2016-2017《创新设计》同步人教A版选修2-1 2-2第一章 1.3.1

合集下载

2016-2017《创新设计》同步人教A版选修2-1 2-2第一章1.5

2016-2017《创新设计》同步人教A版选修2-1 2-2第一章1.5
[学习目标]
1.了解定
分的概念.2.理解定
分的几何意
.3.通过求曲边梯形面
的过程和
解决有关汽车行驶路程问题的过程 了解 以直代曲 的定 求简单的定 分.
以 变代变 的思想.4.能用定 分
知识点一 曲边梯形的面积和汽车行驶的路程 1.曲边梯形的面 (1)曲边梯形 由直线 x a x b(a≠b) y 0 和曲线 y f(x)所围成的图形 为曲边梯形(如 图 所示).
t2] 连续且恒有 v(t) 0 定 分⌠t2 v(t)dt 的意 是什 ⌡t1
答案 定 分⌠t2 v(t)dt 表示做变速直线 动的物体在时间区间[t1 t2]内 过的路程 这就是 ⌡t1 定 分⌠t2 v(t)dt 的物理意 . ⌡t1
题型一 求图形的面积问题 例 1 用定 分的定 求曲线 y x3 1 解 x 0 x 1 及 y 0 所围成的曲边梯形的面 .
(1)如何计算 列两图形的面
(2)求曲边梯形面 时 对曲边梯形进行 以直代曲 的误差 答案 (1) 直接利用梯形面
怎样才能尽
小求得的曲边梯形面
公式求解. 转化为 角形和梯形求解. 而且分割
(2)为了 小 似代替的误差 需要先分割再分别对 个小曲边梯形 以直代曲 的曲边梯形数目越多 得到的面 的误差越小. 知识点二 定积分的概念 如果函数 f(x)在区间[a b] 连续 用分点 a x0<x1<…<xi 1<xi<…<xn n 个小区间 在 个小区间[xi 当 n→∞时
1 1 2 i 1 分割 将区间[0,1]等分成 n 个小区间 0 n n n … n
n 1 n i … n n n
i 每个小区间的长度为 ∆x= n 形

人教A版选修2-1第一章第2课时同步练习§1.1.3 四种命题间的相互关系

人教A版选修2-1第一章第2课时同步练习§1.1.3 四种命题间的相互关系

§1.1.3 四种命题间的相互关系一、选择题:1、下列命题中,真命题是( )A 、若ac bc >,则a b >B 、若2x =,则2320x x -+=的否命题C 、“若3b =,则29b =”的逆命题 D 、“相似三角形的对应角相等“的逆否命题2、命题“若2x =或3x =,则2560x x -+=”以及它的逆命题、否命题、逆否命题中,假命题的个数为( )A 、0 B、2 C 、3 D 、43、下列命题中,不是真命题的为( )A 、命题“若240b ac ->,则二次方程20ax bx c ++=有实根”的逆否命题;B 、“四边相等的四边形是正方形”的逆命题;C 、“29x =,则3x =”的否命题;D 、“对顶角相等”的逆命题4、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“a b >,则22a b >”的逆否命题;③“若3x ≤-,则260x x +->”的否命题;④若ba 是无理数,则,ab 是无理数。

其中真命题的个数是( )A 、0B 、1C 、2D 、35、命题“若3a >-,则6a >-”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A 、1B 、2C 、3D 、46、命题“若p ⌝,则q ”是真命题,则下列命题一定是真命题的是( )A 、若p ,则p ⌝B 、若q ,则 p ⌝C 、若q ⌝,则pD 、若q ⌝,则p ⌝二、填空题:7、在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线。

以上两个命题中,逆命题为真命题的是 ;8、“已知a ∈全集U ,若a A ∈,则()U a C A ∉”的逆命题是 ; 它是(填真假) 命题9、下列四个命题:①“若0x y +=,则互为相反数”的否命题;②“若a 和b 都是偶数,则a b +是偶数”的否命题;③“若a b >,则22a b >”的逆否命题;④已知,,,a b c d 是实数,“若,a b c d ==,则a c b d +=+”的逆命题,其中真命题的序号是 ;10、反证法证明的原理是 ;11、用反证法证明“若a b ⋅不是偶数,则a 、b 都不是偶数”时,应假设 ;三、解答题:12、已知0c ≤,求证:若a b c ≤+,则a b ≤13、已知()f x 是(,)-∞∞上的增函数,,a b R ∈,求证:若()()()()f a f b f a f b +≥-+-,则0a b +≥14、若,,a b c 均为实数,且222a x y π=-+,223b y z π=-+,226c z x π=-+,求证:,,a b c 中至少有一个大于0。

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

2016-2017《创新设计》同步人教A版选修2-3第一章 1.2.1(一)

2016-2017《创新设计》同步人教A版选修2-3第一章 1.2.1(一)
反思与感悟 解析答案
跟踪训练1
判断下列问题是不是排列问题,并说明理由.
(1)从甲、乙、丙、丁四名同学中选出两名参加一项活动,其中一名同 学参加活动A,另一名同学参加活动B; 解 是排列,因为选出的两名同学参加的是不同的活动,即相当于把 选出的同学按顺序安排到两个不同的活动中. (2)从甲、乙、丙、丁四名同学中选出两名参加一项活动;

