共轭复数的多项式性质

合集下载

复数的代数形式的四则运算

复数的代数形式的四则运算

五、课堂小结: 1.复数加减法的运算法则: (1)运算法则:设复数z1=a+bi,z2=c+di, 那么:z1+z2=(a+c)+(b+d)i; z1-z2=(a-c)+(b-d)i. (2)复数的加法满足交换律、结合律,即对 任何z1,z2,z3∈C,有:
z1+z2=z2+z1,
(z1+z2)+z3=z1+(z2+z3).
i
4n
4. i的指数变化规律:
1,
i
4 n 1
i ,
i
4n4n2Fra bibliotek1 ,
4n2
i
4 n 3
i
i i
4 n 1
i
i
4 n 3
0, (n N )
4.复数的除法法则
先把除式写成分式的形式,再把分子与分 母都乘以分母的共轭复数,化简后写成代数形 式(分母实数化).即
( 2 ) (2 i ) (2 3 i ) 4 i
(3 ) 5 (3 2 i )
(4) 4i (4i 4)
答案: (1) 2 + 2i
(2) 0
(3) 2 - 2i
(4) 4
练习: 1.计算 (2 3i )(2 3i )
13
2.已知 (3 i ) z 10 ,则 z _____. 3.已知 f ( x ) x 3 2 x 2 5 x 2 ,则 f (1 2i ) =_____.
z1(z2+z3)=z1z2+z1z3.
3. i的指数变化规律:
i i
4n
4 n 1

复数的四则运算

复数的四则运算

1.复数加减法的运算法则: 复数加减法的运算法则: 复数加减法的运算法则 (1)运算法则:设复数z (1)运算法则:设复数z1=a+bi,z2=c+di, 运算法则 那么: 那么:z1+z2=(a+c)+(b+d)i;
z1-z2=(a-c)+(b-d)i. =(a-c)+(b即: 两个复数相加( 两个复数相加(减)就是实部与实部, 就是实部与实部, 虚部与虚部分别相加(减). 虚部与虚部分别相加(
z1z2=z2z1; (z1z2)z3=z1(z2z3); z1(z2+z3)=z1z2+z1z3.
四、例题应用: 例题应用:
例1.计算 (5 − 6i) + (−2 −i) − (3+ 4i) 1.计算
解: (5 − 6i) + (−2 − i) − (3 + 4i)
= (5 − 2 − 3) + (−6 −1− 4) i = −11i
复数的四则运算
一、复习回顾: 复习回顾: 1.虚数单位 的引入; 虚数单位i的引入 1.虚数单位 的引入; 2.复数有关概念 复数有关概念: 2.复数有关概念: 复数的代数形式: 复数的代数形式: z = a + bi (a ∈ R, b ∈ R)
复数的实部 a ,虚部 实数: 实数: b = 0(a ∈R); 虚数: 虚数: b ≠ 0(a ∈R);
2
+ i +LL+ i
3
2 3 4
2009
解:原式 = i + i + i + i + i ) ... + +
5 6 7 8
(i

共轭复数的零点和极点传递函数标准形式

共轭复数的零点和极点传递函数标准形式

共轭复数的零点和极点传递函数标准形式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!而且本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!共轭复数的零点和极点传递函数标准形式。

复数的四则运算修改后

复数的四则运算修改后
2. 加法的运算律
1. z1 z2 z2 z1 (交换率 ); 2. ( z1 z2 ) z3 z1 ( z2 z3 )(结合率 )
一.复数的加法与减法
2、复数减法的运算法则 复数减法规定是加法的逆运算 (a+bi )-(c+di) = x+yi , ∴(c+di )+(x+yi) = a+bi , 由复数相等定义,有 c+x=a , d+y=b 由此,x=a-c , y=b-d ∴ (a+bi )-(c+di) = (a-c) + (b-d)i (a+bi )±(c+di) = (a±c) + (b±d)i
求证:
(1) 2 ; (3)1 2 0;
3
( 2) 1(1 0) ( 4) 3 1
在复数集中 , 方程x 1的三个解为: 1, , .
复数的除法
复数的除法是乘法运算的逆运算,即把满足
(c+di)(x+yi)=a+bi (c+di≠0)
2
t 1, tan 1, 45 .
o
x1 1,x2 2 i.
例题选讲
1. 若复数z满足方程 zi i 1 ,则z ?
2. 求8+6i的平方根 .
3、在复平面内,若复数 z 满足 z 1 z 1 4
,则 z 在复平面内对应点的轨迹方程为
.
交换率 结合率
分配率
三.正整数指数幂的复数运算律
z 、 z1、 z2 ∈C,m、n ∈N*有
实数集R中正整数指数幂的运算律在复数 集C中仍成立,即

