2017-2018学年高中数学人教A版选修1-2练习:综合练习 Word版含答案
2017-2018学年人教A版高中数学选修1-2:第一章章末复习课含答案

章末复习课[整合·网络构建][警示·易错提醒]1.回归分析:(1)回归分析是建立在两个具有相关性变量之间的一种模拟分析,因此必须先判断两变量是否具有相关性.(2)线性回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(错误!,错误!)点,可能所有的样本数据点都不在直线上.(3)利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).2.独立性检验:(1)通过独立性检验得到的结论未必正确,它只是对一种可靠性的预测.(2)在2×2列联表中,当数据a,b,c,d都不小于5时,才可以用K2检测.(3)独立性检验易错误理解假设检验原理,导致得到相反的结论.专题一线性回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种方法.根据两个变量的一组观测值,可以画出散点图,以判断两个变量是否具有线性相关关系,若具有线性相关关系,可求出线性回归直线方程.求出线性回归模型后,可以借助残差、残差平方和以及相关指数R2等对模型进行评判.相关指数R2刻画回归的效果,其计算公式:R2=1-,R2的值越大,模型的拟合效果越好。
[例1]下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测技改后生产100吨甲产品比技改前少消耗多少吨标准煤.解:(1)散点图如图所示:(2) x i y i=3×2。
5+4×3+5×4+6×4.5=66。
5,错误!=错误!=4.5,错误!=错误!=3。
5,错误!错误!=32+42+52+62=86.错误!=错误!=错误!=0。
7,错误!=错误!-错误!错误!=3.5-0.7×4.5=0.35.因此,所求的线性回归方程为错误!=0.7x+0.35。
2017-2018学年人教A版高中数学选修1-2模块综合评价(二)含答案

模块综合评价(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z1-z=i,则|z|=()A.1 B.错误!C。
错误!D.2解析:由错误!=i,得z=错误!=错误!=i,所以|z|=1,故选A。
答案:A2.如图所示的框图是结构图的是( )A.P⇒Q1→错误!→错误!→…→错误!B.错误!→错误!→错误!→…→错误!C.D。
错误!→错误!→错误!→错误!→错误!→错误!解析:选项C为组织结构图,其余为流程图.答案:C3.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b 中至少有一个能被3整除"时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除解析:因为“至少有一个"的否定为“一个也没有”.答案:B4.下面几种推理中是演绎推理的是( )A.因为y=2x是指数函数,所以函数y=2x经过定点(0,1)B.猜想数列错误!,错误!,错误!,…的通项公式为a n=错误!(n∈N*) C.由圆x2+y2=r2的面积为πr2猜想出椭圆错误!+错误!=1的面积为πabD.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2解析:选项B为归纳推理,选项C和选项D为类比推理,选项A 为演绎推理.答案:A5.下列推理正确的是( )A.把a(b+c)与log a(x+y)类比,则有:log a(x+y)=log a x+log a y B.把a(b+c)与sin(x+y)类比,则有:sin(x+y)=sin x+sin yC.把(ab)n与(x+y)n类比,则有:(x+y)n=x n+y nD.把(a+b)+c与(xy)z类比,则有:(xy)z=x(yz)解析:A中类比的结果应为log a(xy)=log a x+log a y,B中如x=y=错误!时不成立,C中如x=y=1时不成立,D中对于任意实数结合律成立.答案:D6.已知错误!=1+i(i为虚数单位),则复数z=()A.1+i B.1-iC.-1+i D.-1-i解析:因为错误!=1+i,所以z=错误!=错误!=错误!=错误!=-1-i。
2017-2018学年高中数学人教A版选修1-2创新应用阶段质量检测(二) Word版含解析

阶段质量检测(二)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有一段“三段论”,推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点.因为f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.以上推理中()A.小前提错误B.大前提错误C.推理形式错误D.结论正确2.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n(n∈N*)个等式应为()A.9(n+1)+n=10n+9B.9(n-1)+n=10n-9C.9n+(n-1)=10n-1D.9(n-1)+(n-1)=10n-103.观察下面图形的规律,在其右下角的空格内画上合适的图形为()A.■B.△C.□D.○4.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面()A.各正三角形内任一点B.各正三角形的某高线上的点C.各正三角形的中心D.各正三角形外的某点5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.1996.已知c>1,a=c+1-c,b=c-c-1,则正确的结论是()A.a>b B.a<bC.a=b D.a、b大小不定7.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2 D .8n +28.已知a n =⎝⎛⎭⎫13n,把数列{a n }的各项排成如下的三角形:记A (s ,t )表示第s 行的第t 个数,则A (11,12)等于( ) A.⎝⎛⎭⎫1367B.⎝⎛⎭⎫1368C.⎝⎛⎭⎫13111D.⎝⎛⎭⎫13112 9.已知f (x +y )=f (x )+f (y ),且f (1)=2,则f (1)+f (2)+…+f (n )不能等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎝⎛⎭⎫n (n +1)2C.n (n +1)2D.n (n +1)2f (1)10.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},…,依此类推,则每组内奇数之和S n 与其组的编号数n 的关系是( )A .S n =n 2B .S n =n 3C .S n =n 4D .S n =n (n +1)11.在等差数列{a n }中,若a n >0,公差d >0,则有a 4a 6>a 3a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q >1,则b 4,b 5,b 7,b 8的一个不等关系是( )A .b 4+b 8>b 5+b 7B .b 4+b 8<b 5+b 7C .b 4+b 7>b 5+b 8D .b 4+b 7<b 5+b 812.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 016等于( )A.12B .-1C .2D .3 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1,在用反证法证明时,假设应为________.14.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为________.15.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.16.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n -2(n >2)个图形中共有________个顶点.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)已知a >b >c ,且a +b +c =0,求证:b 2-aca< 3.18.(本小题12分)已知实数x ,且有a =x 2+12,b =2-x ,c =x 2-x +1,求证:a ,b ,c中至少有一个不小于1.19.(本小题12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 20.(本小题12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1c成等差数列. (1)比较b a与cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角.21.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1. (1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列; (2)设c n =a n2n (n =1,2,…),求证:数列{c n }是等差数列.22.