+1 由排列数公式可知 n(n+1)(n+2)(n+3)„(n+m)=Am n+m.
反思与感悟 解析答案
跟踪训练 2

x +2 (1)解不等式:Ax < 6A 8 8;
原不等式等价于
2 x -15x+50<0, 整理得 * x ≤ 6 且 x ∈ N .
8! 8! <6× , 8-x! [8-x+2]! * x + 2 ≤ 8 且 x ∈ N ,
(5)高二(1)班有四个空位,安排从外校转来的三个学生坐这四个空位中
的三个. 解 是排列,可看作从四个空位中选出三个座位,分别安排给三个学生.
解析答案
题型二
例2

排列数公式的应用
6 (1)计算 A3 和 A 15 6;
A3 15=15×14×13=2 730,
A6 6=6×5×4×3×2×1=720.
(2)用排列数表示(55-n)(56-n)„(69-n)(n∈N*且n<55);
解 ∵55-n,56-n,„,69-n中的最大数为69-n,且共有(69-n)- (55-n)+1=15(个)数,
∴(55-n)(56-n)„(69-n)=A15 69-n.
(3)化简n(n+1)(n+2)(n+3)„(n+m).
即5<x≤6且x∈N*,从而解得x=6.

人教a版高中数学选修2-1全册同步练习及单元检测含答案

人教a版高中数学选修2-1全册同步练习及单元检测含答案

⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。

2016-2017《创新设计》同步人教A版选修2-3第一章 1.3.1

2016-2017《创新设计》同步人教A版选修2-3第一章 1.3.1
第一章
§1.3 二项式定理
1.3.1 二项式定理
学习 目标
1.能用计数原理证明二项式定理.
2.掌握二项式定理及其展开式的通项公式.
3.会用二项式定理解决与二项展开式有关的简单问题.
栏目 索引
知识梳理
题型探究 当堂检测
自主学习
重点突破 自查自纠
知识梳理
自主学习
知识点一
二项式定理
0 n 1 n-1 2 n-2 2 k n-k k n n n C a + C a b + C a b + … + C a b + … + C n n n nb (a+b) = n
=[(x-1)+1]5-1=x5-1.
解析答案
题型二
二项展开式通项的应用
例2
1 n 若( x+ ) 展开式中前三项系数成等差数列,求: 4 2 x
(1)展开式中含x的一次项;
解析答案
(2)展开式中所有的有理项.
解 3 令 4-4k∈Z,且 0≤k≤8,则 k=0,4,8,
4
35 1 所以含 x 的有理项分别为 T1=x ,T5= 8 x,T9=256x2.
(n∈N*).
(1)这个公式所表示的规律叫做二项式定理.
(2)展开式:等号右边的多项式叫做(a+b)n的二项展开式,展开式中一
共有 n+1 项. 二项式系数 . (3)二项式系数:各项的系数 Ck n (k∈{0,1,2,…,n})叫做
答案
知识点二
二项展开式的通项公式 k+1
k n-k k Cna b . 项叫做二项展开式的通项,记作Tk+1=
答案
思考2
答案
二项式(a+b)n与(b+a)n展开式中第k+1项是否相同?
n-k k n 不同.(a+b)n 展开式中第 k+1 项为 Ck a b , 而 ( b + a ) 展开式中第 n

2016-2017《创新设计》同步人教A版选修1-2cx11


0.025 2.31
所以 (yi-^ yi) ≈0.013 18, (yi- y )2=14.678 4.
i =1 i=1
0.013 18 所以,R =1-14.678 4≈0.999 1,
2
回归模型的拟合效果较好.
解析答案
(3)进行残差分析. 解 由残差表中的数值可以看出第3 个样本点的残差比较大,需要确认 在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正数据, 重新建立回归模型;由表中数据可以看出残差点比较均匀地落在不超过 0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高, 由以上分析可知,弹簧长度与拉力成线性关系.
(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力. 解 由(2)中线性回归方程当x=9时,
^ y=0.7×9-2.3=4,预测记忆力为 9 的同学的判断力约为 4.
解析答案
题型二 线性回归分析
例2 为研究重量x(单位:克)对弹簧长度y(单位:厘米)的影响,对不同
重量的6个物体进行测量,数据如下表所示:
需求量y
(1)画出散点图; 解
12
10
7
5
3
散点图如图所示.
解析答案
(2)求出y对x的线性回归方程;
解析答案
(3)如果价格定为1.9万元,预测需求量大约是多少.
解 当 x=1.9 时,^ y=28.1-11.5×1.9=6.25(t),
所以价格定为1.9万元时,需求量大约是6.25 t.
反思与感悟
x y 5 7.25 10 8.12 15 8.95 20 9.90 25 10.9 30 11.8
(1)作出散点图并求线性回归方程;
解析答案(2)求出R2;源自解 列表如下: yi-^ yi yi-y