完整版)复数的定义

完整版)复数的定义

完整版)复数的定义第十四章复数一、复数的概念1.虚数单位:i规定:(1)i²= -1;(2)虚数单位i,可以与实数进行四则运算,在进行四则运算时,原有的加法,乘法运算律仍然成立。

2.复数:形如a+bi,a∈R,b∈R的数叫做复数,a叫实部,b叫虚部。

3.复数集:所有复数构成的集合,复数集C={x|x=a+bi。

a∈R。

b∈R}。

4.分类:b=0时为实数;b≠0时为虚数,a=0,b≠0时为纯虚数,且R∪C。

5.两个复数相等:a+bi=c+di ⇔ a=c且b=d(a,b,c,d∈R)。

例1:下面五个命题①3+4i比2+4i大;②复数3-2i的实部为3,虚部为-2i;③Z1,Z2为复数,Z1-Z2>0,那么Z1>Z2;④两个复数互为共轭复数,则其和为实数;⑤两个复数相等:a+bi=c+di ⇔ a=c且b=d(a,b,c,d∈R)。

例2:已知:Z=(m+1)+(m-1)i,m∈R,求Z为(1)实数;(2)虚数;(3)纯虚数时,求m的值。

例3:已知x²+y²-2i=6+(y-x)i,求实数x,y的值。

二、复数的几何意义Z=a+bi,a∈R,b∈R,与点(a,b)一一对应。

1.复平面:x轴叫实轴;y轴叫虚轴。

x轴上点为实数,y 轴上除原点外的点为纯虚数。

2.Z=a+bi;连接点(a,b)与原点,得到向量OZ,点Z(a,b),向量OZ,Z=a+bi之间一一对应。

3.模:Z=a+bi=OZ=√(a²+b²)。

注:Z的几何意义:令Z=x+yi(x,y∈R),则Z=√(x²+y²),由此可知表示复数Z的点到原点的距离就是Z的几何意义;Z1-Z2的几何意义是复平面内表示复数Z1,Z2的两点之间的距离。

