两条直线的位置关系对称问题
人教A版高考总复习一轮数学精品课件 第九章 平面解析几何 第二节 两条直线的位置关系 (2)

3.三种距离
此公式与两点的先后顺序无关
点点距
点线距
线线距
P1(x1,y1),P2(x2,y2)之间的距离 |P1P2|= (x2 -x1 )2 + (y2 -y1 )2
|0 + 0 + |
点P0(x0,y0)到直线
l:Ax+By+C=0的距离
d=
2 + 2
两条平行直线Ax+By+C1=0
式.
2 -1
提示
· = -1,
2 -1
1 +2
2
=
1 +2
·
+ .
2
常用结论
1.两种求直线方程的设法
(1)与直线Ax+By+C=0(A2+B2≠0)垂直的直线可设为Bx-Ay+m=0.
(2)与直线Ax+By+C=0(A2+B2≠0)平行的直线可设为Ax+By+n=0.
2.六种常见的对称点
(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).
(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).
(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为
1
1
l1:y=-2,直线 l2:x=-2,易知 l1⊥l2,满足条件;当
⊥l2,则两直线斜率乘积为-1,即- ×
2
2
a≠0 时,若 l1
=1≠-1,不满足.综上所述,a=0.故选 A.
高一数学两条直线的位置关系人教实验B版 知识精讲

高一数学两条直线的位置关系人教实验B 版【本讲教育信息】一、教学内容:两条直线的位置关系二、学习目标1、掌握两条直线平行与垂直的判断条件,能根据直线的方程判断两条直线的位置关系;2、掌握点到直线的距离公式;掌握对称和三角形的高、中线、角平分线等知识的处理方法。
3、两条直线位置关系的讨论,常常转化为对表示它们的两个二元一次方程的讨论。
注意数形结合思想的应用。
三、知识要点1、直线与直线的位置关系:2、有斜率的两直线l 1:y=k 1x+b 1;l 2:y=k 2x+b 2;有:①l 1∥l 2⇔k 1=k 2且b 1≠b 2; ②l 1⊥l 2⇔k 1·k 2=-1;③l 1与l 2相交⇔ k 1≠k 2 ④l 1与l 2重合⇔k 1=k 2 且b 1=b 2。
3、一般式的直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0有:①l 1∥l 2⇔A 1B 2-A 2B 1=0;B 1C 2-B 2C 1≠0 ②l 1⊥l 2⇔A 1A 2+B 1B 2=0③l 1与l 2相交⇔ A 1B 2-A 2B 1≠0 ④l 1与l 2重合⇔ A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0。
(1)点与直线的位置关系:若点P (x 0,y 0)在直线Ax+By+C=0上,则有Ax 0+By 0+C=0; 若点P (x 0,y 0)不在直线Ax+By+C=0上,则有Ax 0+By 0+C ≠0,此时到直线的距离:2200BA CBy Ax d +++=。
平行直线Ax+By+C 1=0与Ax+By+C 2=0之间的距离为2221BA C C d +-=(2)过直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0交点的直线系方程为: A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0(λ∈R )(除l 2外)。
4、点关于点的对称点(x ,y )关于点(a ,b )的对称点的坐标为(2a -x ,2b -y ) 事实上,点关于点的对称的对称中心恰恰是以这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题。
高二数学两条直线的位置关系试题答案及解析

高二数学两条直线的位置关系试题答案及解析1.已知点A(﹣2,4),B(4,2),直线l:ax﹣y+8﹣a=0,若直线l与直线AB平行,则a= _________.【答案】【解析】两直线平行斜率相等且截距不相等,计算得,答案为.【考点】直线平行的位置关系2.若直线与直线互相垂直,那么的值等于 ( )A.1B.C.D.【答案】D【解析】若直线垂直,则斜率之积为-1,即,故为D.【考点】直线垂直与直线方程.3.(1)推导点到直线的距离公式;(2)已知直线:和:互相平行,求实数的值.【答案】(1)详见解析;(2)或【解析】(1)设点,直线,过点做直线的垂线,垂足为,求出点的坐标,在直线上在取不同于点的一点,用两点间距离可求得,根据直角三角形中勾股定理可求得,即点到直线的距离。
(2)根据两直线平行斜率相等即可求出。
试题解析:(1)(略) 6分(2)∥,,解得1或-3.经检验均符合题意,故1或-3. 12分【考点】1点到线的距离公式;2两直线平行时斜率的关系。
4.若直线与直线平行,则实数( )A.B.C.D.【答案】D【解析】因两直线平行,所以,解得。
故D正确。
【考点】两直线平行。
5.已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(1)(2)直线的方程为,切点坐标为【解析】(1)在点处的切线的斜率,切线的方程为;(2)设切点为,则直线的斜率为,直线的方程为:.又直线过点,,整理,得,,,的斜率,直线的方程为,切点坐标为【考点】直线与曲线相切问题及导数的几何意义点评:求曲线过某一点处的切线时,通常设出切点,利用切点坐标满足直线方程,曲线方程及曲线在切点处的导数值等于切线斜率找到关于切点的关系式即可求得切点6.已知直线的一个法向量为,且经过点,则直线的方程是.【答案】【解析】因为根据题意可知直线的一个法向量为,因此可知垂直于直线l 的直线斜率为,直线l的斜率为其负倒数,即为那么利用点斜式可知直线l的方程为=,变形可知为。
直线方程与两条直线的位置关系