2016-2017《创新设计》同步人教A版选修1-1第一章 1.1.2~1.1.3

分析
的真假性容易判断,则根据互为逆否的两个命题的真假性之间的关系,就
可以解决原命题的真假性问题了.
解 原命题的逆否命题:若x-y,x+y都等于0,
则x2-y2=0.
由x-y=0,x+y=0,得x2-y2=(x+y)(x-y)=0.
因此,原命题的逆否命题是真命题.
所以原命题是真命题.
解后反思 解析答案
命题的 结论的否定 和 条件的否定,这两个命题叫做 互为逆否命题 .其中一个
命题叫做原命题,另一个叫做原命题的 逆否命题 .
答案
知识点二
四种命题的真假性的判断
原命题为真,它的逆命题 不一定为真 ;它的否命题也 不一定为真 .原命题
为真,它的逆否命题 一定为真 .
若綈q,则綈p
若綈p,则綈q
若綈q,则綈p
解析答案
(2)弦的垂直平分线经过圆心,且平分弦所对的弧;
解 逆命题:若一条直线经过圆心,且平分弦所对的弧,
则这条直线是弦的垂直平分线,真命题.
否命题:若一条直线不是弦的垂直平分线,
则这条直线不过圆心或不平分弦所对的弧,真命题.
逆否命题:若一条直线不经过圆心或不平分弦所对的弧, 则这条直线不是弦的垂直平分线,真命题.
第一章 § 1.1 命题及其关系
1.1.2 四种命题 1.1.3 四种命题间的相互关系
学习 目标
1.理解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题. 2.知道四种命题之间的相互关系以及真假性之间的联系.
3.会利用逆否命题的等价性解决问题.
栏目 索引
知识梳理 题型探究
当堂检测
自主学习 重点突破
易错点
根据已知集合求参数范围
例5
已知p:M={x|x2-2x-80≤0},q:N={x|x2-2x+1-m2≤0,m>0}.如果

