圆的切线判定与性质课件

合集下载

圆的切线的性质及判定定理完整版课件

圆的切线的性质及判定定理完整版课件

证明:连接OD. ∵BD=CD,OA=OB,
∴OD是△ABC的中位线,
C
∴OD//AC.
又∵∠DEC=90º ∴∠ODE=90º 又∵D在圆周上,
∴DE是⊙O是切线..
E D
B
A
O
例2 如图. AB为⊙O的直径,C为⊙O上一点,AD和 过C点的切线互相垂直,垂足为D.
求证:AC平分∠DAB.
证明:连接OC, ∵CD是⊙O的切线,
C
2.已知:OA和OB是⊙O的半径,并且OA⊥OB,P是OA 上任意一点,BP的延长线交⊙O于Q.过Q作⊙O的切 线交OA的延长线于R,.
求证:RP=RQ
B
PA
O
R
Q
∠AQO= ∠APQ
3.AB是⊙O的直径,BC是⊙O的切线,切点为B,OC 平行于弦AD. 求证:DC是⊙O的切线.
C
D
3
1
42
A
∴OC⊥CD.
又∵AD⊥CD, ∴OC//AD.由此得 ∠ACO=∠CAD. ∵OC=OA. ∴ ∠CAO=∠ACO.
D C
A
O
B
∴ ∠CAD=∠CAO. 故AC平分∠DAB.
习题2.3
1.如图,△ABC为等腰三角形,O是底边BC的中点, ⊙O与腰AB相切于点D.
求证:AC与⊙O相切.
A
E D
B
O
推论2: 经过切点且垂直于切线的直线必经过圆心.
思考: 切线的性质定理逆命题是否成立?
切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.
在直线上任取异于A的点B.
l
A
B
连OB.
则在Rt△ABO中
OB>OA=r

圆的切线的性质及判定定理 课件

圆的切线的性质及判定定理 课件

【典例训练】
1.在Rt△ABC中,∠C=90°,AC=3 cB的关系为( )
(A)相切
(B)相离
(C)相交
(D)无法判断
2.如图所示,CB为⊙O的直径,P是CB的延
长线上一点,且OB=BP,∠AOC=120°,
则PA与⊙O的位置关系是_____.
圆的切线的性质
圆的切线的性质 (1)已知一条直线是圆的切线时,常作出过切点的半径,则该半 径垂直于切线,从而出现了直角. (2)从圆外一点引圆的两条切线,这点与圆心的连线平分这两条 切线的夹角,这点到切点的切线长相等. (3)连接圆的两条平行切线的切点的线段是圆的直径.
【典例训练】 1.如图所示,DB,DC是⊙O的两条切线,A是圆上一点,已知 ∠D=46°,则∠A=_____.
DO AD
AD
2.如图,已知EB是半圆O的直径,A是BE延长线上的一点,AC是 半圆O的切线,D为切点,BC⊥AC于C,若BC=6,AC=8,则 AE=_______.
【解析】1.如图所示,连接OB,OC,
则OB⊥BD,OC⊥CD,
则∠DBO+∠DCO=90°+90°=180°,
则四边形OBDC内接于一个圆,
则有∠BOC=180°-∠D=180°-46°=134°,
【解析】连接OC,∵OA=OB,AC=CB,OC=OC, ∴△OAC≌△OBC, ∴∠OCA=∠OCB=90°, ∴直线AB与⊙O相切. 答案:相切
1.圆的切线的其他相关性质 (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)过圆心且过切点的直线与过该点的切线垂直.
2.切线的判定定理 在切线的判定定理中要分清定理的题设和结论,“经过半径外 端”和“垂直于这条半径”这两个条件缺一不可,否则就不是 圆的切线,如图①②中的例子就不同时满足这两个条件,所以 都不是圆的切线.

