13.4.3作已知角的平分线
初中数学 什么是角的平分线定理

初中数学什么是角的平分线定理
角的平分线定理是指:如果一条直线通过一个角的顶点,将这个角分成两个相等的角,那么这条直线称为这个角的平分线。
详细解释如下:
1. 角的平分线:角的平分线是指一条直线,通过一个角的顶点,将这个角分成两个相等的角。
平分线可以从角的内部或外部出发,但必须经过角的顶点。
2. 平分线的性质:如果一条直线是一个角的平分线,那么它具有以下性质:
-平分线将角分为两个相等的部分。
这意味着分割后的两个角的度数相等,它们具有相同的大小和形状。
-平分线与角的两边相交于不同的点。
这些交点分别位于角的两边上,且与角的顶点不重合。
3. 角的平分线定理:根据角的平分线的定义和性质,我们可以得出角的平分线定理,即:"如果一条直线通过一个角的顶点,将这个角分成两个相等的角,那么这条直线称为这个角的平分线。
"
角的平分线定理在几何证明和构造中经常被使用。
它提供了角度分割和角度计算的便利,使我们能够更方便地处理角度相关的问题。
对于初中数学学习者来说,理解角的平分线定理非常重要,它可以帮助他们解决与角有关的几何问题,并在构造角的过程中正确应用平分线的性质。
八年级数学上册 13.4 尺规作图 3 作已知角的平分线教案1 (新版)华东师大版

13.4尺规作图3. 作已知角的平分线·教学目标·1. 掌握尺规的基本作图:画角平分线;2.进一步学习解尺规作图题,会写已知、求作和作法,以及掌握准确的作图语言.·教学重难点·分析实际作图问题,运用尺规的基本作图,写出作图的主要画法.·教学过程 ·一、导入新课我们知道三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.值得注意的是三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.在以前我们是这样作出三角形的角平分线的:用量角器量出三角形的角的大小,量角器零度线与这个角的一边重合,这个角一半所对应的线就是这个角的角平分线.现在只有直尺和圆规,你能设计一个作角的平分线的操作方案吗?二、推进新课新知探究问题1:实验探索:已知∠AOB ,用直尺和圆规准确地画出已知∠AOB 的平分线.请各小组同学讨论、探索、交流、归纳出具体的作图方法.分析:讨论结果展示:作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .(2)分别以M 、N 为圆心,大于12MN 的长为半径作弧.两弧在∠AOB 内部交于点C . (3)作射线OC ,射线OC 即为所求.问题2: 在上面作法的第二步中,去掉“大于12MN 的长”这个条件行吗?所作的两弧交点一定在∠AOB 的内部吗? 分析:去掉“大于12MN 的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.若分别以M 、N 为圆心,大于12MN 的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB 的外部,2 而我们要找的是∠AOB 内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB 的平分线了. 观察、概括作一个角的角平分线的理论依据是什么?【作一个角的角平分线的理论依据是全等判定方法中的“边边边”公理.】特别注意: 角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可. 例题讲解:例 已知∠α与∠β,求作一个角,使它等于(∠α+∠β)的一半.分析:要完成这个作图,先作出等于(∠α+∠β)的角,再作平分线即可已知:求作:作法:课堂练习把一个角分成两部分,使这两部分的度数之比为1:3.分析:本题可在原角内作一个角等于原角的14,故将原角平分后再次平分即得. 答案:已知:如图,已知∠AOB.求作:射线OC,使∠AOC:∠COB=1:3作法:(1)作∠AOB 的平分线OP ;(2)作∠AOP 的平分线OC ;射线OC,将∠AOB 分成1:3的两部分.三、本课小结1. 三角形的角分线是一条线段,角的平分线是一条射线;2. 基本作图:用尺规作一个角的角平分线;3. 作一个角的角平分线的理论依据是全等判定方法中的“边边边”公理;4. 解决尺规作图问题,先作出符合条件的图形草图,再确定具体的作图方法. 百度文库是百度发布的供网友在线分享文档的平台。
华东师大版八年级上册数学第13章13.4课题1 作一条线段等于已知线段 作一个角等于已知角

4.以点C′为圆心,_C__D__长为半径画弧,交前面的 弧于点D′; 5.过点D′作射线 _O_′_B_′_ . ∠A′O′B′就是所求作的角.