2016_2017《创新设计》同步人教A版选修2_1_2_2第一章_16

明目标、知重点1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.1.微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).2.定积分和曲边梯形面积的关系设曲边梯形在x轴上方的面积为S上,x轴下方的面积为S下,则(1)当曲边梯形的面积在x轴上方时,如图(1),则ʃb a f(x)d x=S上.(2)当曲边梯形的面积在x轴下方时,如图(2),则ʃb a f(x)d x=-S下.(3)当曲边梯形的面积在x轴上方、x轴下方均存在时,如图(3),则ʃb a f(x)d x=S上-S下,若S=S下,则ʃb a f(x)d x=0.上[情境导学]从前面的学习中可以发现,虽然被积函数f(x)=x3非常简单,但直接用定积分的定义计算ʃ10 x3d x的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?探究点一微积分基本定理问题你能用定义计算ʃ211xd x吗?有没有更加简便、有效的方法求定积分呢?思考1 如下图,一个做变速直线运动的物体的运动规律是y=y(t),并且y(t)有连续的导数,由导数的概念可知,它在任意时刻t的速度v(t)=y′(t).设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?答由物体的运动规律是y=y(t)知:s=y(b)-y(a),通过求定积分的几何意义,可得s=ʃb a v(t)d t=ʃb a y′(t)d t,所以ʃb a v(t)d t=ʃb a y′(t)d t=y(b)-y(a).其中v(t)=y′(t).小结(1)一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f(x)d x很方便,其关键是准确写出满足F′(x)=f(x)的F(x).思考2 对一个连续函数f(x)来说,是否存在唯一的F(x),使F′(x)=f(x)?若不唯一,会影响微积分基本定理的唯一性吗?答 不唯一,根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,[F (x )+c ]′=F ′(x )+c ′=f (x ). 不影响,因为ʃb af (x )d x =[F (b )+c ]-[F (a )+c ]=F (b )-F (a ) 例1 计算下列定积分:(1)ʃ211x d x ;(2)ʃ31(2x -1x2)d x ;(3)ʃ0-π(cos x -e x )d x . 解 (1)因为(ln x )′=1x,所以ʃ211xd x =ln x |21=ln 2-ln 1=ln 2.(2)因为(x 2)′=2x ,(1x )′=-1x2,所以ʃ31(2x -1x 2)d x =ʃ312x d x -ʃ311x2d x =x 2|31+1x|31=(9-1)+(13-1)=223.(3)ʃ0-π(cos x -e x )d x =ʃ0-πcos x d x -ʃ0-πe x d x =sin x |0-π-e x |0-π=1e π-1. 反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限. 跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3B .S 2<S 1<S 3C.S2<S3<S1D.S3<S2<S1答案 B解析S1=ʃ21x2d x=13x3|21=73,S2=ʃ211xd x=ln x|21=ln 2<1,S3=ʃ21e x d x=e x|21=e2-e=e(e-1)>73.所以S2<S1<S3,选B.探究点二分段函数的定积分例2 已知函数f(x)=⎩⎪⎨⎪⎧sin x,0≤x≤π2,1,π2≤x≤2,x-1,2≤x≤4.先画出函数图象,再求这个函数在[0,4]上的定积分.解图象如图.ʃ40f(x)d x=π2⎰sin x d x+π20⎰1d x+42⎰(x-1)d x=(-cos x)|π2+x|2π2+(12x2-x)|42=1+(2-π2)+(4-0)=7-π2.反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x .解 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ10(cos x -1)d x=13x 3|0-1+(sin x -x )|10=sin 1-23. 探究点三 定积分的应用 例3 计算下列定积分:ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.解 因为(-cos x )′=sin x ,所以ʃπ0sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=2;ʃ2ππsin x d x =(-cos x )|2ππ=(-cos 2π)-(-cos π)=-2;ʃ2π0sin x d x =(-cos x )|2π0=(-cos 2π)-(-cos 0)=0.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).解 所求面积为S =5π4π2-⎰-π2|sin x |d x =-0π2-⎰sin x d x +ʃπ0sin x d x -5π4π⎰sin x d x=1+2+(1-22)=4-22.1.π2π2-⎰(1+cos x )d x 等于( )A .π B.2 C .π-2 D .π+2 答案 D解析 ∵(x +sin x )′=1+cos x , ∴π2π2-⎰(1+cos x )d x =(x +sin x )|π2π2-=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝ ⎛⎭⎪⎫-π2=π+2. 2.若ʃa 1(2x +1x)d x =3+ln 2,则a 的值是( )A .5B .4C .3D .2 答案 D 解析ʃa 1(2x +1x )d x =ʃa 12x d x +ʃa 11xd x=x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln 2,解得a =2.3.ʃ20(x 2-23x )d x =________.答案 43解析 ʃ20(x 2-23x )d x =ʃ20x 2d x -ʃ2023x d x =x 33|20-x 23|20=83-43=43. 4.已知f (x )=⎩⎪⎨⎪⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x . 解ʃπ0f (x )d x =π20⎰f (x )d x +ππ2⎰f (x )d x=π20⎰(4x -2π)d x +ππ2⎰cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x . 所以π20⎰(4x -2π)d x +ππ2⎰cos x d x =(2x 2-2πx )|π2+sin x |ππ2=-12π2-1,即ʃπ0f (x )d x =-12π2-1.[呈重点、现规律]1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础过关1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )|b a ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0);③它在时间段[a ,b ]内的位移是s =lim n →∞i =1nb -a n s ′(ξi );④它在时间段[a ,b ]内的位移是s =ʃb as ′(t )d t . A .① B .①② C .①②④ D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B3.ʃ10(e x +2x )d x 等于( ) A .1 B .e -1 C .e D .e +1答案 C解析 ʃ10(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 答案 B 解析ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x =x 33|0-1+1=13+1=43,故选B. 5.π20⎰sin 2x2d x 等于( ) A.π4B.π2-1 C .2 D.π-24答案 D 解析π20⎰sin 2x2d x =π20⎰1-cos x 2d x =12(x -sin x )|π20=π-24,故选D. 6.若ʃ10(2x +k )d x =2,则k =________. 答案 1解析 ∵ʃ10(2x +k )d x =(x 2+kx )|10=1+k =2, ∴k =1. 二、能力提升7.设函数f (x )=ax 2+c (a ≠0),若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 答案33解析 ʃ10(ax 2+c )d x =ax 20+c ,∴a3=ax 20, ∵a ≠0,∴x 20=13,又0≤x 0≤1, ∴x 0=33.8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0x +a03t 2d t ,x ≤0,若f [f (1)]=1,则a =________. 答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1, 解得a =1.9.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 答案 f (x )=4x +3解析 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则ʃ10f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x =12a +b =5,ʃ10xf (x )d x =ʃ10x (ax +b )d x =ʃ10(ax 2)d x +ʃ1bx d x =13a +12b =176.由⎩⎪⎨⎪⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧ a =4,b =3. 10.计算下列定积分:(1)ʃ21(e x +1x )d x ;(2)ʃ91x (1+x )d x ; (3)ʃ200(-0.05e -0.05x +1)d x ; (4)ʃ211x x +1d x .解 (1)∵(e x +ln x )′=e x +1x, ∴ʃ21(e x +1x)d x =(e x +ln x )|21=e 2+ln 2-e. (2)∵x (1+x )=x +x ,(12x 2+2332x )′=x +x , ∴ʃ91x (1+x )d x =(12x 2+2332x )|91=1723. (3)∵(e -0.05x +1)′=-0.05e -0.05x +1, ∴ʃ200(-0.05e -0.05x +1)d x =e -0.05x +1|200=1-e. (4)∵1x x +1=1x -1x +1, (ln x )′=1x ,(ln(x +1))′=1x +1, ∴ʃ211x x +1d x =ln x |21-ln(x +1)|21=2ln 2-ln 3.11.若函数f (x )=⎩⎪⎨⎪⎧ x 3,x ∈[0,1],x ,x ∈1,2],2x ,x ∈2,3].求ʃ30f (x )d x 的值.解 由定积分的性质,知: ʃ30f (x )d x =ʃ10f (x )d x +ʃ21f (x )d x +ʃ32f (x )d x =ʃ10x 3d x +ʃ21x d x +ʃ322x d x =x 44|10+23x 32|21+2xln 2|32 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 12.已知f (a )=ʃ10(2ax 2-a 2x )d x ,求f (a )的最大值. 解 ∵(23ax 3-12a 2x 2)′=2ax 2-a 2x , ∴ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29 =-12(a -23)2+29, ∴当a =23时,f (a )有最大值29. 三、探究与拓展13.求定积分ʃ3-4|x +a |d x . 解 (1)当-a ≤-4即a ≥4时,原式=ʃ3-4(x +a )d x =(x 22+ax )|3-4=7a -72. (2)当-4<-a <3即-3<a <4时,原式=ʃ-a -4[-(x +a )]d x +ʃ3-a (x +a )d x=(-x22-ax )|-a -4+(x22+ax )|3-a=a 22-4a +8+(a 22+3a +92)=a 2-a +252.(3)当-a ≥3即a ≤-3时, 原式=ʃ3-4[-(x +a )]d x =(-x 22-ax )|3-4 =-7a +72.综上,得ʃ3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72 a ≥4a 2-a +252 -3<a <4-7a +72 a ≤-3.。