三、复数的四则运算Z1=a+bi,Z2=c+di,a,b,c,d∈R。

1.加减法:Z1+Z2=(a+c)+(b+d)i;Z1-Z2=(a-c)+(b-d)i即实部与实部,虚部与虚部分别相加减。

留数法求共轭复根-概述说明以及解释

留数法求共轭复根-概述说明以及解释

留数法求共轭复根-概述说明以及解释1.引言1.1 概述概述部分将对本文的内容进行简要的介绍,主要包括留数法求解共轭复根的背景和意义。

在复数域中,共轭复数具有重要的性质和应用。

共轭复根是一个方程在复数域中的重要解之一,它由一个复数解和其共轭复数解组成。

共轭复根在数学、物理学和工程领域中都有广泛的应用,特别是在电路分析、信号处理和控制系统中。

留数法是一种常用的数学分析方法,它被广泛应用于复变函数和复分析领域。

留数法可以用来计算复变函数在有奇点的点上的留数,而留数则可用于求解函数的积分、级数和合成函数等问题。

在求解共轭复根的问题中,留数法可以通过将方程转化为复变函数的形式,进而利用留数方法求解共轭复根。

文章的主要目的是介绍留数法求解共轭复根的基本原理和具体步骤,并通过示例来说明应用留数法求解共轭复根的具体过程。

通过本文的阐述,读者将能够了解留数法在求解共轭复根问题中的优势和局限性,并对留数法在实际问题中的应用前景进行展望。

接下来,本文将首先介绍留数法的基本原理,包括定义、性质和计算方法。

然后,将详细介绍留数法求解共轭复根的步骤,并通过示例来说明其具体操作过程。

最后,将对留数法求解共轭复根的优势和局限性进行总结,并展望其在实际问题中的应用前景。

通过本文的阅读,读者将能够获得对留数法求解共轭复根的深入理解,并为将来相关问题的研究提供基础和参考。

1.2 文章结构本文将按照以下结构进行阐述留数法求解共轭复根的原理、步骤和示例,并对其优势和局限性进行总结,同时展望留数法在实际问题中的应用前景。

第二章将介绍留数法的基本原理。

我们将阐述留数的概念和定义,以及留数法在复变函数中的应用。

通过对留数法的基本原理的介绍,读者将对留数法求解共轭复根的过程有一个初步的了解。

第三章将详细讲解留数法求解共轭复根的步骤。

我们将按照一定的流程,介绍如何运用留数法来求解共轭复根。

通过具体的步骤分析和说明,读者将能够清楚地掌握留数法求解共轭复根的方法。

谈复数乘法几何意义的教学

谈复数乘法几何意义的教学

谈复数乘法几何意义的教学这是复数乘法的几何意义,是优秀的数学教案文章,供老师家长们参考学习。

谈复数乘法几何意义的教学 1一、复数的三角形式:(z = r(cos theta + isin theta ))((r>0)),(z)对应点(Z(rcos theta ,rsin theta )),对应向量(overrightarrow {OZ} = (rcos theta ,rsin theta )),(|z| =|overrightarrow {OZ} | = r)若({z_1} = {r_1}(cos {theta _1} + isin {theta _1})),({z_2} = {r_2}(cos {theta _2} + isin {theta _2})),则({z_1}{z_2} = {r_1}{r_2}[cos {theta _1}cos {theta _2} – sin {theta _1}sin {theta _2} + i(sin {theta _1}cos {theta _2} + cos {theta _1}sin {theta _2})])( = {r_1}{r_2}[cos ({theta _1} + {theta _2}) + isin ({theta _1} + {theta _2})])其几何意义是:({z_1}{z_2})表示把复数({z_1})对应的向量(overrightarrow {O{Z_1}} ),绕(O)旋转({theta _2})(({theta _2}>0):逆时针,({theta _2}<0):顺时针),然后再伸长或缩短为原来({r_2})倍得到的向量所对应的复数.可以用来处理旋转、伸缩变换有关问题。

如((1 + 2i) cdot i = (1 + 2i) cdot (cos 90^circ + isin 90^circ ))表示把向量(overrightarrow a = (1,2))沿逆时针旋转(90^circ ),长度不变.同理可得到:(dfrac{{{r_1}(cos {theta _1} + isin {theta _1})}}{{{r_2}(cos {theta _2} + isin {theta _2})}} = dfrac{{{r_1}}}{{{r_2}}}[cos ({theta _1} – {theta _2}) + isin ({theta _1} – {theta _2})])二、在解析几何中的应用【例题】在平面直角坐标系(xOy)中,点(P)、(Q)分别为直线(l:2x + y – 3 = 0)与圆(M:{(x – 2)^2} + {y^2} = {r^2})((r>0))上的动点,若存在点(P)、(Q),使得(Delta OPQ)是以(O)为直角顶点的等腰直角三角形,则(r)的取值范围为_____________.复数三角形式乘法的几何意义及其应用复数三角形式乘法的几何意义及其应用【解析】设(Q(x,y)),其对应复数为(x + yi),((x + yi) cdot (cos{90^circ}+isin{90^circ}))(=(x + yi) cdot i = – y + xi),故(P( – y,x))代入(2x + y – 3 = 0)得(Q)的轨迹方程为(x – 2y – 3 = 0)由于(Q)点在圆(M:{(x – 2)^2} + {y^2} = {r^2})上故(d = dfrac{{|2 – 0 – 3|}}{{sqrt 5 }} leqslant r),解得(r geqslant dfrac{{sqrt 5 }}{5})谈复数乘法几何意义的教学 2复数的几何意义是什么1、复数的几何意义是:复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。