范例 已知∠α和线段a、b,如何求作△ABC,使∠C
=∠α,BC=a,AC=b呢?
作法:1.作∠MCN=∠α; 2.在射线CM、CN上分别截取CB=a,CA=b; 3.连结AB.则△ABC为所求作的三角形.
作法:1.画线段AB=a; 2.在AB的延长线上截取BC=2b; 线段AC就是所求作的线段.
知识模块二 作一个角等于已知角
阅读教材P86,完成下面的内容: 已知:∠AOB. 求作:∠A′O′B′使∠A′O′B′=∠AOB.
作法:1.作射线___O_′_A_′___; 2.以点O为圆心任意长为半径画弧,交__O_A____于点 C,交___O__B____于点D; 3.以点O′为圆心,同样___O_C___长为半径画弧交O′A′ 于点C′;
知识模块三 作已知角的平分线
阅读教材P87,完成下面的内容: 已知:如图,∠AOB,
求作:射线OP,使∠AOP=∠BOP(即OP平分∠AOB).
作法:1.以O为圆心,任意长度为半径画弧,分别交
__O_A_、__O__B_于点M、N; 2.分别以点__M_、__N___为圆心,大于
1 2
__M__N__的长为
半径画弧,P.
射线___O_P______就是所要求作的∠AOB的平分线.
范例 如图,点D在△ABC的AB边上,且∠ACD=∠A.
(1)作∠BDC的平分线DE,交BC 于点E(用尺规作图法,保留作图 痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE 与直线AC的位置关系(不要求证 明). 解:(1)如图所示. (2)DE∥AC.
八年级数学上册13.4三角形的尺规作图“基本作图”和“代数作图法的基本作图”素材冀教版(new)

“基本作图”和“代数作图法的基本作图”根据作图公法用尺规直接完成的简单、常用的作图,叫做基本作图。
它是较复杂作图题的基础。
到底把哪些作图作为基本作图,没有严格、统一的规定,一般有以下六个,即:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作已知线段的垂直平分线;(6)过已知直线外一点,作直线的平行线。
有的书还把已知两边夹角、两角夹边、三边作三角形也作为基本作图题.基本作图题是相对于一般作图题而言的。
解一般作图题时,往往需要归结为若干个基本作图,这时,对上述基本作图,只要用一话叙述一下即可,而它的作图过程可以省略不写,这样就能简化一般作图过程。
“基本作图”是一般教科书里都要提到的概念,“代数作图法的基本作图”在有些几何教材中则不大常见,但其内容则是存在的。
有不少作图题的已知条件是线段a,b,c,…,求作的图形是一条线段x,它要满足如下关系式中之一:(1)x=a+b;(2)x=a-b(a>b);(3)x=ma(m为一正整数);(4))(1为正整数m a••m (5)x c b a =,abc x =; (6);,ab ••x b x x a == (7);22b a x +=(8));(22b a ••b a x >-=从以上八个等式可以看出,这一类作图题的共同特点是:每个作图题的求作图形都是一条线段,而这些线段都可以用已知线段的代数式来表达。
解这类作图题的方法叫代数作图法,而上面的八个作图是代数作图中最简单的,也是最基本的,所以叫做代数作图法的基本作图。
“基本作图”与“代数作图法的基本作图”都是基本作图,是一般作图的基础。
他们的区别是,前者与代数式无关,后者是通过代数表达式表示出所求的线段与已知线段的关系。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
尺规作图说课稿

《13.4尺规作图-作已知角的平分线》说课稿大家好!我是xx,今天我说课的内容是华师版八年级上册第十三章13.4尺规作图的第三节内容《作已知角的平分线》。
下面我分别从教材分析、学情分析、教学方法和教学过程设计四个方面来阐述我所备的这节课:一、教材分析。