2016-2017《创新设计》同步人教A版选修2-1 2-2第一章 1.7.1

1.7.1 定积分在几何中的应用明目标、知重点会应用定积分求两条或多条曲线围成的图形的面积.1.当x ∈[a ,b ]时,若f (x )>0,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积S =ʃba f (x )d x .2.当x ∈[a ,b ]时,若f (x )<0,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =-ʃba f (x )d x .3.当x ∈[a ,b ]时,若f (x )>g (x )>0,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S =ʃba [f (x )-g (x )]d x .(如图)探究点一 求不分割型图形的面积思考 怎样利用定积分求不分割型图形的面积?答 求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可.例1 计算由曲线y 2=x ,y =x 2所围图形的面积S .解 由⎩⎪⎨⎪⎧y 2=x ,y =x 2得交点的横坐标为x =0及x =1.因此,所求图形的面积为 S =S 曲边梯形OABC —S 曲边梯形OABD =ʃ10x d x -ʃ10x 2d x=23x 32|10-13x 3|10 =23-13=13. 反思与感悟 求由曲线围成图形面积的一般步骤: (1)根据题意画出图形;(2)找出范围,确定积分上、下限; (3)确定被积函数; (4)将面积用定积分表示;(5)用微积分基本定理计算定积分,求出结果.跟踪训练1 求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.解 由⎩⎪⎨⎪⎧ y =x 2-4y =-x +2得⎩⎪⎨⎪⎧ x =-3y =5或⎩⎪⎨⎪⎧x =2y =0, 所以直线y =-x +2与抛物线y =x 2-4的交点为(-3,5)和(2,0),设所求图形面积为S , 根据图形可得S =ʃ2-3(-x +2)d x -ʃ2-3(x 2-4)d x=(2x -12x 2)|2-3-(13x 3-4x )|2-3 =252-(-253)=1256. 探究点二 分割型图形面积的求解思考 由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间位于上方和下方的曲线不同时,这种图形的面积如何求呢?答 求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.例2 计算由直线y =x -4,曲线y =2x 以及x 轴所围图形的面积S . 解 方法一 作出直线y =x -4,曲线y =2x 的草图.解方程组⎩⎨⎧y =2x ,y =x -4得直线y =x -4与曲线y =2x 交点的坐标为(8,4). 直线y =x -4与x 轴的交点为(4,0). 因此,所求图形的面积为 S =S 1+S 2 =ʃ42x d x +[]ʃ 842x d x -ʃ 84(x -4)d x=22332x |40+22332x |84-12(x -4)2|84 =403. 方法二 把y 看成积分变量,则 S =ʃ4(y +4-12y 2)d y =(12y 2+4y -16y 3)|40 =403. 反思与感悟 两条或两条以上的曲线围成的图形,一定要确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限,若积分变量选x 运算较繁锁,则积分变量可选y ,同时要更换积分上、下限.跟踪训练2 求由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 画出图形,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x ,及⎩⎪⎨⎪⎧x +y =2,y =-13x , 得交点分别为(1,1),(0,0),(3,-1), 所以S =ʃ10[x -(-13x )]d x +ʃ31[(2-x )-(-13x )]d x =ʃ10(x +13x )d x +ʃ31(2-x +13x )d x =(23x 32+16x 2)|10+(2x -12x 2+16x 2)|31 =23+16+(2x -13x 2)|31 =56+6-13×9-2+13 =136. 探究点三 定积分的综合应用例3 在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:切点A 的坐标以及在切点A 处的切线方程. 解 如图,设切点A (x 0,y 0),其中x 0≠0,由y ′=2x ,过点A 的切线方程为 y -y 0=2x 0(x -x 0), 即y =2x 0x -x 20,令y =0,得x =x 02,即C (x 02,0),设由曲线和过点A 的切线与x 轴围成图形的面积为S , 则S =S 曲边△AOB -S △ABC ,∵S 曲边△AOB =ʃx 00x 2d x =13x 3|x 00=13x 30,S △ABC =12|BC |·|AB |=12(x 0-x 02)·x 20=14x 30. ∴S =13x 30-14x 30=112x 30=112.∴x 0=1,从而切点为A (1,1), 切线方程为2x -y -1=0.反思与感悟 本题综合考查了导数的意义以及定积分等知识,运用待定系数法,先设出切点的坐标,利用导数的几何意义,建立了切线方程,然后利用定积分以及平面几何的性质求出所围成的平面图形的面积,根据条件建立方程求解,从而使问题得以解决.跟踪训练3 如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积 S =ʃ10(x -x 2)d x =⎝⎛⎭⎫x 22-13x 3|10=16.又⎩⎪⎨⎪⎧y =x -x 2,y =kx , 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k , 所以,S 2=ʃ1-k 0(x -x 2-kx )d x=⎝⎛⎭⎫1-k 2x 2-13x 3|1-k 0=16(1-k )3. 又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.1.在下面所给图形的面积S 及相应表达式中,正确的有( )S =ʃab [f (x )-g (x )]d xS =ʃ80(22x -2x +8)d x① ②S =ʃ41f (x )d x -ʃ74f (x )d xS =ʃ a 0[g (x )-f (x )]d x +ʃ ba [f (x )-g (x )]d x③ ④A .①③B .②③C .①④D .③④ 答案 D 解析 ①应是S =ʃba [f (x )-g (x )]d x ,②应是S =ʃ8022x d x -ʃ84(2x -8)d x ,③和④正确,故选D.2.曲线y =cos x (0≤x ≤32π)与坐标轴所围图形的面积是( )A .2B .3 C.52 D .4答案 B 解析 S =π20⎰cos x d x -3π2π2⎰cos x d x=sin x|π20-sin x|3π2π2=sin π2-sin 0-sin 3π2+sin π2=1-0+1+1=3.3.由曲线y =x 2与直线y =2x 所围成的平面图形的面积为________. 答案 43解析 解方程组⎩⎪⎨⎪⎧ y =2x ,y =x 2,得⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =2,y =4. ∴曲线y =x 2与直线y =2x 交点为(2,4),(0,0). ∴S =ʃ20(2x -x 2)d x =(x 2-13x 3)|2=(4-83)-0=43.4.