通过计算可得下列等式: 22-12=2×1+1; 32-22=2×2+1; 42-32=2×3+1; …(n +1)2-n 2=2n +1.将以上各式两边分别相加,得(n +1)2-1=2×(1+2+3+…+n )+n ,即1+2+3+…+n =n (n +1)2.类比上述方法,请你求出12+22+32+…+n 2的值.答案1.解析:选B 可导函数f (x ),若f ′(x 0)=0且x 0两侧导数值相反,则x =x 0是函数f (x )的极值点,故选B.2.解析:选B 由所给的等式可以根据规律猜想得:9(n -1)+n =10n -9. 3.解析:选A 由每一行中图形的形状及黑色图形的个数,则知A 正确.4.解析:选C 正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.5.解析:选C 记a n +b n =f (n ), 则f (3)=f (1)+f (2)=1+3=4, f (4)=f (2)+f (3)=3+4=7; f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3), 则f (6)=f (4)+f (5)=18; f (7)=f (5)+f (6)=29; f (8)=f (6)+f (7)=47; f (9)=f (7)+f (8)=76; f (10)=f (8)+f (9)=123. 所以a 10+b 10=123.6.解析:选B 要比较a 与b 的大小,由于c >1, 所以a >0,b >0,故只需比较1a 与1b 的大小即可,而1a =1c +1-c =c +1+c , 1b =1c -c -1=c +c -1, 显然1a >1b,从而必有a <b .7.解析:选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差为6的等差数列,通项公式为a n =6n +2.8.解析:选D 该三角形每行所对应元素的个数分别为1,3,5,…那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝⎛⎭⎫13112.故选D.9.解析:选C f (x +y )=f (x )+f (y ), 令x =y =1,得f (2)=2f (1),令x =1,y =2,f (3)=f (1)+f (2)=3f (1) ⋮f (n )=nf (1),所以f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n (n +1)2f (1).所以A ,D 正确.又f (1)+f (2)+…+f (n )=f (1+2+…+n )=f ⎝⎛⎭⎫n (n +1)2,所以B 也正确.故选C.10.解析:选B ∵当n =1时,S 1=1;当n =2时,S 2=8=23;当n =3时,S 3=27=33;∴归纳猜想S n =n 3,故选B.11.解析:选A b 5+b 7-b 4-b 8=b 4(q +q 3-1-q 4)=b 4(q -1)(1-q 3)=-b 4(q -1)2(1+q +q 2)=-b 4(q -1)2⎣⎡⎦⎤⎝⎛⎭⎫q +122+34. ∵b n >0,q >1,∴-b 4(q -1)2·⎣⎡⎦⎤⎝⎛⎭⎫q +122+34<0, ∴b 4+b 8>b 5+b 7.12.解析:选C ∵a 1=12,a n +1=1-1a n ,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *), ∴a 2 016=a 3+3×671=a 3=2.13.解析:“至少有一个”的反面为“一个也没有”,即“x ,y 均不大于1”,亦即“x ≤1且y ≤1”.答案:x ,y 均不大于1(或者x ≤1且y ≤1)14.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=115.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33216.解析:设第n 个图形中有a n 个顶点, 则a 1=3+3×3,a 2=4+4×4,…, a n =(n +2)+(n +2)·(n +2),a n -2=n 2+n . 答案:n 2+n17.证明:因为a >b >c ,且a +b +c =0,所以a >0,c <0. 要证明原不等式成立,只需证明b 2-ac <3a , 即证b 2-ac <3a 2,从而只需证明(a +c )2-ac <3a 2, 即(a -c )(2a +c )>0,因为a -c >0,2a +c =a +c +a =a -b >0, 所以(a -c )(2a +c )>0成立, 故原不等式成立.18.证明:假设a ,b ,c 都小于1, 即a <1,b <1,c <1, 则a +b +c <3.∵a +b +c =⎝⎛⎭⎫x 2+12+(2-x )+(x 2-x +1)=2x 2-2x +72=2⎝⎛⎭⎫x -122+3,且x 为实数, ∴2⎝⎛⎭⎫x -122+3≥3, 即a +b +c ≥3,这与a +b +c <3矛盾. ∴假设不成立,原命题成立. ∴a ,b ,c 中至少有一个不小于1. 19.解:(1)选择(2)式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.20.解:(1)b a<c b. 证明如下: 要证b a<c b ,只需证b a <c b . ∵a ,b ,c >0, ∴只需证b 2<ac . ∵1a ,1b ,1c成等差数列,b ac ac∴b 2≤ac .又a ,b ,c 均不相等,∴b 2<ac .故所得大小关系正确.(2)证明:法一:假设角B 是钝角,则cos B <0. 由余弦定理得,cos B =a 2+c 2-b 22ac >2ac -b 22ac >ac -b 22ac >0,这与cos B <0矛盾, 故假设不成立.所以角B 不可能是钝角.法二:假设角B 是钝角,则角B 的对边b 是最大边, 即b >a ,b >c , 所以1a >1b >0,1c >1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b 矛盾, 故假设不成立.所以角B 不可能是钝角. 21.证明:(1)因为S n +1=4a n +2, 所以S n +2=4a n +1+2,两式相减得S n +2-S n +1=4a n +1-4a n (n =1,2,…), 即a n +2=4a n +1-4a n ,变形得a n +2-2a n +1=2(a n +1-2a n ), 因为b n =a n +1-2a n (n =1,2,…), 所以b n +1=2b n ,由此可知,数列{b n }是公比为2的等比数列. (2)由S 2=a 1+a 2=4a 1+2,a 1=1, 得a 2=5,b 1=a 2-2a 1=3. 故b n =3·2n -1.因为c n =a n2n (n =1,2,…),所以c n +1-c n =a n +12n +1-a n2n2n 12n 1将b n =3·2n-1代入得c n +1-c n =34(n =1,2,…).由此可知,数列{c n }是公差d =34的等差数列.22.解:23-13=3×12+3×1+1, 33-23=3×22+3×2+1, 43-33=3×32+3×3+1, …(n +1)3-n 3=3n 2+3n +1, 将以上各式两边分别相加,得(n +1)3-13=3(12+22+32+…+n 2)+3(1+2+3+…+n )+n , 所以12+22+32+…+n 2 =13⎣⎡⎦⎤(n +1)3-1-n -3×n (n +1)2 =n (n +1)(2n +1)6.。
2017-2018学年高中数学人教A版选修1-2练习:第1章 统计案例1.1 Word版含答案

第一章 1.1A 级 基础巩固一、选择题1.对变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图①;对变量u 、v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图②.由这两个散点图可以判断导学号 18674019( C )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关[解析] 图1中的数据y 随x 的增大而减小,因此变量x 与y 负相关;图2中的数据随着u 的增大,v 也增大,因此变量u 与v 正相关,故选C .2.已知x 和y 之间的一组数据则y 与x 的线性回归方程y ^=b x +a 必过点导学号 18674020( D ) A .(2,2) B .(32,0)C .(1,2)D .(32,4)[解析] ∵x -=14(0+1+2+3)=32,y -=14(1+3+5+7)=4,∴回归方程y ^=b ^x +a ^必过点(32,4).3.关于回归分析,下列说法错误的是导学号 18674021( D ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,预报变量在y 轴 C .回归模型中一定存在随机误差D.散点图能准确反应变量间的关系[解析]用散点图反映两个变量间的关系,存在误差,故选D.4.在回归分析中,相关指数R2的值越大,说明残差平方和导学号18674022(B) A.越大B.越小C.可能大也可能小D.以上均错[解析]当R2越大时,残差平方和越小.5.