同步训练——直线方程与两条直线的位置关系一、基础知识 (一)、两条直线的位置关系1、当直线方程为111:b x k y l +=、222:b x k y l +=时, 若1l ∥2l ,则2121b b k k ≠=且;若1l 、2l 重合,则2121b b k k ==且; 若1l ⊥2l ,则121-=⋅k k .2、当两直线方程为0:0:22221111=++=++C y B x A l C y B x A l 、时, 若1l ∥2l ,则12211221≠=C A C A B A B A 且;1221≠C B C B 或, 若1l 、2l 重合,则122112211221C B C B C A C A B A B A ===且且; 若1l ⊥2l ,则02121=+B B A A . (二)、点到直线的距离、直线到直线的距离 1、点P ()00,y x 到直线0=++C By Ax 的距离为:2200BA CBy Ax d +++=.2、当1l ∥2l ,且直线方程分别为0:0:2211=++=++C By Ax l C By Ax l 、时,两直线间的距离为:2221BA C C d +-=.(三)、两直线的交点两直线的交点的个数取决于由两直线组成的方程组的解的个数. (四)、对称问题 1、中心对称:设平面上两点()()111,,y x P y x P 和关于点()b a A ,对称,则点的坐标满足:b y y a x x =+=+2,211;若一个图形与另一个图形上任一对对应点满足这种关系,那么这两个图形关于点A 对称. 2、轴对称:(1)设平面上有直线0:=++C By Ax l 和两点()()111,,y x P y x P 、,若满足下列两个条件: ①PP 1⊥直线l ;②PP 1的中点在直线l 上,则点1P P 、关于直线l 对称;若一个图形与另一个图形上任意一对对应点满足这种关系,那么这两个图形关于直线l 对称. (2)对称轴是特殊直线的对称问题:对称轴是特殊直线的对称问题可直接通过代换求解: ①关于x 轴对称,以y -代y ; ②关于y 轴对称,以x -代x ; ③关于直线x y =对称,x 、y 互换;④关于直线0=+y x 对称,以x -代y ,同时以y -代x ; ⑤关于直线a x =对称,以x a -2代x ; ⑥关于直线b y =对称,以y b -2代y ;(3)对称轴是一般直线的对称问题,可根据对称的意义,由垂直平分列方程找到坐标之间的关系:设点()()2211,,y x Q y x P 、关于直线()00:≠=++AB C By Ax l 对称则⎪⎪⎩⎪⎪⎨⎧=++⋅++⋅=--022********C y y B x x A ABx x y y二、基本题型 (一)平行与垂直【例1—1】直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是 ( )A. 3x +2y -1=0B. 3x +2y +7=0C. 2x -3y +5=0D. 2x -3y +8=0【解析】由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,由点斜式可得直线l 的方程为y -2=-32(x +1),即3x +2y -1=0。
两条直线的位置关系与对称问题

第63讲 两条直线的位置关系与对称问题【学习目标】1.掌握两直线平行、垂直、相交的条件,能灵活运用点到直线的距离公式及两直线平行、垂直的条件解决有关问题. 2.掌握中心对称、轴对称等问题的几何特征和求解的基本方法.并能利用图形的对称性解决有关问题.1.已知直线ax -2y -1=0和直线x -y +2=0互相垂直,则a 的值为 ( ) A .1 B .-13C .-23 D .-2【解析】由题设可得a2×1=-1,因此a =-2,故选D.2.实数a =0是直线x -2ay +1=0和2x -2ay +1=0平行的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【解析】直线x -2ay +1=0和2x -2ay +1=0平行,则1×(-2a )-(-2a )×2=0,得a =0.而a =0时,直线x +1=0与2x +1=0平行,故选C.3.已知直线l :x -y -1=0,l 1:2x -y -2=0,若直线l 2和l 1关于直线l 对称,则l 2的方程是 ( ) A .x -2y +1=0 B .x -2y -1=0 C .x +y -1=0 D .x +2y -1=0【解析】设A (x ,y ),A 1(x 1,y 1)分别是直线l 2、l 1上关于l 对称的点.则⎩⎪⎪⎨⎪⎪⎧y 1-y x 1-x ·1=-1x +x 12-y +y 12-1=0,求得⎩⎪⎨⎪⎧x 1=y +1y 1=x -1①又点A 1(x 1,y 1)在直线l 1上,则2x 1-y 1-2=0② 将①代入②得2(y +1)-(x -1)-2=0,即x -2y -1=0,故选B.4.直线l 1:x +y =0,l 2:3x -y -6=0和x 轴围成的三角形的面积等于 .【解析】由⎩⎪⎨⎪⎧x +y =03x -y -6=0得⎩⎪⎨⎪⎧x =32y =-32,又直线l 1与x 轴相交于点O (0,0),直线l 2与x 轴相交于点(2,0),从而围成的三角形的面积S =12×2×|-32|=32. 【知识要点】 1.两直线的位置关系的判定 方法一:设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1、B 1不同为0;A 2、B 2不同为0). (1)l 1与l 2相交⇔ (A 1A 2≠B 1B 2),特况:l 1⊥l 2⇔A 1A 2+B 1B 2=0.(2)l 1与l 2平行⇔ 且.(3)l 1与l 2重合⇔ 且. A 1B 2≠A 2B 1A 1B 2=A 2B 1A 1C 2≠A 2C 1(或B 1C 2≠B 2C 1)(A 1A 2=B 1B 2≠C 1C 2) A 1B 2=A 2B 1A 1C 2=A 2C 1(或B 1C 2=B 2C 1)(A 1A 2=B 1B 2=C 1C 2) 方法二:若直线l 1和l 2存在斜截式方程l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则(1)直线l 1∥l 2的充要条件是 .(2)直线l 1⊥l 2的充要条件是 .若l 1和l 2的斜率都不存在,则l 1与l 2 .若l 1和l 2中有一条直线斜率不存在而另一条直线斜率为0,则 .2.点到直线的距离,两条平行线的距离(1)设点P (x 0,y 0),直线l :Ax +By +C =0,则P 到l的距离:d = ;(2)两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By+C 2=0之间的距离:d = .(l 1和l 2的方程必须满足一次项对应系数 ).|Ax 0+By 0+C |A 2+B 2|C 1-C 2|A 2+B 2相同3.中心对称(1)设平面上的点M (a ,b )、P (x ,y )、P ′(x ′,y ′),若满足:x +x ′2=a ,y +y ′2=b ,那么,我们称P 、P ′两点关于点M 对称,点M 叫做对称中心.(2)点与点对称的坐标关系:设点P (x ,y )关于M (x 0,y 0)的对称点P ′的坐标是(x ′,y ′),则:⎩⎪⎨⎪⎧x ′=2x 0-x y ′=2y 0-y5.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则实数m 的值为 .【解析】由题设|3m +5|m 2+1=|-m +7|m 2+1,即|3m +5|=|m -7|, 求得m =12或m =-6.4.