由曲线y =x 2+4与直线y =5x ,x =0,x =4所围成平面图形的面积是________. 答案193解析 由图形可得 S =ʃ10(x 2+4-5x )d x +ʃ41(5x -x 2-4)d x =(13x 3+4x -52x 2)|10+(52x 2-13x 3-4x )|41 =13+4-52+52×42-13×43-4×4-52+13+4=193. [呈重点、现规律]对于简单图形的面积求解,我们可直接运用定积分的几何意义,此时 (1)确定积分上、下限,一般为两交点的横坐标. (2)确定被积函数,一般是上曲线与下曲线对应函数的差.这样所求的面积问题就转化为运用微积分基本定理计算定积分了.注意区别定积分与利用定积分计算曲线所围图形的面积:定积分可正、可负或为零;而平面图形的面积总是非负的.一、基础过关1.用S 表示图中阴影部分的面积,则S 的值是( )A .ʃca f (x )d x B .|ʃca f (x )d x | C .ʃba f (x )d x +ʃcb f (x )d x D .ʃcb f (x )d x -ʃba f (x )d x答案 D解析 ∵x ∈[a ,b ]时,f (x )<0,x ∈[b ,c ]时,f (x )>0, ∴阴影部分的面积S =ʃcb f (x )d x -ʃba f (x )d x .2.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A.43 B .2 C.83 D.1623答案 C解析 ∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍), 即S =4-2ʃ20x24d x =⎪⎪4-2·x 31220=4-43=83.3.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为( ) A .∫b a [f (x )-g (x )]d x B .∫b a [g(x)-f(x)]d x C .∫b a |f (x )-g (x )|d xD.||∫ba [f (x )-g (x )]d x答案 C解析 当f (x )>g (x )时, 所求面积为∫b a [f (x )-g (x )]d x ;当f (x )≤g (x )时,所求面积为∫b a [g (x )-f (x )]d x . 综上,所求面积为∫b a |f (x )-g (x )|d x .4.曲线y =x 2-1与x 轴所围成图形的面积等于( ) A.13 B.23 C .1 D.43答案 D解析 函数y =x 2-1与x 轴的交点为(-1,0),(1,0),且函数图象关于y 轴对称,故所求面积为 S =2ʃ10(1-x 2)d x =2(x -13x 3)|10 =2×23=43.5.由曲线y =x 与y =x 3所围成的图形的面积可用定积分表示为________. 答案 ʃ10(x -x 3)d x解析 画出y =x 和y =x 3的草图,所求面积为如图所示阴影部分的面积,解方程组⎩⎨⎧y =xy =x 3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =ʃ10(x -x 3)d x .6.由y =x 2,y =14x 2及x =1围成的图形的面积S =______.答案 14解析 图形如图所示:S =ʃ10x 2d x -ʃ1014x 2d x=ʃ1034x 2d x=14x 3|10=14. 二、能力提升7.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x , x ∈(1,2],则ʃ20f (x )d x等于( )A.34B.45C.56 D .不存在 答案 C解析 数形结合,如图,ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=13x 3|10+(2x -12x 2)|21=13+(4-2-2+12)=56. 8.若两曲线y =x 2与y =cx 3(c >0)围成图形的面积是23,则c 等于( )A.13B.12 C .1 D.23 答案 B解析 由⎩⎪⎨⎪⎧y =x 2y =cx3得x =0或x =1c . ∵0<x <1c 时,x 2>cx 3,∴S =10c ⎰(x 2-cx 3)d x=(13x 3-14cx 4)|10c =13c 3-14c 3=112c 3=23. ∴c 3=18.∴c =12.9.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________.答案 13解析 根据题意得:S 阴=ʃ103x 2d x =x 3|10=1,则点M 取自阴影部分的概率为S 阴S 矩=13×1=13.10.求曲线y =6-x 和y =8x ,y =0围成图形的面积.解 作出直线y =6-x ,曲线y =8x 的草图,所求面积为图中阴影部分的面积.解方程组⎩⎨⎧ y =6-x y =8x得直线y =6-x 与曲线y =8x 交点的坐标为(2,4),直线y =6-x 与x 轴的交点坐标为(6,0).因此,所求图形的面积S =S 1+S 2=ʃ208x d x +ʃ62(6-x )d x=8×2332x |20+(6x -12x 2)|62 =163+[(6×6-12×62)-(6×2-12×22)] =163+8=403. 11.求由抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积. 解 由y ′=-2x +4得在点A 、B 处切线的斜率分别为2和-2,则两直线方程分别为y =2x -2和y =-2x +6,由⎩⎪⎨⎪⎧y =2x -2,y =-2x +6,得两直线交点坐标为C (2,2), ∴S =S △ABC -ʃ31(-x 2+4x -3)d x =12×2×2-⎝⎛⎭⎫-13x 3+2x 2-3x ⎪⎪⎪31=2-43=23. 12.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值.解 (1)设点P 的横坐标为t (0<t <2),则P 点的坐标为(t ,t 2),直线OP 的方程为y =tx .S 1=ʃt 0(tx -x 2)d x =16t 3, S 2=ʃ2t (x 2-tx )d x =83-2t +16t 3. 因为S 1=S 2,所以t =43,点P 的坐标为(43,169).(2)S =S 1+S 2=16t 3+83-2t +16t 3 =13t 3-2t +83,S ′=t 2-2, 令S ′=0得t 2-2=0.因为0<t <2,所以t =2,因为0<t <2时,S ′<0;2<t <2时,S ′>0.所以,当t =2时,S 1+S 2有最小值83-423, 此时点P 的坐标为(2,2).三、探究与拓展13.已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.解 作出y =x 2-2x 的图象如图.(1)当a <0时,S =ʃ0a (x 2-2x )d x=(13x 3-x 2)|0a =-a 33+a 2 =43, ∴(a +1)(a -2)2=0.∵a <0,∴a =-1.(2)当a >0时,①若0<a ≤2,则S =-ʃa 0(x 2-2x )d x=-(13x 3-x 2)| a 0 =a 2-13a 3=43, ∴a 3-3a 2+4=0即(a +1)(a -2)2=0.∵a >0,∴a =2.②当a >2时,S =-ʃ20(x 2-2x )d x +ʃa 2(x 2-2x )d x=-(13x 3-x 2)|20+(13x 3-x 2)|a 2=-(83-4)+(13a 3-a 2-83+4) =43+(13a 3-a 2-83+4)=43. ∴13a 3-a 2+43=0 ∴a >2不合题意.综上a =-1,或a =2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

