概率论及数理统计期末模拟试题一

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A 》期末习题一答案一、简答题(本题满分30分,共含6小题,每小题5分)1、设A ,B 为随机事件,A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,求()P AB 。

解:32.04.08.0)()()(=⨯==B P A P B A P 。

(5分)2、设随机变量X 的概率密度为⎩⎨⎧<<=其他 010 )(x cx x f ,求常数c 的值。

解:121)(1===⎰⎰+∞∞-c dx cx dx x f ,因此2=c 。

(5分) 3、 已知随机变量)4,1(~N X ,求}21{<<X P 。

解:()021}21221211{}21{Φ-⎪⎭⎫⎝⎛Φ=-<-<-=<<X P X P (3分) 1915.05.06915.0=-=。

(2分)4、设随机变量X 和Y 相互独立,)4,3(~N X ,)9,2(~N Y ,求变量12+-=Y X Z 的数学期望和方差。

解:()()()()51261212=+-=+-=+-=Y E X E Y X E Z E ; (2分)()()()()25916412=+=+=+-=Y D X D Y X D Z D 。

(3分) 5、 已知10个产品中有3个次品,现从中有放回地取3次,每次任取1个,求所取的3个产品中恰有2个次品的概率。

解:设X :所取得3个产品中次品的个数,则⎪⎭⎫⎝⎛103,3~B X (2分)1000189107103}2{223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C X P (3分) 6、设随机变量X 、Y 相互独立,且都服从标准正态分布,则Z(同时要写出分布的参数) ?~(1)t 。

(5分)二、(本题满分10分) 编号为1,2,3的三台仪器正在工作的概率分别为0.9,0.8和0.4,从中任选一台。

(1) 求此台仪器正在工作的概率;(2) 已知选到的仪器正在工作,求它编号为2的概率。

《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题一. 填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.1p(AB)0.3,)B (p ,5.0)A (p ===,则=)B -A (p 0.4 、=)B A (p 0.7 、=)B A (p 1/3 ,)(B A P ⋅= 0.3 。

2、一个袋子中有大小相同的红球4只黑球2只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 8/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 4/9 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 .3、设随机变量X 服从参数为6的泊松分布,则{}=≥1X p 1- 6-e4、设随机变量X 服从B (2,0. 6)的二项分布,则{}==2X p 0.36 , Y 服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则Y X +服从 B (10,0. 6) 分布,=+)(Y X E 6 。

5、设二维随机向量),(Y X 的分布律是有则=a _0.3_,X 的数学期=)(X E ___0.5_______,Y X 与的相关系数=xy ρ___0.1_______。

第 1页共 4 页6、三个可靠性为p>0的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:3p ;(2)若把它们并联成一个系统,则系统的可靠性为:3)1(1p --;7、(1)若随机变量X )3,1(~U ,则{}=20〈〈X p 0.5;=)(2X E _13/3, =+)12(X D 3/4 .(2)若随机变量X ~)4 ,1(N 且8413.0)1(=Φ则=<<-}31{X P 0.6826 ,(~,12N Y X Y 则+= 3 , 16 )。

8、随机变量X 、Y 的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=+)2(Y X E 5 ,=+)2(Y X D 17 。

概率论与数理统计模拟试卷和答案

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。

[A] P (A)=1-P (B ) [B] P (A │B)=0 [C] P (A │B )=1[D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。

[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A │B )=P (B )[D] P (A │B )=P(A )3、若A 、B 相互独立,则下列式子成立的为( )。

[A] )()()(B P A P B A P = [B] 0)(=AB P [C])()(A B P B A P = [D])()(B P B A P =4、下面的函数中,( )可以是离散型随机变量的概率函数。

[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ=== [D] {}41(1,2,3)2k P k k ξ===--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。

概率论与数理统计期末考试题及答案

概率论与数理统计期末考试题及答案

模拟试题填空题(每空3分,共45 分)1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)=P( A U B)=12、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B9发生且A不发生的概率相等,则A发生的概率为:_______________________ ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:;没有任何人的生日在同一个月份的概率I Ae x, X c 04、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A=0, x>2分布函数F(x)= ,概率P{—0.5<X <1}=5、设随机变量X~ B(2,p)、Y~ B(1,p),若P{X>1} =5/ 9,贝U p =若X与丫独立,则Z=max(X,Y)的分布律:6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)=COV(2X-3Y , X)=7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时,丫"⑶;8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1nX =—S X i为n i 二样本均值,则日的矩估计量为:9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参数a的置信度为95%的置信区间:计算题(35分)1、(12分)设连续型随机变量X的密度函数为:「1求:1) P{|2X —1|<2} ; 2) Y =X 2的密度函数 S(y) ; 3) E(2X-1);2、(12分)设随机变量(X,Y )的密度函数为3、( 11分)设总体X 的概率密度函数为:X 1,X 2,…,X n 是取自总体X 的简单随机样本。