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了100次和150次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是导学号18674023(A)A.l1和l2有交点(s,t)B.l1与l2相关,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合[解析]由题意知(s,t)是甲、乙两位同学所做试验的样本点的中心,而线性回归直线恒过样本点的中心,故选A.6.关于随机误差产生的原因分析正确的是导学号18674024(D)(1)用线性回归模型来近似真实模型所引起的误差;(2)忽略某些因素的影响所产生的误差;(3)对样本数据观测时产生的误差;(4)计算错误所产生的误差.A.(1)(2)(4) B.(1)(3)C.(2)(4) D.(1)(2)(3)[解析]理解线性回归模型y=bx+a+e中随机误差e的含义是解决此问题的关键,随机误差可能由于观测工具及技术产生,也可能因忽略某些因素产生,也可以是回归模型产生,但不是计算错误.二、填空题7.回归分析是处理变量之间__相关__关系的一种数量统计方法.导学号18674025[解析]回归分析是处理变量之间相关关系的一种数量统计方法.8.已知x 、y 的取值如下表:导学号 18674026若x 、y 具有线性相关关系,且回归方程为y =0.95x +a ,则a 的值为__2.6__. [解析] 由已知得x -=2,y -=4.5,而回归方程过点(x -,y -),则4.5=0.95×2+a , ∴a =2.6. 三、解答题9.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表:导学号 18674028(1)(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额. [解析] (1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为y ^=b ^x +a ^.则b ^=∑i =15(x i -x -)(y i -y -)∑i =15(x i -x -)2=1020=0.5,a ^=y --b ^x -=0.4, ∴年推销金额y 关于工作年限x 的线性回归方程为y ^=0.5x +0.4. (3)由(2)可知,当x =11时,y ^=0.5x +0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年销售金额为5.9万元.B 级 素养提升一、选择题1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为导学号 18674029( B )A .11.4万元B .11.8万元C .12.0万元D .12.2万元[解析] x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,a ^=y -b ^x =8-0.76×10=0.4, 所以当x =15时,y ^=b ^x +a ^=11.8.2.由一组数据(x 1,y 1)、(x 2,y 2)、…、(x n ,y n )得到的回归直线方程y ^=b ^x +a ^,则下列说法不正确的是导学号 18674030( B )A .直线y ^=b ^x +a ^必过点(x ,y )B .直线y ^=b ^x +a ^至少经过点(x 1,y 1)、(x 2,y 2)、…、(x n ,y n )中的一个点C .直线y ^=b ^x +a ^的斜率为∑ni =1x i y i -n x y ∑n i =1x 2i -n x2D .直线y ^=b ^x +a ^和各点(x 1,y 1)、(x 2,y 2)、…、(x n ,y n )的偏差是该坐标平面上所有直线与这些点的偏差中最小的直线3.某学校开展研究性学习活动,某同学获得一组实验数据如下表:导学号 18674031D )A .y =2x -2B .y =(12)xC .y =log 2xD .y =12(x 2-1)[解析] 可以代入检验,当x 取相应的值时,所求y 与已知y 相差平方和最小的便是拟合程度最高的.4.在某种新型材料的研制中,试验人员获得了下列一组试验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是导学号 18674032( B )A .y =2x 2C .y =12(x 2-1)D .y =2.61cos x[解析] 作散点图,从图中观察可知,应为对数函数模型. 二、填空题5.已知线性回归方程y ^=0.75x +0.7,则x =11时,y 的估计值是__8.95__.导学号 18674033[解析] 将x =11代入y ^=0.75x +0.7,求得y ^=8.25+0.7=8.95.6.某市居民2011~2015年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表:导学号 18674034__13__有__正__线性相关关系.[解析] 把2011~2015年家庭年平均收入按从小到大顺序排列为11.5,12.1,13,13.3,15,因此中位数为13(万元),由统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.三、解答题7.(2015·重庆文)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:导学号 18674035(1)求y 关于t 的回归方程y =b t +a ;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 附:回归方程y ^=b ^t +a ^中,b ^=∑i =1nt i y i -n t y ∑i =1nt 2i -n t2,a ^=y -b ^t .[解析] (1)5i =1由上表,t =3,y =365=7.2,∑i =15t 2i =55,∑i =15t i y i =120.∴b ^=120-5×3×7.255-5×9=1.2.a ^=y -b ^t =7.2-1.2×3=3.6. ∴所求回归直线方程y ^=1.2t +3.6.(2)当t =6时,代入y ^=1.2×6+3.6=10.8(千亿元). ∴预测该地区2015年的人民币储蓄存款为10.8千亿元.C 级 能力提高1.在如图所示的5组数据中,去掉__D (3,10)__后,剩下的4组数据线性相关性更强.导学号 18674036[解析] 根据散点图判断两变量的线性相关性,样本数据点越集中在某一直线附近,其线性相关性越强,显然去掉D (3,10)后,其余各点更能集中在某一直线的附近,即线性相关性更强.2.关于x 与y 有如下数据:导学号 18674037有如下的两个线性模型:(1)y =6.5x +17.5,(2)y =7x +17.试比较哪一个拟合效果更好. [解析] 由(1)可得y i -y ^与y i -y 的关系如下表:∴∑i =15(y i -y ^i )2=155,∑i =15(y i -y )2=1 000. ∴R 21=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-1551 000=0.845.由(2)可得y i -y ^i 与y i -y 的关系如下表:∴∑i =15(y i -y ^i )2=180,∑i =15(y i -y )2=1 000.∴R 22=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-1801 000=0.82.∵R 21=0.845,R 22=0.82,0.845>0.82, ∴R 21>R 22.∴(1)的拟合效果好于(2)的拟合效果.。
2017-2018学年高二数学人教A版选修1-2教师用书: 模块

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i为虚数单位,则复数(1+i)2=( )A.0 B.2C.2i D.2+2i【解析】(1+i)2=1+2i+i2=2i.【答案】 C2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值( )【导学号:81092070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3【解析】a +i 2-i=2a -1+a +5,由题意知2a -1=a +2,解得a =3.【答案】 C7.在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数【解析】 散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”; ②“(a +b )c =ac +bc (c ≠0)”类比推出“a +bc =a c +bc(c ≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b (C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.执行如图1所示的程序框图,若输出的n=7,则输入的整数K的最大值是( )图1A.18 B.50C.78 D.306【解析】第一次循环S=2,n=2,第二次循环S=6,n=3,第三次循环S=2,n=4,第四次循环S=18,n=5,第五次循环S=14,n=6,第六次循环S=78,n=7,需满足S≥K,此时输出n=7,所以18<K≤78,所以整数K的最大值为78.【答案】 C10.已知a1=3,a2=6,且a n+2=a n+1-a n,则a33为( )A.3 B.