人教版版九年级上册教材24. 圆的切线的性质和判定定理课件

人教版版九年级上册教材24. 圆的切线的性质和判定定理课件

证明:连接OC, ∵CD是⊙O的切线,
∴OC⊥CD. 又∵AD⊥CD,
∴OC//AD. 由此得 ∠ACO=∠CAD.
D C
∵OC=OA.
∴ ∠CAO=∠ACO.
A
O
B
∴ ∠CAD=∠CAO.
故AC平分∠DAB.
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
24.2.2 圆的切线的性质和 判定定理
O
r
l
A MB
l
.O
回顾:
直线与圆的
位置关系
相交
相切
相离
图形
公共点个数 公共点名称 直线名称 圆心到直线距
离d与半径r的
关系
Or
d
l
A
B
2个 交点
割线
d<r
Or d
l A
1个 切点 切线
d= r
Or d
l
没有
d> r
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
AM O
反证法
证明:假设l与OA不垂直,
作OM⊥ l于M 因“垂线段最短”, 故OA>OM, 即圆心到直线的距离小于半径. 这与“直线l是圆O的切线”矛盾. 故直线l与圆O一定垂直.
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
切线的性质定理:圆的切 线垂直于过切点的半径。
O
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
人教版版九年级上册教材24. 圆的切线的性质和判定定理课件
如图,AB、AC分别切⊙O于B、C,若
∠A=600,点P是圆上异于B、C的一动点,

《切线的判定》课件

《切线的判定》课件

在求解切点弦问题中的应用
切点弦方程
通过切点可以求出过该点的弦的方程,进而求出弦长或与弦 有关的量。
切点弦与切线的关系
利用切点弦与切线的关系,可以求解与切点弦有关的问题。
04 切线定理的证明
切线的判定定理的证明
切线的判定定理
如果一条直线与圆只有一个交点,则 这条直线是圆的切线。
证明方法
反证法。假设直线与圆有两个交点, 则直线与圆相交而非相切,与题目条 件矛盾。
利用切线的性质判定
切线的性质
切线与半径垂直,因此可以利用 这一性质判定切线。
判定方法
若直线与圆的半径垂直,则该直 线为圆的切线。
利用辅助线判定
辅助线的作法
在圆上任取一点,连接这点与圆心, 将连线与待判断的直线相交于一点, 然后过该点作直线的垂线,与圆相交 于另一点,连接圆心与该点。
判定方法
若所作的辅助线与待判断的直线重合 ,则该直线为圆的切线。
切线的判定定理
若直线与圆有交点,且连接交点和圆心的线段垂直于交点所连的直线,则该直线为圆的 切线。
证明过程
利用反证法,假设直线不是切线,则它与圆有两个交点,形成两个弦,由垂径定理可知 ,过圆心作弦的垂线,则这条垂线平分弦,但由题意知这条垂线同时也是连接圆心和切
点的线段,因此弦也被这条线平分,这与题意矛盾,因此假设不成立,直线为切线。
在三角函数中,切线定理可以用来求 解三角函数的值,或者用来证明某个 三角函数表达式等于零。
切线定理也可以用来求解三角函数的 单调性、周期性和最值等问题。
感谢您的观看
THANKS
如果一条直线与圆相交于两点,且 这两点与圆心构成的角平分线与该 直线垂直,则该直线是圆的切线。
切线定理在解析几何中的应用