轴对称(1)设平面上有直线l :Ax +By +C =0,和两点P (x ,y )、P ′(x ′,y ′),若满足下列两个条件:①;② ,则点P 、P ′关于直线l 对称.(2)对称轴是特殊直线的对称问题对称轴是特殊直线时的对称问题可直接通过代换法得解:①关于x 轴对称(以代 );②关于y 轴对称(以代 );③关于y =x 对称(互换); PP ′⊥直线l PP ′的中点在直线l 上-y y -x x x 、y ④关于x +y =0对称(以 代 ,以 代 );⑤关于x =a 对称(以代 );⑥关于y =b 对称(以代 ).(3)对称轴为一般直线的对称问题可根据对称的意义,由垂直平分列方程,从而找到坐标之间的关系:设点P (x 1,y 1),Q (x 2,y 2)关于直线l :Ax +By +C =0(AB ≠0)对称,则-x y -y x 2a -x x 2b -y y 一、对称问题例1已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.【解析】(1)设A ′(x 0,y 0)和A (-1,-2)关于直线l 对称. 则⎩⎪⎪⎨⎪⎪⎧y 0+2x 0+1·23=-12·x 0-12-3y 0-22+1=0,解得⎩⎪⎨⎪⎧x 0=-3313y 0=413,即A ′的坐标为(-3313,413).(2)由⎩⎪⎨⎪⎧ 2x -3y +1=03x -2y -6=0解得⎩⎪⎨⎪⎧x =4y =3, 即直线l 与m 的交点B (4,3)在直线m ′上.又在直线m :3x -2y -6=0上取一点P (2,0),设P (2,0)关于2x -3y +1=0的对称点为P ′(x 1,y 1),则⎩⎪⎪⎨⎪⎪⎧y 1x 1-2·23=-12·x 1+22-3·y 12+1=0,解得⎩⎪⎨⎪⎧x 1=613y 1=3013即P ′(613,3013).由对称性可知P ′(613,3013)在直线m ′上. 从而直线m ′的方程为y -3=3-30134-613(x -4),即9x -46y +102=0.二、两直线位置关系及应用例2已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.【解析】(1)由已知可得l 2的斜率必存在,∴k 2=1-a .若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +b +4=0,即b =3a -4=-1≠0(不合题意),∴此种情况不存在,即k 2≠0.三、距离公式和直线系及应用例3已知直线l 经过直线2x +y -5=0与x -2y =0的交点.(1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.若k 2≠0,即k 1、k 2都存在,∵k 2=1-a ,k 1=ab,l 1⊥l 2, ∴k 1·k 2=-1,即a b (1-a )=-1① 又∵l 1过点(-3,-1),∴-3a +b +4=0.② 由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在, ∴k 1=k 2,即a b=1-a .③ 又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1、l 2在y 轴上的截距互为相反数,即4b =b ④则联立③④解得⎩⎪⎨⎪⎧a =2b =-2或⎩⎪⎨⎪⎧a =23b =2, ∴a ,b 的值为2和-2或23和2.【解析】(1)依题设可设l 方程为(2x +y -5)+λ(x-2y )=0,即(2+λ)x +(1-2λ)y -5=0, 则点A (5,0)到l 的距离d =|10+5λ-5|(2+λ)2+(1-2λ)2=3, 即2λ2-5λ+2=0,求得λ=2或12,故l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0x -2y =0,解得交点P (2,1).过点P 任作一直线l ,设d 为A 点到l 的距离,则d ≤|PA |,当l ⊥PA 时,等号成立.∴d max=|PA |=(5-2)2+(0-1)2=10. 四、直线位置关系的综合应用例4已知n 条直线:l 1:x -y +c 1=0,c 1= ,l 2:x -y +c 2=0,l 3:x -y +c 3=0,…,l n :x -y +c n =0(其中c 1<c 2<c 3<…<c n ),这n 条平行直线中,每相邻两条直线之间的距离顺次为2、3、4、…、n .(1)求c n ;(2)求x -y +c n =0与x 轴、y 轴围成的图形的面积;(3)求x -y +c n -1=0与x -y +c n =0及x 轴、y 轴围成图形的面积.【解析】(1)原点O 到l 1的距离为1,原点O 到l 2的距离为1+2,…,原点O 到l n 的距离为d n =1+2+…+n =n (n +1)2, 因为c n =2d n ,所以c n =2n (n +1)2. (2)设直线l n :x -y +c n =0交x 轴于M ,交y 轴于N ,则△OMN 的面积S △OMN =12|OM |·|ON |=12c 2n=n 2(n +1)24, 所以S n =n 2(n +1)24(n ∈N *).(3)所围成的图形是等腰梯形,由(2)S n =n 2(n +1)24知S n -1=(n -1)2·n 24, 所以S n -S n -1=n 2·(n +1)24-(n -1)2·n 24=n 3.故所求面积为n 3(n ≥2,n ∈N *).〔备选题〕例5若直线l 1:y =kx +k +2与l 2:y =-2x+4的交点在第一象限,求k 的取值范围.【解析】解法一:先求l 1与l 2的交点P (f (k ),g (k )),然后解不等式组⎩⎪⎨⎪⎧f (k )>0g (k )>0,求k 的取值范围,此想法很自然,但运算量较大,解略.解法二:注意到l 2与x 轴、y 轴分别交于A (2,0)、B (0,4),由l 1与l 2的交点P 在第一象限,知P 在线段AB 内(即不含二端点),即P 内分AB→. 若设P (x 0,y 0)分AB →所成的比为λ,即AP →=λPB →. 由(x 0-2,y 0)=λ(-x 0,4-y 0)可得⎩⎪⎪⎨⎪⎪⎧x 0=21+λy 0=4λ1+λ.由点P 在l 1上有4λ1+λ=k ·21+λ+k +2,解出λ=3k +22-k,由λ>0,可得-23<k <2.解法三:注意到l 1表示过定点M (-1,2)且斜率为k 的直线系,而直线l 2过A (2,0)、B (0,4),于是由图(图略)得k MA <k <k MB ,由过两点的直线斜率公式可得k MA =-23,k MB =2,从而-23<k <2.。
两条直线的位置关系(解析版)