-3C.6 D.-6【解析】a1=3,a2=6,a3=a2-a1=3,a4=a3-a2=-3,a5=a4-a3=-6,a6=a5-a4=-3,a7=a6-a5=3,a8=a7-a6=6,…,观察可知{a n}是周期为6的周期数列,故a33=a3=3.【答案】 A11.下列推理合理的是( )A.f(x)是增函数,则f′(x)>0B.因为a>b(a,b∈R),则a+2i>b+2i(i是虚数单位)C.α,β是锐角△ABC的两个内角,则sin α>cos βD.A是三角形ABC的内角,若cos A>0,则此三角形为锐角三角形【解析】A不正确,若f(x)是增函数,则f′(x)≥0;B不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:81092071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)过________.附表:k =-230×20×20×30≈5.556>5.024,∴推断犯错误的概率不超过0.025. 【答案】 0.02515.二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .则四维空间中“超球”的四维测度W =2πr 4,猜想其三维测度V =________.【解析】 由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V =W ′=(2πr 4)′=8πr 3.【答案】 8πr 316.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________.【解析】 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.【答案】 10b 11b 12…b 20=30b 1b 2…b 30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)设z =-++2+4i3+4i,求|z |.【解】 z =1+i -4i +4+2+4i 3+4i =7+i3+4i ,∴|z |=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得k =-230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a,1b ,1c不能构成等差数列.【导学号:81092072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c,因此b (a +c )=2ac .而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(1)(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2,y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. 所以b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625. a ^=y -b ^x -≈67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程是 y ^=0.625x +22.05.(3)当x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。
2017-2018学年高二数学人教A版选修1-2第1章 章末综合

章末综合测评(一) 统计案例 (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下列各量与量的关系中是相关关系的为( )①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的支出与收入之间的关系;⑤某户家庭用电量与电费之间的关系.A .①②③B .③④C .④⑤D .②③④【解析】 ①⑤是一种确定性关系,属于函数关系.②③④正确. 【答案】 D2.散点图在回归分析过程中的作用是( ) A .查找个体个数 B .比较个体数据大小关系 C .探究个体分类D .粗略判断变量是否线性相关【解析】 由散点图可以粗略地判断两个变量是否线性相关,故选D. 【答案】 D3.身高与体重有关系可以用________来分析.( ) A .残差 B .回归分析 C .等高条形图D .独立性检验【解析】 因为身高与体重是两个具有相关关系的变量,所以要用回归分析来解决. 【答案】 B4.一位母亲记录了她儿子3岁到9岁的身高,建立了她儿子身高与年龄的回归模型y ^=73.93+7.19x ,她用这个模型预测儿子10岁时的身高,则下面的叙述正确的是( )A .她儿子10岁时的身高一定是145.83 cmB .她儿子10岁时的身高一定是145.83 cm 以上C .她儿子10岁时的身高在145.83 cm 左右D .她儿子10岁时的身高一定是145.83 cm 以下【解析】 由回归模型得到的预测值是可能取值的平均值,而不是精确值,故选C. 【答案】 C5.在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( )A.a a +b 与d c +d B.c a +b 与a c +d C.aa +b 与cc +dD.aa +b 与cb +c【解析】 由等高条形图的解可知aa +b 与cc +d的值相差越大,|ad -bc |就越大,相关性就越强.【答案】 C6.已知一个线性回归方程为y ^=1.5x +45,其中x 的取值依次为1,7,5,13,19,则y =( )A .58.5B .46.5C .60D .75【解析】 ∵x =15(1+7+5+13+19)=9,回归直线过样本点的中心(x -,y -),∴y -=1.5×9+45=58.5. 【答案】 A7.若两个变量的残差平方和是325, i =1n(y i -y ^i )2=923,则随机误差对预报变量的贡献率约为( )A .64.8%B .60%C .35.2%D .40%【解析】 相关指数R 2表示解释变量对于预报变量变化的贡献率,故随机误差对预报变量的贡献率为残差平方和总偏差平方和×100%=325923×100%≈35.2%,故选C.【答案】 C8.在研究吸烟与患肺癌的关系中,通过收集数据并整理、分析,得到“吸烟与患肺癌有关”的结论,并且有99%的把握认为这个结论成立.下列说法正确的个数是( )①在100个吸烟者中至少有99个人患肺癌;②如果一个人吸烟,那么这个人有99%的概率患肺癌;③在100个吸烟者中一定有患肺癌的人;④在100个吸烟者中可能一个患肺癌的人也没有. 【导学号:81092008】A .4B .3C .2D .1【解析】 有99%的把握认为“吸烟与患肺癌有关”,指的是“吸烟与患肺癌有关”这个结论成立的可能性或者可信程度有99%,并不表明在100个吸烟者中至少有99个人患肺癌,也不能说如果一个人吸烟,那么这个人就有99%的概率患肺癌;更不能说在100个吸烟者中一定有患肺癌的人,反而有可能在100个吸烟者中,一个患肺癌的人也没有.故正确的说法仅有④,选D.【答案】 D9.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图1中可以看出( )图1A.性别与喜欢理科无关B.女生中喜欢理科的百分比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的百分比为60%【解析】从题图中可以分析,男生喜欢理科的可能性比女生大一些.【答案】 C10.下列关于K2的说法中正确的是( )A.K2在任何相互独立问题中都可以用来检验有关还是无关B.K2的值越大,两个分类变量相关的可能性就越小C.K2是用来判断两个分类变量是否有关系的随机变量,只对两个分类变量适用D.K2的计算公式为K2=n ad-bca +b c+d a+c b+d【解析】K2只适用于2×2列联表问题,故A错;K2越大两个分类变量相关的可能性越大,故B错;选项D中公式错误,分子应为n(ad-bc)2.【答案】 C11.在两个学习基础相当的班级实行某种教学措施的试验,测试结果见下表,则试验效果与教学措施( )A.有关 B .无关 C .关系不明确D .以上都不正确【解析】 随机变量K 2的观测值为k =-250×50×86×14≈8.306>7.879,则认为“试验效果与教学措施有关”的概率为0.995.【答案】 A12.为预测某种产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取了8组观测值.计算知∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1 849,则y 对x 的回归方程是( )A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47xD.y ^=11.47-2.62x【解析】 由已知数据计算可得b ^=2.62,a ^=11.47,所以回归方程是y ^=11.47+2.62x ,故选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),若e i 恒为0,则R 2的值为________.【解析】 由e i 恒为0,知y i =y ^i ,即y i -y ^i =0,故R 2=1-∑ni =1y i -y ^i 2∑n i =1y i -y-2=1-0=1.