复数与多项式---讲义

复数与多项式---讲义

复数与多项式 讲义一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。

便产生形如a+bi (a,b ∈R )的数,称为复数。

所有复数构成的集合称复数集。

通常用C 来表示。

2.复数的几种形式。

对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。

因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。

因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。

若z=r(cos θ+isin θ),则θ称为z 的辐角。

若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。

I .复数的四种表示形式 代数形式:∈+=b a bi a z ,(R )几何形式:复平面上的点Z (b a ,)或由原点出发的向量OZ . 三角形式:∈≥+=0,0),sin (cos r i r z θθR . 指数形式:θi re z =.复数的以上几种形式,沟通了代数、三角、几何等学科间的联系,使人们应用复数解决相关问题成为现实. II .复数的运算法则加、减法:;)()()()(i d b c a di c bi a ±+±=+±+乘法:;)()())((i ad bc bd ac di c bi a ++-=++)];sin()[cos()sin (cos )sin (cos 212121222111θθθθθθθθ+++=+⋅+i r r i r i r 除法:).0(2222≠++-+++=++di c i d c adbc d c bd ac bi c bi a)].sin()[cos()sin (cos )sin (cos 212121222111θθθθθθθθ-+-=++i r r i r i r乘方(棣莫弗定理):∈+=+n n i n r i r nn)(sin (cos )]sin (cos [θθθθN );开方:复数n i r 的)sin (cos θθ+次方根是).1,,1,0)(2sin 2(cos -=+++n k nk i nk r n Λπθπθ单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=ni n ππ2sin2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z Λ.单位根的基本性质有(这里记kk Z Z 1=,k=1,2,…,n-1):(1)对任意整数k ,若k=nq+r,q ∈Z,0≤r ≤n-1,有Z nq+r =Z r ;(2)对任意整数m ,当n ≥2时,有mn m m Z Z Z 1211-++++Λ=⎩⎨⎧,|,,|,0m n n m n 当当特别1+Z 1+Z 2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z 1)(x-Z 2)…(x-Z n-1)=(x-Z 1)(x-21Z )…(x-11-n Z ).复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0). 代数基本定理:在复数范围内,一元n 次方程至少有一个根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共轭复数的多项式性质
时贞军张祖华
平阴县职业教育中心山东平阴250400
曲阜师范大学运筹与管理学院山东日照276826
摘要:本文发现了共轭复数的多项式性质。

关键词:复数共轭复数多项式。

据百度百科介绍,共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。

当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。

(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ。

同时, 复数zˊ称为复数z的复共轭(complex conjugate).
根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi(a,b∈R)。

共轭复数所对应的点关于实轴对称(详见附图)。

两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数.在复平面上.表示两个共轭复数的点关于X轴对称.而这一点正是"共轭"一词的来源.两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭".如果用Z表示X+Yi,那么在Z字上面加个"一"就表示X-Yi,或相反.
共轭复数有些有趣的性质: ︱x+yi︱=︱x-yi︱(x+yi)*(x-yi)=x^2+y^2=︱x+yi︱^2=︱x-yi︱^2 另外还有一些四则运算性质. 2代数特征编辑(1)|z|=|z′|;(2)z+z′=2a (实数),z-z′=2bi;(3)z· z′=|z|^2=a^2+b^2(实数);
加法法则复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。

两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。

两个复数的和依然是复数。

即 (a+bi)±(c+di)=(a±c)+(b±d)i.
减法法则两个复数的差为实数之差加上虚数之差(乘以i)即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i
乘法法则复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = -1,把实部与虚部分别合并。

两个复数的积仍然是一个复数。

即:z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=(ac -bd)+(bc+ad)i.
除法法则复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。

即:开方法则若z^n=r(cosθ+isinθ),则z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1)共轭法则 z=x+iy 的共轭,标注为z*就是共轭数z*=x-iy 即:zz*=(x+iy)(x-iy)=x2-xyi+xyi-y2i2=x2+y2 即,当一个复数乘以他的共轭数,结果是实数。

z=x+iy 和 z*=x-iy 被称作共轭对
3运算特征(1)(z1+z2)′=z1′+z2′(2) (z1-z2)′=z1′-z2′(3) (z1·z2)′=z1′·z2′(4) (z1/z2)′=z1′/z2′ (z2≠0) 总结:和(差、积、商)的共轭等于共轭的和(差、积、商)。

4模的运算性质编辑① | z1·z2| = |z1|·|z2| ②③┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
由3运算特征的总结:和(差、积、商)的共轭等于共轭的和(差、积、商)本文推断乘方的共轭等于共轭的乘方。

从而,有如下定理:
多项式(实系数或复系数)的共轭等于共轭的多项式。

【参考文献】
百度搜索。

相关文档
最新文档