(一)教材的地位和作用:本节课是华师版八年级上册第13章尺规作图中的一节课。
作已知角的平分线是在学习了作一个角等于已知角的前提下,为后面学习《13.5.3角平分线》做铺垫。
在本章教材的编排顺序中起着承上启下的作用。
本节课重在发展学生的空间观念,培养学生的动手操作能力,养成研究生学习的好习惯,为以后利用作辅助线的解几何题的学习打下基础。
(二)教学目标:1、掌握作已知角的平分线的方法及步骤; 2、规范作图语言叙述,能通过逻辑推理验证所作图形是角平分线; 3、通过画图,培养学生的作图能力及动手能力,体会数学作图语言和图形的和谐统一。
(三)教学重难点:教学重点:规范使用尺规,掌握作已知角的平分线的方法及步骤。
教学难点:能用恰当的数学语言表述作图过程。
二、学情分析:学生学习本课前已经有一定的动手操作和口头表达能力。
在知识掌握上,学生已经学习了,尺规作图的两种基本作图,积累了一定的尺规作图的学习经验,而且对本堂课所涉及的角平分线,全等的证明,前面已经有了较为感性的认识,这位本节课学习打下了良好的基础。
但学习尺规作图-作已知角的平分线,需要较强的动手操作能力,推理论证的能力,以及对作图语言的规范叙述。
要求学生从感性的认识迁移至理性的分析,在实践中学习知识和应用知识。
三、教学方法:根据教材分析和目标分析,贯彻新课程改革下的教学方法,结合信息技术,确定本课的主要教法为:学生在多媒体演示导学下,自主探究,合作交流,勤于参与,在教师的点拨下完成课堂学习目标。
四:教学过程设计:1、复习引入:首先通过提问角平分线的定义和利用角平分线的定义应用填空为本节课作知识铺垫;其次通过复习角平分线轴对称的特性,引导学生从理性上升到空间观念,引导学生思考通过折叠、测量等方法作出角的一半;从而引出本节课的内容,用尺规作图的方式作出角的平分线。
角平分线的题设和结论

角平分线的题设和结论角平分线是指将一个角的两条边平分的直线,也就是将一个角分成两个相等的角的直线。
它在几何学中有着重要的应用和意义,是许多定理的基础。
在三角形中,角平分线分为内角平分线和外角平分线。
内角平分线是指从一个角的顶点出发,将这个角的对边分成两个相等的线段的直线。
外角平分线则是指从一个三角形的一个角的外部出发,将相邻两个内角的非公共边分成两个相等的线段的直线。
在研究角平分线时,我们需要掌握一些基本的定理和结论。
下面是一些常见的定理和结论:1. 内角平分线定理:三角形中,从一个角的顶点出发,将这个角的对边分成两个相等的线段的直线称为这个角的内角平分线。
内角平分线定理指出,一条内角平分线将这个角所对的边分成两条比例相等的线段。
2. 角平分线定理:在一个三角形中,如果一条直线既是一个角的内角平分线,又是另一个角的内角平分线,那么这条直线将这个三角形分成两个面积相等的三角形。
3. 外角平分线定理:在一个三角形中,如果一条直线是一个角的外角平分线,那么这条直线所对的另一个内角等于这个三角形另外两个内角之和。
4. 角平分线定理(外部):在一个三角形中,如果一条直线既是一个内角的外部平分线,又是另一个内角的外部平分线,那么这条直线将这个三角形分成两个面积比例相等的三角形。
5. 角平分线定理(相似三角形):在两个相似三角形中,它们对应的顶点所对应的两个内角所对应的边上的点连成一条直线,这条直线就是它们所对应内角的平分线。
除了以上定理和结论之外,还有一些与角平分线相关的重要定理和结论,如垂心定理、欧拉定理等等。
这些定理和结论在几何学中有着广泛的应用和意义。
总之,掌握好角平分线相关的知识对于我们学习几何学和解决几何问题都有着重要的帮助。
【数学课件】2018年八年级数学上13.4尺规作图3作已知角的平分线导学新版华东师大版
13.4 尺规作图
目标突破
目标一 会作已知角的平分线
例 1 教材补充例题 如图 13-4-5 所示, 作出△ABC 三个内 角的平分线,并观察你作出的图形,有什么新的发条内角平分线相交于同一点.