【答案】 114.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归直线方程y =b x +a 中的b =-2,预测当气温为-4 ℃时,用电量为________℃.【解析】 根据题意知x =18+13+10+-4=10,y =24+34+38+644=40,因为回归直线过样本点的中心,所以a ^=40-(-2)×10=60,所以当x =-4时,y =(-2)×(-4)+60=68,所以用电量为68度.【答案】 6815.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2据,得到k =-223×27×20×30≈4.844,则认为“选修文科与性别有关系”出错的可能性为________.【解析】 k ≈4.844>3.841,故判断出错的概率为0.05. 【答案】 0.0516.若对于变量y 与x 的10组统计数据的回归模型中,相关指数R 2=0.95,又知残差平方和为120.53,那么∑i =110(y i -y )2的值为________.【解析】 ∵R 2=1-∑i =110y i -y ^i2∑i =110y i -y2,残差平方和∑i =110(y i -y ^i )2=120.53,∴0.95=1-120.53∑i =110y i -y2,∴∑i =110(y i -y )2=2 410.6.【答案】 2 410.6三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:铅中毒病人与尿棕色素为阳性是否有关系.【解】等高条形图如图所示:其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.由图可以直观地看出铅中毒病人与对照组相比较尿棕色素为阳性差异明显,因此铅中毒病人与尿棕色素为阳性有关系.18.(本小题满分12分)吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表是性别与吃零食的列联表:【解】k=n ad-bc2a +b c+d a+c b+d,把相关数据代入公式,得k=5×28-217×68×45×40≈4.722>3.841.因此,在犯错误的概率不超过0.05的前提下,可以认为“喜欢吃零食与性别有关”.19.(本小题满分12分)为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:根据最小二乘法建立的回归直线方程为y=-20x+250.(1)试求表格中m的值;(2)预计在今后的销售中,销量与单价仍然服从建立的回归方程,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本) 【导学号:81092009】【解】 (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,所以y =-20×8.5+250=80, 故16(90+84+83+m +75+68)=80, 解得m =80.(2)设工厂获得的利润为L 元,依题意得L =(x -5)(-20x +250)=-20⎝⎛⎭⎪⎫x 2-352x +1252(x >0),所以x =8.75时,L 取得最大值.故当单价定为8.75元/件时,工厂可获得最大利润.20.(本小题满分12分)如图2是对用药与不用药,感冒已好与未好进行统计的等高条形图.若此次统计中,用药的患者是70人,不用药的患者是40人,试问:能否在犯错误的概率不超过0.001的前提下认为“感冒已好与用药有关”?图2【解】 根据题中的等高条形图,可得在用药的患者中感冒已好的人数为70×810=56,在不用药的患者中感冒已好的人数为40×310=12.2×2列联表如下:k=-270×40×68×42≈26.96>10.828.因此,能在犯错误的概率不超过0.001的前提下认为感冒已好与用药有关系.21.(本小题满分12分)某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).图3(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图3所示),其中样本数据的分组区间为:,(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率;(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n ad-bc2a +b c+d a+c b+d.【解】(1)300×15 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得1-2×(0.025+0.100)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表结合列联表可算得K 2=-275×225×210×90=10021≈4.762>3.841. 所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 22.(本小题满分12分)在关于人的脂肪含量(百分比)和年龄的关系的研究中,研究人员获得了一组数据如下表:(2)求相关指数R 2,并说明其含义; (3)给出37岁时人的脂肪含量的预测值.【解】 (1)散点图如图所示.由散点图可知样本点呈条状分布,脂肪含量与年龄有比较好的线性相关关系,因此可以用线性回归方程来刻画它们之间的关系.设线性回归方程为y ^=b ^x +a ^,则由计算器算得b ^≈0.576,a ^≈-0.448, 所以线性回归方程为y ^=0.576x -0.448. (2)残差平方和:14i =1 e ^2i =14i =1 (y i -y ^i )2≈37.20, 总偏差平方和:14i =1 (y i -y -)2≈644.99,R 2=1-37.20644.99≈0.942, 表明年龄解释了94.2%的脂肪含量变化.(3)当x =37时,y ^=0.576×37-0.448≈20.9,故37岁时人的脂肪含量约为20.9%.。
2017-2018版高中数学 模块综合测评2 新人教A版选修1-2
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系.其中有相关关系的是( )A.①②③B.①②C.②③D.①③④【解析】曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确.其余均为相关关系.【答案】 D2.若z=4+3i,则z|z|=( )A.1 B.-1C.45+35i D.45-35i【解析】∵z=4+3i,∴z=4-3i,|z|=42+32=5,∴z|z|=4-3i5=45-35i.【答案】 D3.有一段演绎推理:直线平行于平面,则平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直线b∥平面α,则直线b∥直线a.这个结论显然是错误的,这是因为( )【导学号:81092073】A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】大前提错误,直线平行于平面,未必平行于平面内的所有直线.【答案】 A4.如图1所示的知识结构图为什么结构( )图1A .树形B .环形C .对称性D .左右形【解析】 由题图可知结构图为树形结构. 【答案】 A5.执行如图2所示的程序框图,若输入的n 的值为8,则输出的s 的值为( )图2A .4B .8C .10D .12【解析】 初始值:n =8,i =2,k =1,s =1;i <n ,s =1×(1×2)=2,i =2+2=4,k =1+1=2;i <n ,s =12×(2×4)=4,i =4+2=6,k =2+1=3;i <n ,s =13×(4×6)=8,i =6+2=8,k =3+1=4;i =n ,退出循环.故输出的s 的值为8.【答案】 B6.已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则回归直线的方程是( )A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08D.y ^=0.08x +1.23【解析】 由题意可设回归直线方程为y ^=1.23x +a ,又样本点的中心(4,5)在回归直线上,故5=1.23×4+a ,即a =0.08, 故回归直线的方程为y ^=1.23x +0.08. 【答案】 C7.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4【解析】 四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割成四个高均为R 的三棱锥,从而有13S 1R +13S 2R +13S 3R +13S 4R =V .即(S 1+S 2+S 3+S 4)R =3V .∴R =3VS 1+S 2+S 3+S 4.【答案】 C8.已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4猜想a n等于( )A.2n +2B.2nn +C.22n-1D.22n -1【解析】 ∵a 1=1,S n =n 2·a n (n ≥2), ∴a 1+a 2=22·a 2,得a 2=13;由a 1+a 2+a 3=32· a 3,得a 3=16;由a 1+a 2+a 3+a 4=42·a 4,得a 4=110;….猜想a n =2nn +.