.因为3b a +3a b ≥23b a ·3a b=6, 当且仅当a =b 时等号成立,所以10+3b a +3a b≥16, 所以m ≤16,即m 的最大值为16,故选B.5.已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4答案 D解析 由2x -3=(12)y 得x +y =3, 1x +m y =13(x +y )(1x +m y) =13(1+m +y x +mx y) ≥13(1+m +2m )(当且仅当y x =mx y时取等号) ∴13(1+m +2m )=3,解得m =4,故选D. 6.已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( )A .9B .8C .4D .2答案 A解析 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6,所以圆心为C (0,1),因为直线ax +by +c -1=0经过圆心C ,所以a ×0+b ×1+c -1=0,即b +c =1.因此4b +1c =(b +c )(4b +1c)=4c b +b c +5. 因为b ,c >0,所以4c b +b c ≥24cb ·b c=4. 当且仅当4c b =b c时等号成立. 由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 7.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 6解析 由已知得x =9-3y 1+y.方法一 (消元法)∵x >0,y >0,∴0<y <3,∴x +3y =9-3y 1+y +3y =121+y +3(y +1)-6 ≥2121+y ·3y +1-6=6,当且仅当121+y=3(y +1), 即y =1,x =3时,(x +3y )min =6.方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0,∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.8.已知三个正数a ,b ,c 成等比数列,则a +cb +b a +c 的最小值为________. 答案 52解析 由条件可知a >0,b >0,c >0,且b 2=ac ,即b =ac ,故a +c b ≥2ac b =2,令a +c b =t ,则t ≥2,所以y =t +1t在[2,+∞)上单调递增, 故其最小值为2+12=52. 9.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号),又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号),综上可知4≤x 2+4y 2≤12.10.当x ∈(0,1)时,不等式41-x ≥m -1x 恒成立,则m 的最大值为________. 答案 9解析 方法一 (函数法)由已知不等式可得 m ≤1x +41-x, 设f (x )=1x +41-x =1-x +4x x 1-x =3x +1-x 2+x ,x ∈(0,1).令t =3x +1,则x =t -13,t ∈(1,4), 则函数f (x )可转化为g (t )=t-⎝ ⎛⎭⎪⎫t -132+t -13=t -19t 2+59t -49=9t -t 2+5t -4=9-t +4t+5, 因为t ∈(1,4),所以5>t +4t≥4, 0<-(t +4t )+5≤1,9-t +4t +5≥9, 即g (t )∈[9,+∞),故m 的最大值为9.方法二 (基本不等式法)由已知不等式可得m ≤1x +41-x,因为x ∈(0,1),则1-x ∈(0,1),设y =1-x ∈(0,1),显然x +y =1.故1x +41-x =1x +4y =x +y x +4x +y y=5+(y x +4x y )≥5+2y x ·4x y=9, 当且仅当y x =4x y ,即y =23,x =13时等号成立. 所以要使不等式m ≤1x +41-x恒成立,m 的最大值为9. 11.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)设所用时间为t =130x(小时), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610, 当且仅当2 340x =13x 18, 即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解 (1)设每件定价为t 元,依题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8, 整理得t 2-65t +1 000≤0,解得25≤t ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解, 等价于x >25时,a ≥150x +16x +15有解, ∵150x +16x ≥2150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2, ∴当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。
2015高考数学(理)一轮复习配套课件6-4基本不等式

取等号).
3 项必须注意——基本不等式求最值应注意的问题 (1)使用基本不等式求最值,其失误的真正原因是对其前提“一 正、二定、三相等”的忽视.要利用基本不等式求最值,这三个 条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技 巧,使其满足基本不等式中“正”“定”“等”的条件.
答案:18
1 2. 若 a>b>0,则 a + 的最小值为( ba-b
2
)
A. 2 C. 4
B. 3 D. 5
1 1 2 解析: 依题意得 a-b>0, 所以 a + ≥a + ba-b b+a-b 2 [ ] 2
[归纳拓展]
常用的几个重要不等式:
(1)a2+b2≥2ab(a,b∈R). a+b 2 (2)ab≤( 2 ) (a,b∈R). a+b 2 a2+b2 (3)( )≤ (a,b∈R). 2 2
b a (4) + ≥2(a· b>0). a b a+b (5)1 1≤ ab≤ 2 ≤ a+b 2 a2+b2 2 (a>0,b>0).
1 (3)已知 x,y>0,且 x+4y=1,则 xy 的最大值是 16
1 ,x +
1 y的最小值是
9
.
02突破3个热点考向
考向一 利用基本不等式求最值 例 1 值为( A. 9 C. 3 ) 9 B. 2 3 2 D. 2 (1)[2013· 重庆高考 ] 3-aa+6 (-6≤a≤3)的最大
就是
a+b 2 ab≤ 2 (a,b>0)等,还要注意“添、拆项”技巧和公式
等号成立的条件等.
2 个重要变形——基本不等式的变形 a+b 2 a2+b2 (1)ab≤( )≤ (当且仅当 a=b 时取等号),这个不等式链 2 2 用处很大. (2) a2+b2 a+b 2 2 ≥ 2 ≥ ab≥1 1(a>0,b>0,当且仅当 a=b 时 a+b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 基本不等式
时间:45分钟 分值:75分
一、选择题(本大题共6小题,每小题5分,共30分)
1.设a ,b ∈R ,已知命题p :a 2+b 2≤2ab ;命题q :⎝ ⎛⎭
⎪⎫a +b 22≤a 2+b 2
2,则p 是q 成立的( )
A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
解析 命题p :(a -b )2≤0⇔a =b ;命题q :(a -b )2≥0.显然,由p 可得q 成立,但由q 不能推出p 成立,故p 是q 的充分不必要条件.