13.4 尺规作图
【归纳总结】(1)作已知角的平分线是根据“三边对应相等的两个三
图 13-4-6
13.4 尺规作图
【解析】 先作∠A的平分线AE,以B为顶点作∠ABD=∠EAB,则 ∠ABD即为所求.
解:如图所示,∠ABD 即为所求.
13.4 尺规作图
【归纳总结】 作一个角等于已知角属于定量作图,而作角的平
分线则属于定位作图.在综合作图题中,有时既需要定量,又需
要定位,需认真分析,找到解决办法.
题的关键是作图,在正确作图的基础上进行相关的计算或证明.
13.4 尺规作图
总结反思
小结
知识点 作已知角的平分线
作法如下:
已知:∠AOB,如图13-4-8①所示.
求作:射线OC,使OC平分∠AOB. 图13-4-8
OD 作法:1.在射线OA,OB上,分别截取OD,OE,使________ = OE ________ ;
第13章 全等三角形
13. 4 尺规作图 3.作已知角的平分线
第13章 全等三角形
3. 作已知角的平分线
知识目标
目标突破
总结反思
13.4 尺规作图
知识目标
1.经过操作、思考、讨论,归纳总结用尺规作图作已知角的 平分线的方法及其依据. 2.在理解用尺规作已知角的平分线的基础上,能够解决一些 与角平分线有关的尺规作图问题.
角形全等”和“全等三角形的对应角相等”的原理来解决的. (2)在作图步骤的第二步一定要注意是以大于某条线段长度的为半 径作圆弧,否则两弧没有交点或两弧交点不明显. (3)通过作图了解三角形三个内角的平分线相交于一点.
13.4 尺规作图 华东师大版数学八年级上册素养提升练(含解析)
第13章 全等三角形13.4 尺规作图基础过关全练知识点1 作一条线段等于已知线段1.(2023山东临清期中)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是( )①作射线AM;②在射线AM上顺次截取AD,DB,使AD=DB=a;③在线段AB上截取BC=b.A.2a+bB.2a-bC.a+bD.b-a知识点2 作一个角等于已知角2.如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是( )A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧3.(2023北京东城期末)已知∠AOB.下面是“作一个角等于已知角,即作∠A'O'B'=∠AOB”的尺规作图痕迹.该尺规作图的依据是( )A.S.A.S.B.S.S.S.C.A.A.S.D.A.S.A.4.【一题多解】【新独家原创】如图,D是△ABC的边BA延长线上一点,AB=BC,∠B=40°,结合作图痕迹,求证:AC平分∠BAE.知识点3 作已知角的平分线5.【尺规作图】【新考法】(2023吉林长春四十五中期末(线上))如图,已知AB=AC,BC=6,由尺规作图痕迹可得BD=( )A.2B.3C.4D.56.【易错题】(2023山东烟台期中)用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再分别以E,F为圆心,以EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不一大于12定正确的是( )A.AF=DFB.∠BAD=∠CADC.∠AFD=∠AEDD.DE=DF7.(2022吉林长春吉大附中期中)如图,在△ABC中,∠A=50°,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为 .知识点4 经过一已知点作已知直线的垂线8.(2023辽宁大连甘井子期中)已知钝角△ABC,用直尺和圆规作边BC 上的高.(不写作法,保留作图痕迹)知识点5 作已知线段的垂直平分线9.根据图中尺规作图的痕迹,可判断AD一定为三角形ABC的( )A.角平分线B.中线C.高线D.都有可能10.(2022四川三台期中)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA长为半径画弧①;步骤2:以B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连结AD,交BC的延长线于点H.下列叙述正确的是( )A.AB=ADB.BH⊥ADC.S△ABC=BC·AHD.AC平分∠BAD11.【教材变式·P90T2】如图,在Rt△ABC中,∠C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.