【答案】 B9.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i为虚数单位),则p+q的值是( )A.-1 B.0C.2 D.-2【解析】把1+i代入方程得(1+i)2+p(1+i)+q=0,即2i+p+p i+q=0,即p+q+(p+2)i=0,∵p,q为实数,∴p+q=0.【答案】 B10.满足条件|z-i|=|3-4i|的复数z在复平面上对应点的轨迹是( )A.一条直线B.两条直线C.圆D.椭圆【解析】|z-i|=|3-4i|=5,∴复数z对应点到定点(0,1)的距离等于5,故轨迹是个圆.【答案】 C11.设a,b,c均为正实数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】必要性显然成立;PQR>0,包括P,Q,R同时大于0,或其中两个为负两种情况.假设P<0,Q<0,则P+Q=2b<0,这与b为正实数矛盾.同理当P,R同时小于0或Q,R同时小于0的情况亦得出矛盾,故P,Q,R同时大于0,所以选C.【答案】 C12.在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面最邻近的4个连续偶数10,12,14,16;再染16后面最邻近的5个连续奇数17,19,21,23,25.按此规律一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第60个数是( )A.103 B.105C.107 D.109【解析】由题可知染色规律是:每次染完色后得到的最后一个数恰好是染色个数的平方.故第10次染完后的最后一个数为偶数100,接下来应该染101,103,105,107,109,此时共60个数.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.若复数z 满足3z +z =1+i ,其中i 为虚数单位,则z =________.【解析】 设复数z =a +b i ,a ,b ∈R ,则z =a -b i ,a ,b ∈R,3z +z =4a +2b i =1+i ,a ,b ∈R ,则a =14,b =12,故z =14+12i.【答案】 14+12i14.某工程的工序流程图如图3所示,现已知工程总工时数为10天,则工序c 所需工时为________天.【导学号:81092074】图3【解析】 设工序c 所需工时为x 天.由题意知:按①→③→④→⑥→⑦→⑧所需工时为0+2+3+3+1=9(天), 按①→②→④→⑥→⑦→⑧所需工时为1+0+3+3+1=8(天), 故按①→②→⑤→⑦→⑧所需工时应为10天. ∴1+x +4+1=10,∴x =4. 【答案】 415.在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R =________.【解析】 通过类比可得R =a 2+b 2+c 22.证明:作一个在同一个顶点处棱长分别为a ,b ,c 的长方体,则这个长方体的体对角线的长度是a 2+b 2+c 2,故这个长方体的外接球的半径是a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径.【答案】a 2+b 2+c 2216.某考察团对中国10个城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若A 城市居民人均消费水平为7.765(千元),估计该城市人均消费额占人均工资收入的百分比约为________.【导学号:81092075】【解析】 因为y 与x 具有线性相关关系,满足回归方程y ^=0.66x +1.562,A 城市居民人均消费水平为y =7.765,所以可以估计该城市的职工人均工资水平x 满足7.765=0.66x +1.562,所以x ≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.【答案】 83%三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤.)17.(本小题满分10分)复数z =1+i ,求实数a ,b ,使az +2b z =(a +2z )2. 【解】 ∵z =1+i ,∴az +2b z =(a +2b )+(a -2b )i ,又∵(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , ∵a ,b 都是整数,∴⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =a +,解得⎩⎪⎨⎪⎧a 1=-2,b 1=-1或⎩⎪⎨⎪⎧a 2=-4,b 2=2.∴所求实数为a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人.(1)根据以上数据建立一个2×2列联表; (2)试判断晕机是否与性别有关?(参考数据:K 2>2.706时,有90%的把握判定变量A ,B 有关联;K 2>3.841时,有95%的把握判定变量A ,B 有关联;K 2>6.635时,有99%的把握判定变量A ,B 有关联.参考公式:K 2=n ad -bc 2a +bc +d a +cb +d)【解】 (1)2×2列联表如下:(2)得K 2的观测值k =-256×84×56×84=359≈3.889>3.841,所以有95%的把握认为晕机与性别有关.19.(本小题满分12分)某省公安消防局对消防产品的监督程序步骤为:首先受理产品请求,如果是由公安部发证的产品,则审核考察,领导复核,不同意,则由窗口将信息反馈出去,同意,则报公安部审批,再经本省公安消防局把反馈信息由窗口反馈出去.如果不是由公安部发证的产品,则由窗口将信息反馈出去.试画出此监督程序的流程图.【解】 某省公安消防局消防产品监督程序的流程图如下:20.(本小题满分12分)已知a ,b ,c 是全不相等的正实数,求证:b +c -a a +a +c -bb+a +b -cc>3. 【证明】 法一(分析法):要证b +c -a a +a +c -b b +a +b -cc>3, 只需证明b a +ca -1+ab +c b -1+a c +b c-1>3, 即证b a +c a +a b +c b +a c +b c>6,而事实上,由a ,b ,c 是全不相等的正实数, ∴b a +a b >2,c a +a c >2,c b +b c>2. ∴b a +c a +a b +c b +a c +b c>6, ∴b +c -a a +a +c -b b +a +b -cc>3得证.法二(综合法):∵a ,b ,c 全不相等, ∴b a 与a b ,c a 与a c ,c b 与b c 全不相等, ∴b a +a b>2,c a +a c>2,c b +b c>2, 三式相加得b a +c a +a b +c b +a c +b c>6,∴⎝⎛⎭⎪⎫b a +c a -1+⎝⎛⎭⎪⎫a b +cb -1+⎝⎛⎭⎪⎫a c +bc -1>3, 即b +c -a a +a +c -b b +a +b -cc>3. 21.(本小题满分12分)某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据:(1)(2)求出y 对x 的线性回归方程;(3)若广告费为9万元,则销售收入约为多少万元? 【导学号:81092076】 【解】 (1)散点图如图:(2)观察散点图可知各点大致分布在一条直线附近,列出下列表格,以备计算a ^,b ^.于是x =52,y =2,代入公式得:b ^=∑i =14x i y i -4x -y -∑i =14x 2i -4x -2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y -b ^x =692-735×52=-2.故y 与x 的线性回归方程为y ^=735x -2,其中回归系数为735,它的意义是:广告支出每增加1万元,销售收入y 平均增加735万元.(3)当x =9万元时,y =735×9-2=129.4(万元).所以当广告费为9万元时,可预测销售收入约为129.4万元.22.(本小题满分12分)某少数民族的刺绣有着悠久的历史,如图4(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图4(1)求出f (5);(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )的关系式; (3)根据你得到的关系式求f (n )的表达式.【解】 (1)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25, ∴f (5)=25+4×4=41. (2)∵f (2)-f (1)=4=4×1.f (3)-f (2)=8=4×2,f (4)-f (3)=12=4×3,f (5)-f (4)=16=4×4,由上式规律得出f (n +1)-f (n )=4n . (3)∵f (2)-f (1)=4×1,f (3)-f (2)=4×2,f(4)-f(3)=4×3,f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1),∴以上各式相加得f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2(n-1)·n,∴f(n)=2n2-2n+1.。
2017-2018学年高中数学人教A版选修1-2创新应用:阶段质量检测(四) Word版含解析