π)
3x2 1 2 f′(x)=6x =2· . x x 3x2 1 f′(x)>0 即 2· >0 x 解得 又 3 3 <x<0 或 x> . 3 3 x>0 x> 3 . 3
3x2 1 <0 f′(x)<0 即 2· x 解得 x< 又 x>0 3 3 或 0<x< . 3 3 0<x< 3 . 3 3 3 ∞)
关系
函数的单调性 单调递增 单调递 常函数
2.一般地 在区间(a b)内函数的单调性 导数有如 关系 函数的单调性 单调递增 单调递 常函数 导数 f′(x) 0
f′(x) 0 f′(x)=0
[情境导学] 前 在函 函 们用定 来判断函 的单调性 在假设 x1<x2 的前提 比较 f(x1) 比较 f(x1) f(x2)的大小 但
的单调递减区间是( ∞
当 t>0 时 函 的单调递减区间是( ∞ 综
所述 当 t 0 时 函 的单调减区间是( ∞ t
当 t&g间是( ∞
反思与感悟 求函 的单调区间的 体 骤是 (1)优先确定 f(x)的定 域 (2)计算导 f′(x) (3)解 f′(x)>0 和 f′(x)<0 (4)定 域内满足
f(x)图象的大致形状如图所示
反思与感悟 本题 有一定的开放性 图象 唯一 只要能抓住问题的本质 即在相应区间 的单调性符合题意就可 了 跟踪训练 1 函数 y=f(x)的图象如图所示 试画出导函数 f′(x)图象的大致形状