①作出线段AB的垂直平分线MN,MN与AB交于点D,与BC交于点E;②连结AE,过点B作BF垂直于AE,垂足为F;(2)推理证明:求证:AC=BF.能力提升全练12.(2021四川广元中考,6,★☆☆)观察下列作图痕迹,线段CD为△ABC的角平分线的是( )A BC D13.(2022海南中考,10,★★☆)如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆MN的长为半径画弧,两弧在∠ABC的内部相交于点P,画射心,大于12线BP,交AC于点D,若AD=BD,则∠A的度数是( )A.36°B.54°C.72°D.108°14.(2022山西平定期中,18,★☆☆)如图,已知等腰△ABC的顶角∠A=36°.(1)根据要求用尺规作图:作∠ABC的平分线交AC于点D;(不写作法,只保留作图痕迹)(2)在(1)的条件下,求证:△BDC是等腰三角形.15.【新考法】(2022广西贵港中考,20,★★☆)尺规作图(保留作图痕迹,不要求写出作法).如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.素养探究全练16.【推理能力】数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角的平分线,作法如下(如图1):①在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交②分别以D、E为圆心,大于12于点C.③作射线OC,则OC就是∠AOB的平分线.小聪只带了直角三角板,他发现利用三角板也可以作角的平分线,作法如下(如图2):①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角的平分线.图1 图2根据以上情境,解决下列问题:(1)李老师用尺规作角的平分线时,用到的三角形全等的判定方法是 ;(2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)答案全解全析基础过关全练1.B 如图,AC=AB-BC=AD+BD-BC=2a-b.故选B.2.D 3.B 由作图得DO=D'O'=CO=C'O',CD=C'D',在△DOC和△D'O'C'中,DO=D'O', CO=C'O', CD=C'D',∴△DOC≌△D'O'C'(S.S.S.),∴∠O'=∠O.故选B.4.证明 证法一:根据作图痕迹可知∠DAE=∠B.∵∠B=40°,∴∠DAE=40°.∵AB=BC,∴∠BAC=∠C,∴∠BAC=180°-∠B2=180°-40°2=70°,∴∠CAE=180°-∠BAC-∠DAE=180°-70°-40°=70°,∴∠BAC=∠CAE,∴AC平分∠BAE.证法二:根据作图痕迹可知∠DAE=∠B,∴AE∥BC,∴∠EAC=∠C,∵AB=BC,∴∠BAC=∠C,∴∠BAC=∠CAE,∴AC平分∠BAE.5.B 本题将尺规作图与等腰三角形的三线合一的性质结合起来考查.由尺规作图痕迹可知AD平分∠BAC,∵AB=AC,BC=6,∴BD=CD=3,故选B.6.A 解答此题时易因不理解基本的尺规作图步骤导致判断错误.由作图可得AF=AE,FD=DE,在△AFD 和△AED 中,AF =AE ,AD =AD ,FD =DE ,∴△AFD ≌△AED(S.S.S.),∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D 中的结论正确,不合题意;无法得出AF=DF,故选项A 中的结论不一定正确,符合题意.故选A.7.答案 65°解析 ∵∠A=50°,∠B=80°,且∠ACD 是△ABC 的外角,∴∠ACD=∠A+∠B=50°+80°=130°,观察题图中尺规作图的痕迹,可得CE 平分∠ACD,∴∠DCE=12∠ACD=12×130°=65°.8.解析 如图,AD 即为所作.9.B 由作图可知,D 是线段BC 的中点,故AD 是△ABC 的中线,故选B.10.B 由作图可知,直线BC 是线段AD 的垂直平分线,所以BH ⊥AD,故选B.11.解析 (1)①②如图所示:(2)证明:∵直线MN 是线段AB 的垂直平分线,∴AD=BD,∠ADE=∠BDE=90°,在△ADE 和△BDE 中,AD =BD ,∠ADE =∠BDE ,ED =ED ,∴△ADE ≌△BDE(S.A.S.),∴EA=EB,∵BF ⊥AE,∴∠BFE=90°=∠C,在△ACE 和△BFE 中,∠C =∠BFE ,∠AEC =∠BEF ,AE =BE ,∴△ACE ≌△BFE(A.A.S.),∴AC=BF.