圆的切线课件

圆的切线课件

通过圆上一点作切线
总结词
通过圆上一点作切线需要利用半径垂直于切线的性质。
详细描述
选取圆上任意一点,然后通过这一点作一条直线与圆相切,即为切线。这种方法 需要利用圆的性质,即半径垂直于切线。
通过圆外一点作切线
总结词
通过圆外一点作切线需要利用垂径定 理和切线的性质。
详细描述
选取圆外任意一点,然后通过这一点 作一条直线与圆相切,即为切线。这 种方法需要利用垂径定理和切线的性 质,即半径与切线垂直且半径长度等 于圆心到切点的距离。
判定方法三
利用圆的性质,通过观察 圆心到直线的距离是否等 于半径来判断是否为切线 。
02 圆的切线的性质定理
切线与半径垂直
切线与经过切点的半径垂直, 这是切线的基本性质。
在几何学中,这一性质用于证 明切线的其他性质和定理。
在实际应用中,这一性质可用 于确定某直线是否为圆的切线 。
切线长定理
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。 这一性质在几何作图和证明中非常有用,特别是在解决与圆和切线相关的问题时。
05 圆的切线的相关定理和推论
切线与半径之间的夹角定理
总结词
切线与半径之间的夹角定理描述了切线与半径之间的角度关系。
详细描述
切线与半径之间的夹角是直角,即切线与半径垂直。这个定理是圆的基本性质之一,是证明其他切线定理的基础 。
切线长定理的推论
总结词
切线长定理的推论给出了切线长度与半径之间的关系。
圆的切线ppt课件
目录
Contents
• 圆的切线的基本概念 • 圆的切线的性质定理 • 圆的切线的应用 • 圆的切线的作法 • 圆的切线的相关定理和推论
01 圆的切线的基本概念

《切线的性质和判定》PPT课件

《切线的性质和判定》PPT课件
常添辅助线
连接圆心和切点
垂直于
切点
圆心
惟一
半径
垂直于
┃考点聚焦
考点2 切线长及切线长定理
切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长
切线长定理
从圆外一点引圆的两条切线,它们的切线长________,圆心和这一点的连线________两条切线的夹角
基本图形
如图所示,点P是⊙O外一点,PA、PB切⊙O于点A、B,AB交PO于点C,则有如下结论:(1)PA=PB;(2)∠APO=∠BPO=∠OAC=∠OBC,∠AOP=∠BOP=∠CAP=∠CBP
切线的性质和判定
- .
考点1 圆的切线
切线的性质
圆的切线________过切点的半径
推论
(1)经过圆心且垂直于切线的直线必过________;(2)经过切点且垂直于切线的直线必过________
切线的判定
(1)和圆有________公共点的直线是圆的切线;(2)如果圆心到一条直线的距离等于圆的________,那么这条直线是圆的切线;(3)经过半径的外端并且________这条半径的直线是圆的切线
探究一、圆的切线的性质
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用圆心到一条直线的距离等于圆的半径,判定这条直线是圆的切线;2.利用一条直线经过半径的外端,且垂直于这条半径,判定这条直线是圆的切线.
探究二、圆的切线的判定方法
┃归类探究
┃归类探究
┃归类探究
┃归类探究
命题角度:1.利用切线长定理计算;2.利用切线长定理证明.
相等
平分
┃考点聚焦
考点3 三角形的内切圆

圆的切线的性质和判定定理省名师优质课赛课获奖课件市赛课一等奖课件


切线旳鉴定定理 过半径外端且与这条 半径垂直旳直线是圆旳切线
切线旳性质定理 圆旳切线垂直于经过 切点旳半径
例1、如图,已知P为⊙O外一点,以PO 为直径作⊙M,⊙M与⊙O交于点A、B, 求证:PA、PB是⊙O旳切线
A
O
··
·
M
P
B
例2、如图,从圆外一点P引⊙O旳两条 切线PA、PB,点A、B为切点。
圆旳切线旳性质和鉴定定理
直线与圆旳位置关系有几种?
当直线与圆有两个公共点时,直线与圆
相交 当直线与圆有且只有一种公共点时,直
线与圆相切 当直线与圆没有公共点时,直线与圆相

判断直线与圆旳位置关系有哪些措施?
设⊙O旳半径为r,直线l与圆心O旳距离
为d
d>r 直线与圆相离
d=r d<r
直线与圆相切 直线与圆相交
求证:(1)PO平分∠APB
(2)PO垂直平分线段AB
※结论能够直接用
A
O
P
·
B 切线长定理 从圆外一点引圆旳两条
切线,切线长相等
例3、如图,⊙O和⊙O′外切于点P,一 条外公切线切两圆于点A、B,求证:∠APB =90°
A B
Q
O
·O
·P