f′(x)图象的大致形状如


图象形状 唯一
例 2 求 列函数的单调区间 (1)f(x)=2x3 3x2 36x 1
f′(x)>0 的区间为增区间 定 域内满足 f′(x)<0 的区间为减区间 跟踪训练 2 求 列函数的单调区间 (1)f(x)=x2 解 (1)函 ln x (2)f(x)=x3 f(x)的定 域为(0 x2 x. ∞)
f′(x)=2x
1 ( 2x 1)( 2x 1) = . x x 2 2 <x<0 或 x> 2 2 2 2 2 2 ∞
f′(x)>0 得 又 函 x>0 x>
f(x)的单调递增区间为

f′(x)<0 得 x< 又 函 x>0 0<x<
2 2 或 0<x< 2 2 2 2
思考 4 (1)如果一个函数 有相同单调性的单调区间 写出思考 2 中(4)的单调区间 (2)函数的单调区间 定 域满足什 关系?
答 ∞
(1) 能用 ∪ 连接 只能用 0) (0 ∞)
或 和 字隔开 思考 2 中(4)的单调递
区间为(
(2)函数的单调性是对函数定
域内的某个子区间而言的 故单调区间是定 域的子集

(1)从起跳到最高点 h 随 t 的增加而增加 即 h(t)是增函数
h′(t)>0
(2)从最高点到入水 h 随 t 的增加而 小 即 h(t)是 函数 h′(t)<0. 思考 2 观察 面四个函数的图象 回答函数的单调性 导函数的 负有何关系?

(1)在区间( ∞
∞)内
y′=1>0 y 是增函数
(2)在区间( ∞ 0)内 y′=2x<0 y 是 函数 在区间(0 ∞)内 y′=2x>0 y 是增函数 ∞)内 y′=3x2 0 ∞)内 y′= y 是增函数 1 <0 y 是 函数 x2 关系 个区间内单调递增 如果 f′(x)<0
1
明目标、知重点 1 2 3
3.1
函数的单调性与导数
结合实例 直观探索并掌握函数的单调性 导数的关系 能利用导数研究函数的单调性 并能够利用单调性证明一些简单的 等式 会求函数的单调区间( 中多项式函数一般 超过 次)
1
一般地 在区间(a b)内函数的导数 单调性有如 导数 f′(x)>0 f′(x)<0 f′(x)=0
f(x)的单调递增区间为( 单调递减区间为(0 (4)f′(x)=3t 3x2. 3 ) 3
f′(x) 0 时 得 3t 3x2 0 即 t x2 当 t 0 时 无解 当 t>0 时 函 的单调递增区间是[ t t]
f′(x) 0 时 得 3t 3x2 0 即 t x2
当t 0时 函
f′(x) 0 恒 立 ∞) t] [ t ∞) ∞) 无单调增区间 t] [ t ∞)
y=f(x)比较复杂的情况
f(x2)的大小并 很容易 如果利用导 来判断
的单调性就比较简单 本节 们就来研究 个问题
探究点一 函数的单调性 导函数 负的关系 思考 1 观察高 跳水运动员的高度 h 随时间 t 变化的函数 h(t)= 4.9t2 6.5t 10 的图象
及运动员的速度 v 随时间 t 变化的函数 v(t)=h′(t)= 9.8t 6.5 的图象 思考运动员从起跳 到最高点 从最高点到入水的运动状态有什 区别
(3)在区间( ∞
(4)在区间( ∞ 0) (0
小结 一般地 函 的单调性
导函 的 负有如 y=f(x)在
在某个区间(a b)内 如果 f′(x)>0 那 函 那 函 y=f(x)在 个区间内单调递减
思考 3 若函数 f(x)在区间(a 答 一定
b)内单调递增 那
f′(x)一定大于零吗?
思考 2 中(3)知 f′(x) 0 恒 立 一个 那 如何表示这些区间?试
例 1 已知导函数 f′(x)的 列信息 当 1<x<4 时 f′(x)>0 当 x>4 或 x<1 时 f′(x)<0 当 x=4 或 x=1 时 f′(x)=0. 试画出函数 f(x)图象的大致形状 解 当 1<x<4 时 f′(x)>0 可知 f(x)在 区间内单调递增 当 x>4 或 x<1 时 f′(x)<0 可知 f(x)在 两个区间内单调递减 当 x=4 或 x=1 时 f′(x)=0 综 函 两点比较特殊 们称它们为 临界点
(2)f(x)=sin x x(0<x<π) (3)f(x)=3x2 2ln x
(4)f(x)=3tx x3

(1)f′(x)=6x2
6x 36.
f′(x)>0 得 x< 3 或 x>2 f′(x)<0 解得 3<x<2 3) (2 ∞)
故 f(x)的单调递增区间是( ∞ 单调递减区间是( 3,2) (2)f′(x)=cos x 1 0 恒 立 故函 (3)函 f(x)的单调递减区间为(0 的定 域为(0 ∞)
相关文档
最新文档