第47讲 两条直线的位置关系一、课程标准1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离 二、基础知识回顾 知识梳理1. 斜率存在的两条直线平行与垂直 若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2, 则l 1∥l 2⇔k 1=k 2,b 1≠b 2; l 1⊥l 2⇔k 1·k 2=-1;l 1与l 2重合⇔k 1=k 2,b 1=b 2.2. 直线的一般式方程中的平行与垂直条件若直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(其中A 1,B 1不同时为0,A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2=A 2B 1且A 1C 2≠A 2C 1;l 1⊥l 2⇔A 1A 2+B 1B 2=0.3. 两直线的交点直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. (1)相交⇔方程组有一组解; (2)平行⇔方程组无解; (3)重合⇔方程组有无数组解.4. 已知两点P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离为d =(x 1-x 2)2+(y 1-y 2)2.5. 设点P(x 0,y 0),直线l :Ax +By +C =0(A ,B 不同时为0),则点P 到直线l 的距离为d =||Ax 0+By 0+C A 2+B 2.6. 两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(A ,B 不同时为0)之间的距离d =||C 1-C 2A 2+B 2.三、自主热身、归纳总结1、 若直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则实数m 的值为( )A. 2B. -3C. 2或-3D. -2或-3 【答案】 C【解析】 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或m =-3.故选C.2、 若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( )A. -3B. -43 C. 2 D. 3【答案】 D【解析】 直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23.因为两直线垂直,所以-a 2×23=-1,即a =3.3、直线2x +2y +1=0,x +y +2=0之间的距离是( )A .324 B . 2 C . 22D . 1 【答案】A【解析】 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =⎪⎪⎪⎪2-122=324.故选A .4、若三条直线2x +y +3=0,2x -y -1=0和x +3ky +k +1=0相交于一点,则实数k =____. 【答案】110【解析】 由2x +y +3=0,2x -y -1=0两直线交于点(-12,-2),再将此点代入直线方程x +3ky +k +1=0中,求得k =110.5、若直线(3a +2)x +(1-4a)y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =____. 【答案】0或1【解析】 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a)(a +4)=0,解得a =0或a =1.四、例题选讲考点一 两条直线的位置关系例1、已知直线l 1:ax +2y +3=0和直线l 2:x +(a -1)y +a 2-1=0.(1) 当l 1∥l 2时,求实数a 的值; (2) 当l 1⊥l 2时,求实数a 的值.【解析】 (1)(方法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a≠1且a≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1)解得a =-1,综上可知,当a =-1时,l 1∥l 2.(方法2)∵l 1∥l 2∴⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6解得a =-1, 故当a =-1时,l 1∥l 2.(2)(方法1)当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立;当a≠1且a≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1)由⎝⎛⎭⎫-a 2·11-a =-1,得a =23. (方法2)∵l 1⊥l 2,∴a +2(a -1)=0,解得a =23.变式1、(1)(江苏省丹阳高级中学2019届模拟)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8(2)(浙江绍兴一中2019届模拟)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】(1)A (2)C【解析】(1)因为l 1∥l 2,所以4-mm +2=-2(m ≠-2),解得m =-8(经检验,l 1与l 2不重合).因为l 2⊥l 3,所以2×1+1×n =0,即n =-2.所以m +n =-10.(2)当m =2时,代入两直线方程中,易知两直线平行,即充分性成立;当l 1∥l 2时,显然m ≠0,从而有2m =m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立.故选C. 变式2、已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 【解析】 (1)由已知可得l 2的斜率存在,且k 2=1-a.若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1不存在,即b =0.又∵l 1过点(-3,-1),∴-3a+4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在且不为0.∵k 2=1-a ,k 1=a b ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a)=-1.(*)又∵l 1过点(-3,-1),∴-3a +b +4=0.(**)由(*)(**)联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a ,①又∵坐标原点到这两条直线的距离相等,且l 1∥l 2,∴l 1,l 2在y 轴上的截距互为相反数,即4b =b ,②联立①②,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2∴a =2,b =-2或a =23,b =2.