能力提升全练12.C A 、D 选项中的线段CD 为△ABC 的高,B 选项中的线段CD 为△ABC 的中线,C 选项中的线段CD 为△ABC 的角平分线.故选C.13.A 由题意可得射线BP 为∠ABC 的平分线,∴∠ABD=∠CBD,∵AD=BD,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∴∠ABC=2∠A,∵AB=AC,∴∠ABC=∠C=2∠A,∴∠A+∠ABC+∠C=∠A+2∠A+2∠A=180°,解得∠A=36°.故选A.14.解析 (1)如图所示,BD即为所求.(2)证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°-36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°,∴∠CDB=180°-36°-72°=72°,∴∠C=∠CDB,∴BD=BC,∴△BDC是等腰三角形.15.解析 如图所示,△ABC即为所求.注: (1)作直线l及l上一点A;(2)过点A作l的垂线AD;(3)在l上截取AB=m;(4)作BC=n交l的垂线于C.△ABC即为所作.素养探究全练16.解析 (1)S.S.S..(2)小聪的作法正确.理由如下:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,OP=OP, OM=ON,∴Rt△OMP≌Rt△ONP,∴∠MOP=∠NOP,∴OP平分∠AOB.(3)步骤:①利用刻度尺在OA、OB上分别截取OG、OH,使OG=OH.②连结GH,利用刻度尺作出GH的中点Q.③作射线OQ,则OQ就是∠AOB的平分线.如图所示.。
角平分线三个定理-概述说明以及解释
角平分线三个定理-概述说明以及解释1.引言1.1 概述角平分线三个定理是解决与角度相关的几何问题时,非常重要且常用的定理。
它们分别应用于角的平分线问题,帮助我们更深入地理解角的性质与构造。
这三个定理不仅在数学学科中有广泛的应用,而且在实际生活中也具有重要的意义。
在解释这三个定理之前,我们先回顾一下角的基本概念。
在几何学中,角是由两条线段或射线共享一个公共端点而形成的图形。
以公共端点为中心,可以将角分为两个部分,分别称为角的两个腿。
角的大小通常用度或弧度来表示,这取决于所用的单位。
第一个定理是角的平分线定理,它指出:如果一条直线将一个角平分成两个相等的角,那么这条直线称为这个角的平分线。
换句话说,平分线将角分为两个相等的部分。
这个定理有广泛的应用,例如在三角形中,利用角平分线定理可以证明角的大小相等,从而推导出三角形的一些特殊性质。
第二个定理是外角平分线定理,它指出:如果一条直线通过一个三角形的外角的顶点,并将外角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的外角平分线。
这个定理在解决外角问题时非常有用,它保证了外角平分线的存在性,并简化了我们分析与推导相关问题的步骤。
第三个定理是内角平分线定理,它指出:如果一条直线通过一个三角形的内角的顶点,并将内角的两个邻角平分成两个相等的角,那么这条直线称为该三角形的内角平分线。
这个定理与外角平分线定理类似,但是涉及的是三角形的内角。
利用内角平分线定理,我们可以简化三角形内角相关问题的分析过程。
角平分线三个定理在几何学中占据着重要的地位,是研究角度关系和解决几何问题的基础。
它们不仅具有理论意义,还具有广泛的应用价值。
通过深入理解和熟练运用这三个定理,我们能够提高问题解决的效率,并在实际生活中更好地应用几何知识。
1.2文章结构文章结构:本文主要介绍了角平分线的三个定理,分为引言、正文和结论三个部分。
引言部分首先概述了角平分线的意义和应用,以及本文的目的。
13.4 尺规作图知识考点梳理(13.4.1~13.4.3) 华东师大版数学八年级上册知识课件
适当长(大于线段 DE 长的一半)为 图
半径作圆弧,在∠AOB 内,两弧交于 步
点 C; 骤
第三步:作射线 OC.射线 OC 就是所要
求作的∠AOB 的平分线
返回目录
13.4.1~13.4.3
返回目录
考
续表
点 清
尺规作图时两弧的交点应在角的内部,因为要作的
单 解
是角的平分线
读 注意 尺规作图作一个角的平分线的理论依据是“S.S.S.”