从一点向一条直线作垂线,垂足就称为
这点在这条直线上旳射影
CD2=AD·BD
A
DB
例4、试用直角三角形射影定理证明勾股 定理
已知:如图,Rt△ABC中, ∠C=90° 求证:AC2+BC2=AB2
C
A
D
B
例5、如图,Rt△ABC中, ∠C=90°, AC>BC,CD⊥AB于点D,若CD=4,AB=10, 求AC及BC

《两圆的公切线》课件


CHAPTER 02
两圆公切线的求法
切线的定义与判定
切线的定义
切线与圆只有一个交点,即切点。
判定方法
利用切线和半径垂直的性质,通过圆心到直线的距离为0来判断直线是否为圆的 切线。
切线的性质定理
切线与半径垂直
切线与过切点的半径垂直。
切线与过切点的直径垂直
若切线与过切点的直径垂直,则切线与半径也垂直。
两圆公切线的分类
内公切线
中间公切线
与两圆都相切且位于两圆内部的直线 。
介于内、外公切线之间的直线,与两 圆都相切。
外公切线
与两圆都相切且位于两圆外部的直线 。
两圆公切线的性质
01
02
03
性质1
两圆公切线与两圆的切点 连线与公切线垂直。
性质2
两圆心到公切线的距离相 等。
性质3
两圆公切线的长度与两圆 心之间的距离成正比。
图形的分类
通过两圆的公切线,可以对某些图 形进行分类和识别。
在实际问题中的应用
机械设计
在机械设计中,两圆的公切线可 以用于确定某些零件的尺寸和位
置。
建筑设计
在建筑设计中,两圆的公切线可 以用于确定窗户、门或其他结构
的位置。Βιβλιοθήκη 物理学应用在物理学中,两圆的公切线可以 用于描述某些物理现象或规律,
例如物体运动轨迹等。
通过两圆的公切线,可以 确定某些未知点的位置。
简化复杂图形
对于一些复杂的几何图形 ,通过引入两圆的公切线 ,可以简化图形,从而更 容易找到解题思路。
在解析几何中的应用
方程的求解
在解析几何中,两圆的公切线可 以用于求解某些方程。
参数的确定
在涉及圆和直线的解析几何问题中 ,两圆的公切线可以帮助确定某些 参数的值。

切线的性质和判定最新课件


段,再证明这条垂线段等于圆旳半径。(作垂直,证半径)
3. 圆旳切线性质定理:圆旳切线垂直于圆旳半径。
辅助线作法:连接圆心与切点可得半径与切线垂直。 即“连半径,得垂直”。
总结:
1.切线和圆只有一种公共点. 2.切线和圆心旳距离等于半径. 3.切线垂直于过切点旳半径. 4.经过圆心垂直于切线旳直线必过切点. 5.经过切点垂直于切线旳直线必过圆心.
∴AC与⊙O相切
课堂小结
1. 鉴定切线旳措施有哪些?
与圆有唯一公共点
l是圆旳切线
直线l 与圆心旳距离等于圆旳半径 经过半径外端且垂直这条半径
l是圆旳切线 l是圆旳切线
2. 常用旳添辅助线措施?
⑴直线与圆旳公共点已知时,作出过公共点旳半径,
再证半径垂直于该直线。(连半径,证垂直)
⑵直线与圆旳公共点不拟定时,过圆心作直线旳垂线
A
O
E C
小结
例1与例2旳证法有何不同?
O A
D
B
O
A
C
B
E C
(1)假如已知直线经过圆上一点,则连结这点和圆 心,得到辅助半径,再证所作半径与这直线垂直。简 记为:连半径,证垂直。
(2)假如已知条件中不知直线与圆是否有公共点, 则过圆心作直线旳垂线段为辅助线,再证垂线段长 等于半径长。简记为:作垂直,证半径。
∵ AB为直径
A
∴ OB=OA, ∵BP=PC, ∴OP∥AC。
O
E B PC
又∵ PE⊥AC,
∴PE⊥OP。
∴PE为⊙0旳切线。
例2:已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为
半径作⊙O。 求证:⊙O与AC相切。
D
B