方法总结:(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程系数间的关系得出结论.考点二 两条直线的交点问题例2 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是__________.【答案】 ⎝⎛⎭⎫-16,12 【解析】 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A(4,0),B(0,2).直线y =kx +2k +1可变形为y -1=k(x +2),表示这是一条过定点P(-2,1),斜率为k 的动直线.因为两直线的交点在第一象限,所以两直线的交点必在线段AB 上(不包括端点),所以动直线的斜率k 需满足k PA <k <k PB .因为k PA =-16,k PB=12,所以-16<k <12.变式1、(1)三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠1(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为__________. 【答案】(1)C (2)5x +3y -1=0【解析】(1)由l 1∥l 3得k =5;由l 2∥l 3,得k =-5;由x -y =0与x +y -2=0,得x =1,y =1,若l 1,l 2的交点(1,1)在l 3上,则k =-10.若l 1,l 2,l 3能构成一个三角形,则k ≠±5,且k ≠-10,故选C.(2)解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0得l 1,l 2的交点坐标为(-1,2).由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1,l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1.故直线l 的方程为5x +3y -1=0.变式2、下面三条直线l 1:4x +y -4=0,l 2:mx +y =0,l 3:2x -3my -4=0不能构成三角形,求实数m 的取值集合.【解析】 当三条直线交于一点时:由⎩⎪⎨⎪⎧4x +y -4=0,mx +y =0,解得l 1和l 2的交点A 的坐标⎝ ⎛⎭⎪⎫44-m ,-4m 4-m ,由A在l 3上可得2×44-m -3m×⎝ ⎛⎭⎪⎫-4m 4-m =4,解得m =23或m =-1. 至少两条直线平行或重合时:l 1、l 2、l 3至少两条直线斜率相等,当m =4时,l 1∥l 2;当m =-16时,l 1∥l 3;若l 2∥l 3,则需有m 2=1-3m ,m 2=-23不可能.综合(1)、(2)可知,m =-1,-16,23,4时,这三条直线不能组成三角形,∴m 的取值集合是⎩⎨⎧⎭⎬⎫-1,-16,23,4.方法总结:(1)求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.(2)求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,常用的直线系方程如下:①与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R ,且m ≠C );②与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );③过直线l 1:A 1x +B 1y +C 1 =0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2. 考点三、 两直线的距离问题 例3、已知点P(2,-1).(1)求过点P 且与原点距离为2的直线l 的方程.(2)求过点P 且与原点距离最大的直线l 的方程,并求出最大距离.(3)是否存在过点P 且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.【解析】 (1)过点P 的直线l 与原点距离为2,而P 点坐标为(2,-1),可见过P(2,-1)垂直于x 轴的直线满足条件.此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k(x -2),即kx -y -2k -1=0.由已知得||-2k -1k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)过点P 与原点O 距离最大的直线是过点P 且与PO 垂直的直线,由l ⊥OP ,得k l k OP =-1.∴k l =-1k OP=2.由直线的点斜式方程得y +1=2(x -2),即2x -y -5=0,最大距离为||-55= 5.(3)由(2)可知,过P 点不存在与原点距离超过5的直线,∴不存在过P 点且与原点距离为6的直线.变式1、(1)过点P (2,1)且与原点O 距离最远的直线方程为( )A .2x +y -5=0B .2x -y -3=0C .x +2y -4=0D .x -2y =0(2)若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是 5,则m +n =( ) A .0 B .1 C .-2D .-1【答案】 (1)A (2)C【解析】 (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0. (2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.变式2、已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点P.(1) 若点A(5,0)到直线l 的距离为3,求直线l 的方程; (2) 求点A(5,0)到直线l 距离的最大值.【解析】 (1) 由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得⎩⎪⎨⎪⎧x =2,y =1,所以P(2,1).当直线l 的斜率不存在时,其方程为x =2,符合题意;若直线l 的斜率存在,设l 的方程为y -1=k(x -2),即kx -y -2k +1=0.由已知点A(5,0)到直线l 的距离为3,得|3k +1|k 2+1=3,解得k =43,此时直线l 的方程为4x -3y -5=0.综上所述,直线l 的方程为x =2或4x -3y -5=0. (2) 由(1)可知交点P(2,1),如图,过P 作任一直线l , 设d 为点A 到直线l 的距离,则d≤PA(当l ⊥PA 时等号成立), 所以d max =PA =(5-2)2+(0-1)2=10.