阶段质量检测(四)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示的框图属于()Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件A.流程图B.结构图C.程序框图D.工序流程图2.如图所示,引入复数后,数系的结构图为()3.学校教职成员、教师、后勤人员、理科教师、文科教师的结构图正确的是()4.根据下面的结构图可以知道,总经理的直接下属是()A.总工程师和专家办公室B.开发部C.开发部、总工程师和专家办公室D.总工程师、专家办公室和所有的七个部5.如图是一个结构图,在处应填入()A.图象交换B.对称性C.奇偶性D.解析式6.如图是一个算法的流程图,若输出的结果是31,则判断框中整数M的值是()A.3 B.4 C.5 D.67.如图所示的工序流程图中,设备采购的下一道工序是()A.设备安装B.土建设计C.厂房土建D.工程设计8.根据下面的流程图可得结果为()A.19 B.67 C.51 D.709.实数系的结构图如图所示,其中①,②,③三个框中的内容分别为()A.有理数、零、整数B.有理数、整数、零C.零、有理数、整数D.整数、有理数、零10.如图是求12+22+32+…+1002的程序框图,则图中的①②分别是()A.①S=S+i②i=i+1B.①S=S+i2②i=i+1C.①i=i+1②S=S+iD.①i=i+1②S=S+i211.阅读如图所示的程序框图,若输出s的值为-7,则判断框内可填写()A.i>6? B.i≥6?C.i<6? D.i≤7?12.某程序框图如图所示,现执行该程序,输入下列函数f(x)=sin 2π3x,f(x)=cos2π3x,f(x)=tan 4π3x,则可以输出的函数是()A.f(x)=sin 2π3x B.f(x)=cos2π3xC.f(x)=tan 4π3x D.三个函数都无法输出二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.定义运算,s=a b的运算原理如图所示,则式子+=________.14.阅读如图所示的框图,运行相应的程序,输出S的值为________.15.如图,小黑点表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可分开沿不同的路线同时传递,则单位时间内传递的最大信息量是________.16.某工程由A,B,C,D四道工序组成,完成它们需用时间依次为2,5,x,4天,四道工序的先后顺序及相互关系是:A,B可以同时开工;A完成后,C可以开工;B,C完成后,D可以开工.若完成该工程共需9天,则完成工序C需要的时间最多为________天.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)某班选举班长,具体方法是:筹备选举,由班主任提名候选人,同学投票(同意,不同意,弃权).验票统计.若有得票多者,则选为班长,若票数相同则由班主任决定谁当选,请用流程图表示该选举过程.18.(本小题12分)阅读如图所示的结构图:试根据此结构图阐述“圆锥曲线与方程”知识的逻辑关系.19.(本小题12分)一家新技术公司计划研制一个名片管理系统,希望系统能够具备以下功能.(1)用户管理:能够修改密码,显示用户信息,修改用户信息;(2)用户登录;(3)名片管理:能够对名片进行删除、添加、修改、查询;(4)出错信息处理.根据这些要求,画出该系统的结构图.20.(本小题12分)某商场对衣服的退、换货办法制定如下:对退货来说,7天内经服务员检验不影响第二次销售可退货,若影响第二次销售则不退货;对换货来说,7天内经服务员检验不影响第二次销售并有相应的号码则可换货,不影响第二次销售但没有相应的号码可退货,若影响第二次销售则不退、不换.某人买了一条裤子,回家后又觉得颜色不好搭配上衣,想换一条,请画出他换货过程的流程图.21.(本小题12分)某自助餐厅准备进行优惠酬宾活动:80岁以上老人免费;70岁以上老人享受5折优惠;60岁以上老人享受6折优惠;其余嘉宾享受9折优惠.餐厅经理想要一个程序,可以输入用餐者的年龄、消费额,能够输出应付金额.试设计该程序流程图.22.(本小题12分)对任意函数f (x ),x ∈D ,可按如图所示,构造一个数列发生器,其工作原理如下:①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0);②若x 1∈ /D ,则数列发生器结束工作;若x 1∈D ,将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律进行下去.现定义f (x )=4x -2x +1.(1)若输入x 0=4965,则由数列发生器产生数列{x n },写出数列{x n }的所有项;(2)若要使数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值.答案1.解析:选A 题中图示表示一种动态过程,故是流程图.没有起止框,故不是程序框图.2.解析:选A 根据知识结构图的画法,“复数”的下位要素应是并列的,只有选项A 符合要求.3.解析:选A 由各学校教职工组织结构易知选A.4.解析:选C 由结构图可以知道,总经理的直接下属是开发部、总工程师和专家办公室,其他六个不是总经理的直接下属.5.解析:选C 奇偶性属于函数的性质,解析式是函数概念的一部分,图象变换和对称性是函数图象的内容.6.解析:选B 本程序计算的是S =1+2+22+ (2),则S =1-2A +11-2=2A +1-1,由2A +1-1=31,得2A +1=32,解得A =4,则A +1=5时,条件不成立,所以M =4.7.解析:选A 结合工序流程图可知,设备采购的下一道工序是设备安装. 8.解析:选D 该流程图的作用是求s =1+4+7+10+…+19=70.9.解析:选B 因为实数分为有理数和无理数,有理数又分为整数和分数,整数又分为正整数、零与负整数,所以选B.10.解析:选B 各个加数的指数应为2,故①中应为S =S +i 2,②应为i =i +1. 11.解析:选C 第一次执行循环体时s =1,i =3; 第二次执行循环体时s =-2,i =5; 第三次执行循环体时s =-7,i =7, 所以判断框内可以填写“i <6?”. 12.解析:选B 若输入函数f (x )=cos 2π3x , 则f (x )+f ⎝⎛⎭⎫-32-x =cos 2π3x +cos ⎣⎡⎦⎤2π3⎝⎛⎭⎫-32-x =cos 2π3x +cos ⎝⎛⎭⎫-π-2π3x =cos2π3x -cos 2π3x =0, f (x )+f ⎝⎛⎭⎫32+x =cos 2π3x +cos ⎣⎡⎦⎤2π3⎝⎛⎭⎫32+x =cos2π3x +cos ⎝⎛⎭⎫π+2π3x =0. 故函数f (x )=cos 2π3x 可由题中程序框图输出.易验证函数f (x )=sin 2π3和f (x )=tan 4π3x 均无法输出.13.解析:由流程图可知+=5×(3-1)+4×(2-1)=10+4=14.答案:1414.解析:S =0,n =3,第1次运行,S =0+(-2)3=-8,n =2,不满足条件;第2次运行,S =-8+(-2)2=-8+4=-4,n =1,满足条件,跳出循环,输出S 的值为-4.答案:-415.解析:由A →B 有四条线路.单位时间内传递的最大信息量为3+4+6+6=19.答案:1916.解析:由题意可画出工序流程图如图所示.∵总工期为9天,∴2+x≤5.∴x≤3.∴完成工序C的最长时间为3天.答案:317.解:18.解:先由椭圆的实际背景引出椭圆的定义,用坐标法由定义推导出椭圆的标准方程和简单几何性质,然后是椭圆的简单应用.再由双曲线的实际背景引出双曲线的定义,用坐标法由定义推导出双曲线的标准方程和简单几何性质,然后是双曲线的简单应用.最后由抛物线的实际背景引出抛物线的定义,用坐标法由定义推导出抛物线的标准方程和简单几何性质,然后是抛物线的简单应用.19.解:该系统的结构图如图所示.名片管理系统20.解:流程图如图所示:21.解:程序流程图如图所示.22.解:(1)函数f (x )的定义域D =(-∞,-1)∪(-1,+∞), 所以x 1=f (x 0)=f ⎝⎛⎭⎫4965=4×4965-24965+1=1119, x 2=f (x 1)=f ⎝⎛⎭⎫1119=4×1119-21119+1=15, x 3=f (x 2)=f ⎝⎛⎭⎫15=4×15-215+1=-1,而x 3∈/D , 所以数列{x n }只有3项x 1=1119,x 2=15,x 3=-1.(2)令f (x )=4x -2x +1=x ,即x 2-3x +2=0,解得x =2或x =1.故当x0=2或x0=1时,x n+1=4x n-2x n+1=x n,所以输入的初始数据x0=1时,得到常数列{x n}且x n=1;x0=2时,得到常数列{x n}且x n=2.。
2017-2018学年高中数学人教A版选修1-2创新应用:模块综合检测 Word版含解析
由表格中数据的散点图分析,y 与 x 线性相关,且回归方程为^y=0.95x+a,则 a=
________.
15.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形, 按如图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截 面,这时从正方体上截下三条侧棱两两垂直的三棱锥 OLMN,如果用 S1,S2,S3 表示三个 侧面面积,S4 表示截面面积,那么类比得到的结论是________.