概率论与数理统计期末试卷及答案(最新1)

概率论与数理统计期末试卷及答案(最新1)

概率论与数理统计期末试卷一、填空(每小题 分,共 分)1.设是三个随机事件,则至少发生两个可表示为♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉。

2 掷一颗骰子,表示“出现奇数点”,表示“点数不大于 ”,则表示♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉。

3.已知互斥的两个事件满足,则♉♉♉♉♉♉♉♉♉♉♉。

4.设为两个随机事件,,,则♉♉♉♉♉♉♉♉♉♉♉。

5.设是三个随机事件,,,、,则至少发生一个的概率为♉♉♉♉♉♉♉♉♉♉♉。

二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。

每小题 分,共 分) 从装有 只红球, 只白球的袋中任取两球,记“取到 只白球”,则( )。

☎✌✆ 取到 只红球 ☎ ✆ 取到 只白球☎ ✆ 没有取到白球 ☎ ✆ 至少取到 只红球.对掷一枚硬币的试验 “出现正面”称为( )。

☎✌✆ 随机事件 ☎ ✆ 必然事件☎ ✆ 不可能事件 ☎ ✆ 样本空间 设✌、 为随机事件,则( )。

☎✌✆ ✌ ☎ ✆☎ ✆ ✌ ☎ ✆ φ 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是( )。

☎✌✆ 与互斥 ☎ ✆ 与不互斥☎ ✆ ☎ ✆ 设为两随机事件,且,则下列式子正确的是( )。

☎✌✆ ☎ ✆☎ ✆ ☎ ✆ 设相互独立,则( )。

☎✌✆ ☎ ✆☎ ✆ ☎ ✆设是三个随机事件,且有,则( )。

☎✌✆  ☎ ✆ ☎ ✆  ☎ ✆  进行一系列独立的试验,每次试验成功的概率为☐,则在成功 次之前已经失败 次的概率为( )。

☎✌✆ ☐ ☎ ☐✆ ☎ ✆  ☐ ☎ ☐✆☎ ✆  ☐ ☎ ☐✆ ☎ ✆  ☐ ☎ ☐✆ 设✌、 为两随机事件,且,则下列式子正确的是( )。

☎✌✆ ☎ ✆☎ ✆☎ ✆ 设事件✌与 同时发生时,事件 一定发生,则( )。

☎✌✆ ☎✌ ✆  ☎ ✆ ☎ ✆ ☎✌✆  ☎ ✆  ☎ ✆ ≤ ☎ ✆ ☎✌✆  ☎ ✆  ☎ ✆ ≥  ☎ ✆ ☎✌✆  ☎ ✆ ≤ ☎ ✆三、计算与应用题(每小题 分,共 分) 袋中装有 个白球, 个黑球。

概率论与数理统计期末复习题(1)

期末复习题一、填空题1. 设A,B 为随机事件,已知P(A)=0.7,P(B)=0.5,P(A-B)=0.3,则P (B-A )= 。

2.设有20个零件,其中16个是一等品,4个是二等品,今从中任取3个,则至少有一个是一等品的概率是 .3.设()4 ,3~N X ,且c 满足()()c X P c X P ≤=>,则=c 。

4. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,7/1,3),,(~ .5. 设总体X 服从正态分布)9,2(N ,921,X X X 是来自总体的样本,∑==9191i i X X 则=≥)2(X P 。

6. 设B A ,是随机事件,满足===)(,)(),()(B P p A P B A P AB P 则 .7. B A ,事件,则=⋃B A AB 。

8. 设随机变量Y X ,相互独立,且)16,1(~),5,1(~N Y N X ,12--=Y X Z 则的相关系数为与Z Y9.随机变量=≤≤-=Φ=Φ}62{,9772.0)2(,8413.0)1(),4,2(~X P N X 则 . 10. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,5/1,3),,(~ . 11. B A ,事件,则=⋃B A AB 。