方法总结:1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式.考点四 直线的对称性例4、(1)已知直线l :x +2y -2=0.①求直线l 1:y =x -2关于直线l 对称的直线l 2的方程; ②求直线l 关于点A (1,1)对称的直线方程.(2)光线由点A (-5,3)入射到x 轴上的点B (-2,0),又反射到y 轴上的点M ,再经y 轴反射,求第二次反射线所在直线l 的方程.【解析】(1)①由⎩⎪⎨⎪⎧y =x -2,x +2y -2=0解得交点P (2,0).在l 1上取点M (0,-2), M 关于l 的对称点设为N (a ,b ),则⎩⎨⎧a 2+2·b -22-2=0,⎝⎛⎭⎫-12·b +2a =-1,解得N ⎝⎛⎭⎫125,145,所以kl 2=145-0125-2=7, 又直线l 2过点P (2,0),所以直线l 2的方程为7x -y -14=0.②直线l 关于点A (1,1)对称的直线和直线l 平行,所以设所求的直线方程为x +2y +m =0.在l 上取点B (0,1),则点B (0,1)关于点A (1,1)的对称点C (2,1)必在所求的直线上,所以m =-4,即所求的直线方程为x +2y -4=0.(2)点A (-5,3)关于x 轴的对称点A ′(-5,-3)在反射光线所在的直线BM 上, 可知l BM :y =33(x +2), 所以M ⎝⎛⎭⎫0,233.又第二次反射线的斜率k =k AB =-33,所以第二次反射线所在直线l 的方程为y =-33x +233,即x +3y -2=0.变式、(1)如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是___.(2)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m′的方程. 【答案】(1)210 (2)9x -46y +102=0.【解析】 (1)直线AB 的方程为x +y=4,点P(2,0)关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0),则光线经过的路程为CD =62+22=210. (2)在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上. 设对称点M′(a ,b),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1解得⎩⎨⎧a =613,b =3013, ∴M′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0得N(4,3).又∵直线m′经过点N(4,3),∴由两点式得直线m′的方程为9x -46y +102=0.方法总结:对称性问题有三类:一是点关于点对称;二是点关于线对称;三是线关于线对称;点关于点对称问题比较简单,只要用中点坐标公式即可;点关于线对称要用到两个条件,一是已知点和对称点的连线与已知直线垂直,二是已知点和对称点的中点在已知直线上;线关于线对称问题,一般是在某一条直线上找两个点,求出这两个点关于另一条直线的对称点,然后用两点式求出其方程.通常情况下会用到两直线的交点.五、优化提升与真题演练1、已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2)和B (a ,-1),且直线l 与l 1平行,则实数a 的值为( )A .0B .1C .6D .0或6【答案】C【解析】由直线l 的倾斜角为3π4得l 的斜率为-1,因为直线l 与l 1平行,所以l 1的斜率为-1.又直线l 1经过点A (3,2)和B (a ,-1),所以l 1的斜率为33-a ,故33-a=-1,解得a =6.2、(多选)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则实数c 的值是( )A .2B .-4C .5D .-6【答案】AD【解析】 依题意知,63=a -2≠c -1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪c 2+132+-22=21313,解得c =2或-6.3、已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.【答案】 ⎝⎛⎭⎫-16,12 【解析】由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.4、(一题两空)已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________. 【答案】 -1 1【解析】若直线l 1的倾斜角为π4,则-a =tan π4=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1.5、 过点P(0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段恰好被点P 平分,求直线l 的方程.【解析】 设l 1与l 的交点为A(a ,8-2a),则由题意知,点A 关于点P 的对称点B(-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A(4,0)在直线l 上,∴直线l 的方程为x +4y -4=0.6、已知三条直线:l 1:2x -y +a =0(a >0);l 2:4x -2y -1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,请说明理由.【解析】:(1)直线l 2:2x -y -12=0,所以两条平行直线l 1与l 2间的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+-12=7510, 所以⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪c +125,即c =132或116, 所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0; 若点P 满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程得⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0, 解得⎩⎪⎨⎪⎧ x 0=-3,y 0=12(舍去); 联立方程得⎩⎪⎨⎪⎧ 2x 0-y 0+116=0,x 0-2y 0+4=0, 解得⎩⎨⎧x 0=19,y 0=3718. 所以存在点P ⎝⎛⎭⎫19,3718同时满足三个条件.。