的线段,如图所示.
13.4.1~13.4.3
考 ■考点二 作一个角等于已知角
点
清
已知:∠AOB,如图.
单 解
作一
求作:∠A′O′B′=∠AOB
读 个角
作法
等于 (1)画射线 O′A′
已知
角的 (2)以点 O 为圆心,以任意
方法 长为半径画弧,交 OA 于点 C,
交 OB 于点 D
返回目录
图示
13.4.1~13.4.3
的平
单 解
分线.
读 [答案]解:如图,∠AOB 即为所求作的角∠β,OE 为
∠β 的平分线.
13.4.1~13.4.3
返回目录
重 ■题型 尺规作图的应用
难 题
例 如图,已知线段 a,b(a>b),求作等腰三角形
型 突
,使其底边长为
a-b,两腰长分别为
a.
破
13.4.1~13.4.3
返回目录
重 [解析]先作线段 AB=a,再截取 AC=b,然后分别以点
角的平分线是一条射线,三角形的内角平分线是一 条线段
13.4.1~13.4.3
返回目录
考
对点典例剖析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么OC是∠AOB角平分线呢?
已知:OD=OE,DC=EC. 求证:OC平分∠AOB. 证明:连接CD,CE 在△ODC和△OEC中 OD=OE, DC=EC, OC=OC, ∴ △ODC≌ △OEC(SSS) ∴∠AOC=∠BOC 即:OC平分∠AOB
B C
O
A
基础练习:
• 作一个角等于已知角的补角,并作出其补角 的平分线。 • 解:已知∠AOB • 求作:∠AOB的补角,并平分这个补角。 • 作法:(1)反向延长射线OB,则∠AOC与 ∠AOB互补。 • (2)以O为圆心,任意长为半径画弧,交 OC、OA于E、F两点。 1 • (3)分别以E、F为圆心,大于 2 EF的长为 半径画弧,两弧交于点D; • (4)作射线OD,射线OD即为∠AOB的补角 ∠AOC的平分线。
规律总结
• 应先画草图,再写已知、求作。分 析可得已知角与其邻补角互补,因 此只需反向延长射线OB,即得已 知角的补角。
提升训练:
尺规作图(不写作法,保留作图痕迹). 已知:∠AOB, 求作:∠AOB的四等分线 (把∠AOB 分成四个相等的角)
A
O
B
思 考:
求作: 平角∠AOB的角平分线OC.
A
O
B
小结:
本节课学习了作已知角的平分 线的作法及步骤。我们利用了逻辑 推理,证明了我们做的是正确的。 然而我们要掌握这种方法还要多练 习,注意的是:(1)要用铅笔作图; (2)作图过程中保留作图痕迹, 不能擦掉。
作业:
1、作∠O的平分线OC.
O
2、已知∠A,求作∠B=
1 2Leabharlann ∠AA复习: 1、什么叫做尺规作图? (限定用无刻度的直尺和圆规来画 图,称为尺规作图) 2、如何作一个角等于已知角呢?
尺规作图
角平分线的尺规作法: 已知:∠ AOB. 求作:射线OC,使OC平分∠ AOB. 作法: 1、在射线OA、OB上,分别截取 OD、OE,使OD=OE; B 2、分别以点D、E为圆心, C 1 以大于 2 DE长为半径作 圆弧,在∠AOB内,两弧 O A 交于点C; 3、作射线OC. 则射线OC就是所要求作的∠AOB的平分线.