12. 连续型随机变量X 的概率密度为()⎩⎨⎧≤>=-00,0,3x x e x f x λ则=λ .13. 盒中有12只晶体管,其中有10只正品,2只次品.现从盒中任取3只,设3只中所含次品数为X ,则()==1X P .14. 已知二维随机变量221212(,)~(,;,;)X Y N μμσσρ,且X 与Y 相互独立,则ρ=______ .15. 设随机变量X 服从二项分布),(p n B ,则=+)83(X D . .二、选择题1. 设离散型随机变量X 的分布列为其分布函数为F(x),则F(3)= .A. 0B. 0.3C. 1D. 0.8 2. 设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,x x x x x f则X 落在区间()2.1 ,4.0内的概率为( ).(A) 0.64;(B) 0.6; (C) 0.5; (D) 0.42.3. 矩估计是( )A. 点估计B. 极大似然估计C. 区间估计D. 无偏估计 4. 甲乙两人下棋,每局甲胜的概率为0.4,乙胜的概率为0.6,。

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

《概率论与数理统计》期末复习试卷4套+答案

《概率论与数理统计》期末复习试卷4套+答案第⼀套⼀、判断题(2分?5)1、设A ,B 是两事件,则()A B B A -=U 。

()2、若随机变量X 的取值个数为⽆限个,则X ⼀定是连续型随机变量。

()3、 X 与Y 独⽴,则max{,}()()()X Y X Y F z F z F z =。

()4、若X 与Y 不独⽴,则EY EX XY E ?≠)(。

()5、若(,)X Y 服从⼆维正态分布,X 与Y 不相关与X 与Y 相互独⽴等价。

()⼆、选择题(3分?5)1、对于任意两个事件A 和B ().A 若AB φ=,则,A B ⼀定独⽴ .B 若AB φ≠,则,A B ⼀定独⽴ .C 若AB φ=,则,A B ⼀定不独⽴ .D 若AB φ≠,则,A B 有可能独⽴2、设,X Y 相互独⽴,且(1,2)X N -:,(1,3)Y N :,则2X Y +服从的分布为().A (1,8)N .B (1,14)N .C (1,22)N .D (1,40)N3、如果随机变量X 与Y 满⾜()()D X Y D X Y +=-,则下列说法正确的是().A X 与Y 相互独⽴ .B X 与Y 不相关.C ()0D Y = .D ()()0D X D Y =《概率与数理统计》⾼教第四版(浙江⼤学、盛骤)期末试卷复习题4、样本12,,,n X X X L 取⾃正态总体(0,1)N ,X ,S 分别为样本均值与样本标准差,则().A (0,1)X N : .B 221(1)ni i X n χ=-∑:.C(0,1)N : .D (1)X S t n -:5、在假设检验中,设0H 为原假设,犯第⼀类错误的情况为().A 0H 真,拒绝0H .B 0H 不真,接受0H .C 0H 真,接受0H .D 0H 不真,拒绝0H三、填空题(3分?5)1、设,A B 为两个随机事件,已知()13P A B =U ,()19P AB =,则()P B =2、若袋中有5只⽩球和6只⿊球,现从中任取三球,则它们为同⾊的概率是 3、设⼆维随机变量(,)X Y 的概率密度为:601(,)0x x y f x y ≤≤≤?=?,则(1)P X Y +≤=4、设随机变量X 服从参数为1的指数分布,则数学期望()E X =5、在总体X 的数学期望µ的两个⽆偏估计123141214X X X ++和12312131X X X ++中,最有效的是精品⽂档四、计算题 1、(10分)甲箱中有a 个红球,b 个⿊球,⼄箱中有a 个⿊球,b 个红球,先从甲箱中随机地取出⼀球放⼊⼄箱。