切线的判定和性质定理_课件


提示:连接AO,DO,作 OE⊥AC 于点E.
E
总结:看到切线,就要连接切点和圆心,利用切线性质.
AB 是 ⊙O 的直径,AE 平分∠BAC 交 ⊙O 于点E,过点 E 作⊙O 的切线交AC 于点D,试判断△AED 的形状,并说明理 由提.示:连接OE.
答案:△AED是直角三角形. 总结:看到切线,就要连接切点和圆心,利用切线性质.
判断一条直线是圆的切线,你现在会有多少种方法? 有以下三种方法: 1.定义法:和圆有且只有一个公共点的直线是圆的切线. 2.数量法(d=r):圆心到直线的距离等于半径的直线是圆 的切线. 3.判定定理:经过半径外端且垂直于这条半径的直线是圆的 切线.
生活中的切线
1.当你在下雨天快速转
2.砂轮打磨零件时
知识回顾 直线和圆的位置关系
相交
图形
公共点个数 公共点名称 直线名称 距离d与半径r的关系
2个 交点 割线 d<r
相切
相离
1个 切点 切线 d=r
0个 —— —— d>r
思考
如图,在 ⊙O 中,经过半径 OA 的外端点 A 作直线 l⊥OA, 则圆心 O 到直线 l 的距离是多少?直线 l 和 ⊙O 有什么位置关 系?
圆的切线垂直于过切点的半径.
切线的性质定理 圆的切线垂直于过切点的半径.
几何表述: ∵ l 与 ⊙O 相切于点 A ∴ OA⊥l
切线的性质定理的证明
证明切线性质定理需要用到反证法:
假设OA与 l 不垂直,
过点O 作OM⊥l,垂足为M.
M
根据垂线段最短的性质,有OM<OA,
这说明圆心 O 到直线l的距离小于半径OA.
提示:连接OD,证明三角形全等.
补充题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O .
l
A B
二、 切线的性质:圆的切线垂直于经 过切点的半径.
∵直线l切⊙O于点A, ∴OA⊥l
判 断
1. 过半径的外端的直线是圆的切线( × ) 2. 与半径垂直的的直线是圆的切线( × ) 3. 过半径的端点与半径垂直的直线是圆的切线( × )
O l O O l A A r A
r
r
l
利用判定定理时,要注意直线须具备以 下两个条件,缺一不可: (1)直线经过半径的外端; (2)直线与这半径垂直。
圆的切线的性质及 判定定理
复习
1.直线和圆有哪些位置关系?
2.什么叫直线与圆相切?如何识别?
我们知道,直线与圆有相交、相切、相离三种位置关 系,这是从直线与圆的公共点个数刻画的. (1)直线与圆有两个公共点,称直线与圆相交;(d<r) (2)直线与圆只有一个公共点,称直线与圆相切;(d=r) (3)直线与圆没有公共点,称直线与圆相离.(d>r) 本节专门讨论直线与圆相切的情形.
2.如图所示,两个同心圆的圆心O,大 圆的弦AB是小圆的切线,切点为C. 求证:C是AB的中点.
O
A
C
B
课堂小结
1. 判定切线的方法有哪些? 直线l 与圆有唯一公共点 与圆心的距离等于圆的半径 经过半径外端且垂直这条半径 l是圆的切线 l是圆的切线 l是圆的切线
2. 常用的添辅助线方法? ⑴直线与圆的公共点已知时,作出过公共点的半径, 再证半径垂直于该直线。(连半径,证垂直) ⑵直线与圆的公共点不确定时,过圆心作直线的垂 线段,再证明这条垂线段等于圆的半径。(作垂直, 证半径)
.
O
想一想
过圆0内一点作直线,这条直线与圆有怎样的位置关系? 过半径OA上一点(A除外)能作圆O的切线吗?过点A呢?
一、切线的判定定理
切线的判定定理 经过半径的外端并且垂直于这 条半径的直线是圆的切线。 ∵ OA是半径,OA⊥l于A ∴ l是⊙O的切线。
r
O
A
l