2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系
2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。
高中 平面解析几何 两条直线的位置关系 知识点+例题
辅导讲义――两条直线的位置关系[巩固]已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.题型二:两直线相交[例]求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x-5y+6=0的直线l的方程.[巩固]如图,设一直线过点(-1,1),它被两平行直线l1:x+2y-1=0,l2:x+2y-3=0所截的线段的中点在直线l3:x-y-1=0上,求其方程.的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确. 3.若A (-3,-4),B (6,3)两点到直线l :ax +y +1=0的距离相等,则a =_____________.解析 依题意,|-3a -4+1|a 2+1=|6a +3+1|a 2+1, 解得a =-79或a =-13.4.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是_________.解析 ∵63=m 4≠-143,∴m =8,直线6x +my +14=0.可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.5.如图,已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是_____________.解析 由题意知点P 关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线所经过的路程PMN 的长为|CD |=210.6.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是______________.答案 12x +8y -15=0解析 l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.7.已知点A (-1,1),B (2,-2),若直线l :x +my +m =0与线段AB 相交(包含端点的情况),则实数m 的取值范围 是______________. 答案 ⎝⎛⎦⎤-∞,12∪[2,+∞) 所以直线恒过定点P (0,-1).∵点A (-1,1),B (2,-2),∴k P A =-2,k PB =-12,∵直线l :x +my +m =0与线段AB 相交(包含端点的情况), ∴-1m ≤-2或-1m ≥-12,∴m ≤12或m ≥2(经验证m =0也符合题意).∴实数m 的取值范围是⎝⎛⎦⎤-∞,12∪[2,+∞). 8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.答案 345解析 由题意可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解析 圆心为O (1,0),由于P (2,2)在圆(x -1)2+y 2=5上,∴P 为切点,OP 与P 点处的切线垂直.∴k OP =2-02-1=2, 又点P 处的切线与直线ax -y +1=0垂直.∴a =k OP =2,选C.12.如图,已知直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2之间的距离分别为3和2,点B是l 2上的一动点,作AC ⊥AB ,且AC 与l 1交于点C ,则△ABC 的面积的最小值为________.答案 6解析 以A 为坐标原点,平行于l 1的直线为x 轴,建立如图所示的直角坐标系,设B (a ,-2),C (b,3).∵AC ⊥AB ,∴ab -6=0,ab =6,b =6a. Rt △ABC 的面积S =12a 2+4·b 2+9 =12a 2+4·36a 2+9=12 72+9a 2+144a 2 ≥1272+72=6.13.点P (2,1)到直线l :mx -y -3=0(m ∈R )的最大距离是________.答案 2 5解析 直线l 经过定点Q (0,-3),如图所示.由图知,当PQ ⊥l 时,点P (2,1)到直线l 的距离取得最大值|PQ |=(2-0)2+(1+3)2=25,所以点P (2,1)到直线l 的最大距离为2 5.14.(2013·四川)在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.答案 (2,4)解析 设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.又k AC =6-23-1=2, ∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1, ∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M (2,。
直线系与对称问题
2.(05年广东高考) 在平面直角坐标系中,已知矩形ABCD的长为2, 宽为1,AB与AD边分别在x轴,y轴的正半轴上, A点与坐标轴的原点重合,将矩形折叠,使A点落在 线段DC上,若折痕所在直线的斜率为k,试写出折痕 所在的直线方程
例 5.已知直线 l 过点 P(2,3),且和两条平行直线 l1:3x+4y-7=0 与 l2:3x+4y+8=0 分别交于 A,B 两点,且|AB|= 3 2 ,求 l 的方程.
5、常用的对称关系
点(a,b)关于x轴的对称点(a,-b),关于y轴的对称点 为(-a,b),关于原点的对称点(-a,-b),关于直线y=x 的对称点为(b,a),关于直线y= -x的对称点(-b,-a),, 关于直线y=x+m的对称点为(b-m,a+m),关于直线 y= -x+m的对称点(m-b,m-a).只要斜率为±1都可 以直接代换!
二.对称问题的相关结论:
1. 点 关 于 点 对 称 : 点 (x,y) 关 于 点 (a,b) 的 对 称 点 为 (2a-x,2b-y)
2.点关于直线对称: (1)点关于特殊直线的对称点: 2 2 (2)点 P(x0,y0)关于 l:Ax+By+C=0(A +B ≠0)的对称点 坐标(x1,y1)的求法: Ax0 x1 B y0 y1 C 0
(4)一条光线从点 M(5,3)射出,与 x 轴的正方向成 角, 遇 x 轴后反射,若 tan 3 ,则反射光线所在的直线 3x+y-12=0 方程为____________.