概率论与数理统计模拟题

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是( D ).A.若A,B 互不相容,则A 与B ̅也互不相容.B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立. D.若A,B 相互独立,那么A 与B ̅也相互独立.2.在一次假设检验中,下列说法正确的是( A ). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间( D ).A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值4.在假设检验问题中,犯第一类错误的概率α的意义是( C ). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率5.在一次假设检验中,下列说法正确的是( C ). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的( B ).A.极大似然估计B.矩法估计C.相合估计D.有偏估计7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用( B ).A.t 检验法B.u 检验法C.F 检验法D.σ2检验法8.在一个确定的假设检验中,与判断结果相关的因素有( D ).A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C 同时成立9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( A ).A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H010.设A 和B 为两个任意事件,且A ⊂B ,P(B)>0,则必有( B ).A.P (A )<P (A |B )B.P (A )≤P (A |B )C.P (A )>(A |B )D.P (A )≥P (A |B )11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=( B ).A.1/2B.1/3C.10/3D.1/512.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是( C ).A.3/5B.5/11C.5/8 B.6/1113.设A 和B 为两个任意事件,则下列关系成立的是( C ).A.(A ∪B )−B =AB.(A ∪B )−B ⊃AC.(A ∪B )−B ⊂AD.(A −B )∪B =A14.设A 和B 为两个任意事件,且A ⊂B ,则必有( D ).A.P (A )<P(AB)B.P (A )≤P(AB)C.P (A )>P(AB)D.P (A )≥P(AB)15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为( B ).A.p 3B.1-p 3C.(1-p)3D.1-(1-p)316.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率( A ). A. 2/27 B.2/9 C.8/27 D.1/2717.设随机事件A 和B 满足P (B |A )=1,则( C ).A.为必然事件B.P (B |A )=0C.B ⊂AD.B ⊃A18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有( B ). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a0dx C.F (−a )=1−F(a) D.F (−a )=2F (a )−119.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=( B ).A.3B.4C.1/4D.1/320.设X和Y相互独立,且分别服从N(0,1)和N(1,1)则( B ).A.P{X+Y≤0}=12B.P{X+Y≤1}=12C.P{X−Y≤0}=12D.P{X−Y≤1}=1221.设X和Y独立同分布,且P{X=1}=P{Y=1}=12,P{X=−1}=P{Y=−1}=12,则下列各式成立的是( A ).A.P{X=Y}=12B.P{X=Y}=1 C.P{X+Y=0}=14D.P{XY=1}=1422.总体方差D等于( C ).A.1n ∑(X i−X̅)2ni=1B.1n−1∑(X i−X̅)2ni=1C.1n∑X i2−(EX)2ni=1D.1n−1∑(X i−EX)2ni=123.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为( C ).A.单调增加B.单调减少C.保持不变D.增减不定24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则( A ).A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p225.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为( B ).A.1n ∑(X i−X̅)2ni=1B.1n−1∑(X i−X̅)2ni=1C.1n ∑(X i−EX)2ni=1D.1n−1∑(X i−EX)2ni=126.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有( C ).A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是( D ).A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H028.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是( B ).A.1/5B.2/5C.3/5D.4/529.事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D ). A.“甲种产品滞销,乙种产品畅销” B.“甲.乙两种产品均畅销”C.“甲种产品滞销”D.“甲种产品滞销或乙种产品畅销”30.设A,B,C 表示三个随机事件,则A ⋃B ⋃C 表示( A ) A.A,B,C 中至少有一个发生; B.A,B,C 都同时发生; C.A,B,C 中至少有两个发生; D.A,B,C 都不发生.31.已知事件A,B 相互独立,且P(A)=0.5,P(B)=0.8,则P (A ⋃B )=( C ) A.0.65 B.1.3 C.0.9 D.0.332.设X ~B (n,p ),则有( D )A.E (2X -1)=2np;B.E (2X +1)=4np +1;C.D (2X +1)=4np (1-p )+1A.;D.D (2X -1)=4np (1-p )33.X则a =( A )A.1/3B.0C.5/12D.1/434.常见随机变量的分布中,数学期望和方差一定相等的分布是( D ) A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布.35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为( B ). A.p k ; B.(nk )p k (1-p)n-k ; C.p n-k (1-p)k ; D.p k (1-p)n-k .36.设X A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16.37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=( A ).A.1;B.1/2;C.1/2;D.2.38.若T ~t(n),下列等式中错误的是( C ).A.P{T>0}=P{T ≤0};B.P{T ≥1}=P{T>1};C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}.39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i=1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是( C ).A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1).40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是( D ).A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1).41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是( B ). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计.42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β( B ).A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变.43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为( C ).A.0.1;B.0.2;C.0.9;D.0.8.44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=( D ). A.0; B.6; C.2; D.-6.45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-n i ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=( A ).A.XX XY l l ;B.XX XY l l ;C.YY XX XY l l l 2; D.YYXX XY l l l .46.设A,B 为两个事件,则AB =( D ).A.A B ;B.A B;C.A B ;D.A ∪B .47.若X ~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是( A ). A.Φ(-x)=-Φ(x); B.ϕ(x)关于纵轴对称; C.Φ(0)=0.5; D.Φ(-x)=1-Φ(x).48.对单个总体X ~N(μ,σ2)假设检验,σ2未知,H 0:μ≥μ0.在显著水平α下,应该选( A ). A.t 检验; B.F 检验; C.χ2检验; D.u 检验.49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率( B ).A.0.8B.0.5C.0.4D.0.650.设X~N(μ,0.3²),容量n=9,均值X 5=,则未知参数μ的置信度为0.95的置信区间是( C ).(查表Z 0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)二.填空题 1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16ii X==∑则统计量4X-16σ服从分布 N(0,1) (必须写出分布的参数).2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为71.111=∑=ni i X n3. 设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为 121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)= 0.55、设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为 0.156.设样本的频数分布为X 0 1 2 3 4 频数 13212则样本方差s 2= 27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )ni i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是X t (1)n n Q=- (用X 和Q表示)8. 设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X = n 2σ9. 设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是 X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量 212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C= 1/8 时CY ~x 2(2).13.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差 s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)= 0.715. 若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α= 3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}= 217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为 2/318. 三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为 3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为 2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为 0.221. 由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)= 3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为 2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为 0.35224. 若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}= 0.525. 若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~ N(0,5)26.设随机变量X ~N(1,22),则EX 2= 5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率. [答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400kk k k XP -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为 }1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率. [答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率. [答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e.0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意 ~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x e x F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x )(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫⎝⎛-Φ-=x即,9.010650=⎪⎭⎫⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律.4.01.03.02.02101i p X -[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(424==⋅==⎰⎰∞+∞-x dx x dx x xf X E10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数. [答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n所以,252,21~2⎪⎪⎭⎫ ⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x xA x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1 ()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》模拟试卷一
一、
(1)设随机变量X 的概率密度为:⎩⎨
⎧<<=其它
, 010 , 2)(x x x f ,现对X 进行16次独立重复观测,以Y 表示观测值不大于2
1
的次数,则)(Y D =_________。