几何符号表达:
如图,如果直线l是⊙O的切线,A是切点,那么半径OA与直线l 垂直吗?
求证:直线AB是⊙O的切线。
分析:由于AB过⊙O上的点C,所以连接OC,只要证明 AB⊥OC即可。
O
证明:连结OC(如图)。 ∵ OA=OB,CA=CB, ∴ AB⊥OC(三线合一) ∵ OC是⊙O的半径 ∴ AB是⊙O的切线。
A
C
B
〖例2〗
已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为 B 半径作⊙O。 D 求证:⊙O与AC相切。 O
B
H
(第23题图)
D
C
23.(2012陕西)如图,PA、PB分别与⊙O相切于点A、B,点M 在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长.
23.(2011陕西) 如图,在△ABC中,,⊙O是△ABC外接圆,过点A 作的 切线,交CO的延长线于P点,CP交⊙O于D 求证:AP=AC 若AC=3,求PC的长
A
证明:过O作OE⊥AC于E。 ∵ AO平分∠BAC, OD⊥AB于点D ∴ OE=OD ∵ OD是⊙O的半径 ∴ OE也是半径 ∴ AC是⊙O的切线。
E C
小结
例1与例2的证法有何不同?
D O A
E O B
(1)如果已知直线经过圆上一点,则连结这点和圆 心,得到辅助半径,再证所作半径与这直线垂直。简 记为:有交点,连半径,段为辅助线,再证垂线段长 等于半径长。简记为:无交点,作垂直,证半径。
想一想
判断一条直线是圆的切线,你现在会有多少种方法? 切线判定有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的直线是 圆的切线。 2.利用d与r的关系作判断:当d=r时直线是圆的 切线。 3.利用切线的判定定理:经过半径的外端并且垂 直于这条半径的直线是圆的切线。
〖例1〗
已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。
A
C
B
C
练习1
如图,△AOB中,OA=OB=10,∠AOB=120°,以O为圆心, 5为半径的⊙O与OA、OB相交。 求证:AB是⊙O的切线。 O
A
C
B
练习2
如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, A PE⊥AC于E。 求证:PE是⊙O的切线。 证明:连结OP。 ∵AB=AC,∴∠B=∠C。 ∵OB=OP,∴∠B=∠OPB, ∴∠OBP=∠C。 ∴OP∥AC。 ∵PE⊥AC, ∴∠PEC=90° ∴ ∠OPE=∠PEC=90° ∴PE⊥OP。 ∴PE为⊙0的切线。
O E B P C
练习3
如图AB是⊙O的直径.AE是弦, EF是⊙O的切线,E是切 点,AF⊥EF, 垂足为F,AE平分∠FAB吗?
F
E
A

O
B
A
练习 4
如图CB是⊙O的切线,C是切点,OB交⊙O于D, ∠B= 30°,BD=6cm,求BC
O D B C
当堂检测(比比谁棒)
1.如图,△ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC, 判断直线AD与⊙O的位置关系,并说明理由。
中考赏析
23、(2013陕西)如图,直线l与⊙O相切于 点D,过圆心O作EF∥ l交⊙O于E、F两点,点A是 ⊙O上一点,连接AE、AF,并分别延长交直线 l于 B、C两点, (1)求证:∠ABC+∠ACB= 90° (2)当⊙O得半径R=5,BD=12时,求 tan ACB 的值.
A O
E
F l
相关文档
最新文档