例 2.已知直线 l:(a-1)x+y+(a+1)=0 及定点 A(3,4). 问当 a 为何值时, (1)直线 l 过点 A; (2)点 A 到直线 l 的距离最大.
高考数学一轮复习第9章第2节两直线的位置关系课件理2
高考数学一轮复习第9章第2节两直线的位置关系课件理2
2021/4/17
高考数学一轮复习第9章第2节两直线的位置关系课件理2
0
第九章 解析几何
第二节 两直线的位置关系
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2
航
3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
yxx000- - +2 yxx·-1=y0+-2 y1+,1=0,解得xy00= =yx- +11., 将(y-1,x+1)代入 2x0+y0-4=0 中,得 x+2y-5=0. [答案] x+2y-5=0
►名师点津 1.线关于点对称的求解方法 (1)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标, 再由两点式求出直线方程; (2)求出一个对称点,再利用两对称直线平行,由点斜式得到所求的直线方程. 2.线关于点对称的实质 “线关于点的对称”其实质就是“点关于点的对称”,只要在直线上取两个点,求 出其对称点的坐标即可,可统称为“中心对称”.
[答案] x+4y-4=0
►名师点津 点关于点对称的求解方法
若点 M(x1,y1)和点 N(x,y)关于点 P(a,b)对称,则由中点坐标公式得xy= =22ab- -xy11, ,进 而求解.
●命题角度二 点关于线的对称问题
【例 2】 (2019 届湖北孝感五校联考)已知直线 y=2x 是△ABC 中∠C 的平分线所
点,则|PQ|的最小值为( )
A.95
B.158
C.2190
D.259
解析:选 C 因为36=48≠-512,所以两直线平行. 由题意可知,|PQ|的最小值为这两条平行直线间的距离,即|-6224+-852|=2190,所以|PQ| 的最小值为2190.故选 C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题讲解
三、直线关于点对称
求直线l 关于点P(2,-1)对称的 关于点 对称的 直线l 的方程。 直线l 2的方程。 解题要点: 解题要点: 法一: 上的任意一点的对称点在 对称点在l 法一: l 2上的任意一点的对称点在l 1上; 法二: 到两直线等距。 法二: l 1 // l 2且P到两直线等距。 到两直线等距
4、直线 3x -2y + 1 = 0 关于直线 2x -2y = 1 、 对称的直线方程是 _______________ 5、直线 :x + 2y -2 = 0 交 y 轴于 B 点,光 、直线l: 经过直线l 线自点 A (-1,4 ) 射到 B 点,经过直线 - , 反射, 反射,则反射光线所在直线方程为 __________________________
例题讲解
一、点关于点对称
已知点A(5,8) ,B(4 ,1) ,试求 点 试求A点 例1. 已知点 关于B点的对称点 的坐标 关于 点的对称点C的坐标。 点的对称点 的坐标。 解题要点: 解题要点:中点公式的运用
例题讲解
二、点关于直线对称
已知点A的坐标为 例2.已知点 的坐标为 已知点 的坐标为(-4,4),直线l 的方 ,直线l 程为3x+y-2=0,求点 关于直线l 的 求点A关于直线 程为 求点 关于直线l 对称点A’的坐标。 对称点 的坐标。 的坐标 解题要点: 解题要点: k • kAA’ = -1 AA’中点在l 上 中点在l 中点在
两条直线的位置关系
------对称问题
两条直线的位置关系
------对称 四类对称 一、点关于点对称 五、反射问题 二、点关于直线对称 三、直线关于点对称 四、直线关于直线对称 常见运用
常见的对称问题: 常见的对称问题: x轴 y轴 直线 y = x P( a, b ) 直线 y = -x 直线 x = m 直线 y = n 点(m,n) P1( a, -b ) P2(-a, b ) - P3( b, a ) P4(-b, -a ) - P5( 2m-a, b ) - P6( a, 2n-b ) - P7( 2m-a, 2n-b ) - -
l
例题讲解
五、反射问题
例5、一束光线经过点 、一束光线经过点P(-1,2),照射到 , 直线 x − 3 y = 0 上的点 上的点A(3,1)后被反射, 后被反射, 后被反射 求反射光线所在的直线的方程。 求反射光线所在的直线的方程。
练习: 练习: 1、已知直线 3x-y-4=0 关于 x 轴对称的直 、 - - 线方程为 ______________;关于原点对称的直 ; 线方程为 ______________;关于直线 y = x 对 ; 称的直线方程为 ______________. 2、点P (-2 , -1 ) 关于直线 x + 2y -2 = 0 的 、 - 对称点为 ___________ 3、若直线 y = mx + 2 和直线 y = 3x + n 关于直 、 对称, 线 y = x 对称,则 m = ______,n = ______. ,
例题讲解
四、直线关于直线对称
试求直线l 例4. 试求直线l1:x-y-2=0关于直线 关于直线 对称的直线l l2:3x-y+3=0对称的直线l 的方 对称的直线 程。
解题要点:求交点抓“夹角” 解题要点:求交点抓“夹角”
思考: 思考:若l1//l2, 如何求l1 关于l2的对称直线方程? l 如何求l 关于l 的对称直线方程?