(2) 已知4321,,,X X X X 是相互独立的随机变量, 且都服从标准正态分布,则2
42
22
321X X X X ++服从 分布
(3)设随机变量),(~2
σμN X ,其中0,0μσ≠>,且1
(
)2
X P σ
αμ
-<=
,则α为( ) A .0; B .μ; C .1σμ-
; D .1σμ
+。

(4)设二维随机变量(,)X Y 的联合分布为 2
3
0.310.2α
β

Z = 求:(1)随机变量Z 的概率分布;
(2)二维随机变量(,)X Z 的联合分布;
(3),αβ取何值时,能使X 与Z 相互独立。

二、(1)设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()0.4P A =,
()0.5P B =,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为_________。

(2)设12,,
,n X X X 和12,,
,m Y Y Y 是两组简单随机样本,分别取自总体2~(,1)X N μ和
2
~(,2)Y N μ,μ的无偏估计有形式1
1
n
m
i j i j T a X b Y ===+∑∑;则,a b 应满足的关系是
____________;又当a =____________,b =____________时,T 最有效。

(3)设,X Y 是两个随机变量,且45
(1,1),(1)(1)99
P X Y P X P Y ≤≤=≤=≤=,则
{m i n (,)1}P X Y ≤=( )
A .49;
B .2081;
C .23
; D .1
3。

(4)
设某农贸市场某商品每日价格变化是均值为0,方差为22σ=的随机变量,有关系式:1n n n ηηξ-=+,其中n η表示第n 天商品价格,n ξ表示第n 天该商品价格的增加数,如果今天该商品的价格为100,求18天后该商品价格在96与104之间的概率。

附:1()0.69152Φ=,2
()0.74863Φ=,(1)0.8413Φ=。

三、 (1)设总体X 服从参数为λ的泊松分布,12,,n X X X 为来自总体X 的简单随机样
本,则()k
P X n == _________。

(2)设12,,
,n X X X 是来自正态总体2
(,)N μσ的样本,2
2
1
1()1n i
i S X X n ==--∑,则2ES = ____________,2DS =____________。