答案 B
2.已知f (x )=x +1
x -2(x <0),则f (x )有( ) A .最大值为0 B .最小值为0 C .最大值为-4 D .最小值为-4
解析 ∵x <0,∴-x >0.
∴x +1
x -2=-⎝ ⎛⎭
⎪⎫-x +1-x -2≤-2
(-x )·1
-x
-2=-4,
当且仅当-x =1
-x ,即x =-1时,等号成立.
答案 C
3.下列不等式:①a 2
+1>2a ;②a +b ab
≤2;③x 2
+1x 2+1≥1,其
中正确的个数是( )
A .0
B .1
C .2
D .3
解析 ①②不正确,③正确,x 2
+1x 2+1=(x 2
+1)+1x 2+1-1≥2
-1=1.
答案 B
4.(2014·云南师大附中模拟)已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t 的值为( )
A .2
B .4
C .2 2
D .2 5
解析 当a >0,b >0时,有ab ≤(a +b )24=t 24,当且仅当a =b =t
2时取等号.∵ab 的最大值为2,∴t 2
4=2,t 2=8,∴t =8=2 2.
答案 C
5.(2014·山东师大附中模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )
A.245
B.285 C .5
D .6
解析 由x +3y =5xy ,可得x xy +3y xy =5,即1y +3x =5,∴15y +3
5x =1,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+23x 5y ×12y
5x =
135+12
5=5.
答案 C
6.(2014·湖北八校联考)若x ,y ∈(0,2]且xy =2,使不等式a (2x +y )≥(2-x )(4-y )恒成立,则实数a 的取值范围为( )
A .a ≤1
2 B .a ≤2 C .a ≥2
D .a ≥1
2
解析 由x ,y ∈(0,2]且xy =2,
得a ≥(2-x )(4-y )2x +y =10-2(2x +y )2x +y =102x +y -2.
又由2x +y ≥22xy =4,∴a ≥1
2. 答案 D
二、填空题(本大题共3小题,每小题5分,共15分)
7.(2013·四川卷)已知函数f (x )=4x +a
x (x >0,a >0)在x =3时取得最小值,则a =________.
解析 由于x >0,a >0,f (x )=4x +a
x ≥4a . 此时当4x =a
x 时,f (x )取得最小值4a ,即a =4x 2. ∴a =4×32=36. 答案 36
8.(2013·陕西卷)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________.
解析 (am +bn )(bm +an )=ab (m 2+n 2)+mn (a 2+b 2)≥2abmn +2(a 2+b 2)=2(a +b )2=2,当且仅当m =n =2时取等号.
答案 2
9.(2014·沈阳第二学段考试)在等式4x +9y =m 中,x >0,y >0,若x +y 的最小值为5
6,则m 的值为________.
解析 x +y =(x +y )(4x +9y )·1
m =(4+9x y +4y x +9)1m ≥(13+12)1m , ∴25m =5
6,m =30. 答案 30
三、解答题(本大题共3小题,每小题10分,共30分) 10.(1)求函数y =x (a -2x )(x >0,a 为大于2x 的常数)的最大值; (2)已知x >0,y >0,lg x +lg y =1,求z =2x +5
y 的最小值. 解 (1)∵x >0,a >2x , ∴y =x (a -2x )=1
2×2x (a -2x ) ≤12×⎣⎢
⎡⎦
⎥⎤2x +(a -2x )22=a 2
8, 当且仅当x =a 4时取等号,故函数的最大值为a 2
8. (2)由已知条件lg x +lg y =1,可得xy =10. 则2x +5y =2y +5x 10≥210xy 10=2.
∴⎝
⎛⎭
⎪⎫
2x +5y min =2. 当且仅当2y =5x ,即x =2,y =5时等号成立. 11.已知x >0,y >0,z >0,且x +y +z =1. 求证:1x +4y +9
z ≥36.
证明 ∵x >0,y >0,z >0,且x +y +z =1,
∴1x +4y +9
z =(x +y +z )⎝ ⎛⎭⎪⎫1x +4y +9z =14+⎝ ⎛⎭⎪⎫y x +4x y +⎝ ⎛⎭
⎪⎫z x +9x z +
⎝ ⎛⎭⎪⎫
4z y +9y z ≥14+2
y x ·4x
y +2 z x ·9x z +2·4z y ·9y
z =14+4+6+12=
36.
当且仅当x 2=14y 2=1
9z 2,
即x =16,y =13,z =1
2时等号成立. ∴1x +4y +9
z ≥36.
12.(2014·南通调研)为了稳定房价,某地政府决定建造一批保障房供给社会.计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x 层楼房每平方米的建筑费用为(kx +800)元(其中k 为常数).经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元.
⎝ ⎛⎭
⎪⎫每平方米平均综合费用=购地费用+所有建筑费用所有建筑面积
(1)求k 的值;
(2)问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?
解 (1)如果每幢楼为5层,那么总的建筑面积为(10×1 000×5)平方米,所有建筑费用为[(k +800)+(2k +800)+(3k +800)+(4k +800)+(5k +800)]×1 000×10,
1 270={16 000 000+[(k +800)+(2k +800)+(3k +800)+(4k +800)+(5k +800)]×1 000×10}÷(10×1 000×5),解得k =50.
(2)设小区楼房每幢为n (n ∈N *)层时,每平方米平均综合费用为f (n ),由题设可知
f (n )={16 000 000+[(50+800)+(100+800)+…+(50n +
800)]×1 000×10}÷(10×1 000×n )=1 600
n +25n +825≥2 1 600×25+825=1 225(元).
当且仅当1 600
n =25n ,即n =8时等号成立.
故该小区楼房每幢建8层时,每平方米的平均综合费用最低,此时每平方米的平均综合费用1 225元.。