(3)设随机变量X 和Y 的联合概率分布为 (,)(0,0)(0,1)(1,0)(1,1)
1133
X Y P a b
,若事件
{0}Y =与{1}X Y +=相互独立,则下面正确的是( )
A .X 与Y 相互独立;
B .X 与Y 不相关但不独立;
C .11
,412
a b ==;
D .X 与Y 相关。

四、
(1)设二维随机变量(,)~(0,0;1,1;0)X Y N ,
则(
0)X
P Y
>=____________。

(2)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,则丢失的也是一等品的概率为( )
A .1
2

B .38;
C .313;
D .5
8。

(3)设12,,
n X X X 是来自总体2~(,)X N μσ的一个样本,样本均值和方差分别为X , 2S ,1n X +是对X 的又一独立观测值,则服从(1,1)F n -分布的统计量是( )
A

; B .2
1(
)n X S
μ+-; C

D .2
12
()1n X X n n σ+-+。

五、 1) 设离散型随机变量X 的分布律为),2,1(}{ ===k k X P k αβ, 且0>α, 则 ( )
(A) 11
-=
αβ ; (B) β是大于0的实数 ; (C) 11
+=αβ ; (D) 1+=αβ
(2) 设总体),(~2σμN X ,其中2σ已知, 则总体均值μ的置信区间长度l 与置信度α-1的关系是 ( )
(A) 当α-1缩小时, l 缩短 ; (B) 当α-1缩小时, l 增大;
(C) 当α-1缩小时, l 不变 ; (D) 以上说法都不对.
(3) 设(,)X Y 的联合概率密度是3,01,0(,)0,x x y x
f x y ⎧≤<≤<⎪=⎨⎪⎩其它
,求)(x f X 及1()2P x >。

六、(1)一批产品有M 件, 其中有m 件废品, 从中任取2件, 发现一件废品,则另一件是正品的概率为
(2)设随机变量X 与Y 独立同分布, 其分布律为
则下列式子正确的是( )
(A) Y X =; (B) 1}{==Y X P ; (C) 9
5
}{=
=Y X P ; (D) 0}{==Y X P . (3) 设1621,,,X X X 是来自总体),2(~2
σN X 的一个样本, ∑==161161i i X X , 则σ
8
4-X 服
从分布 ( )
(A) )15(t ; (B) )16(t ; (C) )15(2κ; (D) )1,0(N
(4)
设随机变量X 与Y 相互独立,且都服从2(,)N μσ,求min(,)E X Y 。

七、(1)设随机变量X 的概率密度为:,()(0)0,x a x b
f x a b <<⎧=<<⎨
⎩其它
,且22EX =,则
3
(||)2
P X <=____________。

(2)设随机变量X 的分布函数()F x 连续,且严格单调增加,则()Y F x =的概率密度为____________。

(3)设事件,,A B C 同时发生必导致D 发生,则 A .()()()()2P D P A P B P C ≤++-;
B .()()P D P A B
C =++; C .()()()()2P
D P A P B P C ≥++-; D .()()P D P ABC =。

(4) 在计算机网络中,某网站每天被访问的次数X 服从参数为λ的泊松分布,每个访问者从网站下载资料的概率为(01)p p <<。

(假设每个访问者每天只访问一次),且每个访问者是否下载资料彼此无关。

(1)求一天中恰有r 个人从该网站下载资料的概率;
(2)若某天中恰有r 个人从该网站下载资料,求这一天该网站有()n n r ≥个访问者的概率。

八、(1)掷17颗骰子, 出现点数和X 的数学期望为
(2)已知),(~2
σμN X , 则)0)((>a e
E aX
=
(3)设随机变量
4321,,,X X X X 独立同分布, 且都服从正态分布)1,1(N , 又知
2
4
14⎪⎭

⎝⎛-∑=i i X k 服从2κ分布, 则常数k 和2κ分布的自由度n 分别为 ( ) (A) 1,41==
n k ; (B) 1,21
==n k ; (C) 4,41==n k ; (D) 4,2
1
==n k
(4)设n X X X ,,,21 是来自正态总体X 的一个样本,已知X 的数学期望为μ, 为估计其均方
差σ, 取统计量∑=-=n
i i X n c 1
μη. 为使估计是无偏的, 试求c , 并求出此估计的方差.。

相关文档
最新文档