nn+1 2
C.n(n+1)
D.n(n+1)f(1)
12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给 A,B,C,D 四 个维修点某种配件各 50 件,在使用前发现需将 A,B,C,D 四个维修点的这批配件分别调 整为 40,45,54,61 件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调 动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为 n)为( )
A.2n B.n2 C.22(n-1) D.nn
10.下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;②由向量 a 的性质|a|2=a2 类
比得到复数 z 的性质|z2|=z2;③方程 ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是
b2-4ac>0 可以类比得到:方程 az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是 b2-
A.第一象限 B.第二象限
C.第三象限 D.第四象限
3.用反证法证明:“a>b”,应假设( )
A.a>b
B.a<b
C.a=b
D.a≤b
4.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段
2017-2018学年高中数学人教A版选修1-2练习:学业质量标准检测2 Word版含答案
第二章 学业质量标准检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“所有有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是导学号 18674269( C )A .使用了归纳推理B .使用了类比推理C .使用了“三段论”,但大前提错误D .使用了“三段论”,但小前提错误 [解析] 大前提是错误的,故选C .2.已知a <b <0,下列不等式中成立的是导学号 18674270( C ) A .a 2<b 2 B .a b <1C .a <4-bD .1a <1b[解析] 令a =-2,b =-1,满足a <b <0,则a 2>b 2,a b =2>1,1a >1b ,故A 、B 、D 都不成立,排除A 、B 、D ,选C .3.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为导学号 18674271( C ) A .6n -2 B .8n -2 C .6n +2D .8n +2[解析] 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2.4.已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n=导学号 18674272( B )A .2(n +1)2B .2n (n +1)C .22n -1D .22n -1[解析] a 2=S 2-S 1=22a 2-1,∴a 2=13,a 3=S 3-S 2=32·a 3-22·a 2=9a 3-4×13,∴a 3=16.a 4=S 4-S 3=42·a 4-32a 3=16a 4-9×16,∴a 4=110. 由此猜想a n =2n (n +1).5.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”,索的因应是导学号 18674273( C )A .a -b >0B .a -c <0C .(a -b )(a -c )>0D .(a -b )(a -c )<0[解析]b 2-ac <3a ,即证b 2-ac <3a 2.∵a +b +c =0,∴b =-(a +c ).只需证(a +c )2-ac <3a 2,即证2a 2-c 2-ac >0,即证a 2-c 2+a 2-ac >0,即证(a +c )(a -c )+a (a -c )>0,即证(a -c )[(a +c )+a ]>0.又b =-(a +c ),即证(a -c )(a -b )>0.故选C .6.已知圆x 2+y 2=r 2(r >0)的面积为S =πr 2,由此类比椭圆x 2a 2+y 2b2=1(a >b >0)的面积最有可能是导学号 18674274( C )A .πa 2B .πb 2C .πabD .π(ab )2[解析] 圆的方程可以看作是椭圆方程x 2a 2+y 2b 2=1(a >b >0)中,a =b 时的情形,∵S 圆=πr 2,∴类比出椭圆的面积为S =πab .7.(2017·全国Ⅱ文,9)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则导学号18674275(D)A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[解析]由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.8.已知f1(x)=cos x,f2(x)=f1′(x),f3(x)=f2′(x),f4(x)=f3′(x),…,f n(x)=f n-1′(x),则f2016(x)等于导学号18674276(A)A.sin x B.-sin xC.cos x D.-cos x[解析]由已知,有f1(x)=cos x,f2(x)=-sin x,f3(x)=-cos x,f4(x)=sin x,f5(x)=cos x,…,可以归纳出:f4n(x)=sin x,f4n+1(x)=cos x,f4n+2(x)=-sin x,f4n+3(x)=-cos x(n∈N*).所以f2016(x)=f4(x)=sin x.9.已知各项均不为零的数列{a n},定义向量c n=(a n,a n+1),b n=(n,n+1),n∈N*.下列命题中真命题是导学号18674277(A)A.若∀n∈N*总有c n∥b n成立,则数列{a n}是等差数列B.若∀n∈N*总有c n∥b n成立,则数列{a n}是等比数列C.若∀n∈N*总有c n⊥b n成立,则数列{a n}是等差数列D.若∀n∈N*总有c n⊥b n成立,则数列{a n}是等比数列[解析]∵对∀n∈N*总有c n∥b n,则存在实数λ≠0,使c n=λb n,∴a n=λn,∴{a n}是等差数列.10.下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的是导学号18674278(A)A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)[解析] 若满足题目中的条件,则f (x )在(0,+∞)上为减函数,在A 、B 、C 、D 四选项中,由基本函数性质知,A 是减函数,故选A .11.已知函数f (x )=lg 1-x1+x ,若f (a )=b ,则f (-a )等于导学号 18674279( B )A .bB .-bC .1bD .-1b[解析] f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg(1-a 1+a )-1=-lg 1-a1+a =-f (a )=-b .12.已知f (x )=x 3+x ,a 、b 、c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值导学号 18674280( A )A .一定大于零B .一定等于零C .一定小于零D .正负都有可能[解析] f (x )=x 3+x 是奇函数,且在R 上是增函数, 由a +b >0得a >-b ,所以f (a )>f (-b ),即f (a )+f (b )>0, 同理f (a )+f (c )>0,f (b )+f (c )>0, 所以f (a )+f (b )+f (c )>0.二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.“因为AC 、BD 是菱形ABCD 的对角线,所以AC 、BD 互相垂直且平分.”以上推理的大前提是__菱形对角线互相垂直且平分__.导学号 1867428114.设函数f (x )=xx +2(x >0),观察:导学号 18674282f 1(x )=f (x )=xx +2, f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8,f 4(x )=f (f 3(x ))=x15x +16,…根据以上事实,由归纳推理可得: 当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))= x(2n-1)x +2n.[解析] 由已知可归纳如下:f 1(x )=x (21-1)x +21,f 2(x )=x (22-1)x +22,f 3(x )=x(23-1)x +23, f 4(x )=x (24-1)x +24,…,f n (x )=x(2n -1)x +2n.15.由代数式的乘法法则类比推导向量的数量积的运算法则:导学号 18674283 ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“t ≠0,mt =nt ⇒m =n ”类比得到“c ≠0,a ·c =b ·c ⇒a =b ”; ④“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑤“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =ab ”.以上类比得到的结论正确的是__①②__.[解析] ①②都正确;③⑥错误,因为向量不能相除;④可由数量积定义判断,所以错误;⑤向量中结合律不成立,所以错误.16.观察下列等式:导学号 18674284 1=1 13=1 1+2=3 13+23=9 1+2+3=6 13+23+33=361+2+3+4=10 13+23+33+43=100 1+2+3+4+5=15 13+23+33+43+53=225 … …可以推测:13+23+33+…+n 3= n 2(n +1)24.(n ∈N *,用含有n 的代数式表示)[解析] 由条件可知:13=12,13+23=9=32=(1+2)2,13+23+33=36=62=(1+2+3)2,…,不难得出. 13+23+33+…+n 3=(1+2+3+…+n )2 =[n (n +1)2]2=n 2(n +1)24.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)已知a 、b 、c ∈R +,求证:a 2+b 2+c 23≥a +b +c 3.导学号 18674285[解析] 分析法:要证a 2+b 2+c 23≥a +b +c3, 只需证:a 2+b 2+c 23≥(a +b +c 3)2,只需证:3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ca , 只需证:2(a 2+b 2+c 2)≥2ab +2bc +2ca ,只需证:(a -b )2+(b -c )2+(c -a )2≥0,而这是显然成立的,所以a 2+b 2+c 23≥a +b +c3成立. 综合法:∵a 、b 、c ∈R +,∴(a -b )2+(b -c )2+(c -a )2≥0, ∴2(a 2+b 2+c 2)≥2(ab +bc +ac ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ac , ∴3(a 2+b 2+c 2)≥(a +b +c )2,∴a 2+b 2+c 23≥a +b +c 3. 18.(本题满分12分)(1)类比“等差数列”给出“等和数列”的定义;导学号 18674286 (2)探索等和数列{a n }的奇数项与偶数项各有什么特点,并加以说明.[解析] (1)如果一个数列从第2项起,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列.(2)由(1)知a n +a n +1=a n +1+a n +2,∴a n +2=a n .∴等和数列的奇数项相等,偶数项也相等.19.(本题满分12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.导学号 18674287(1)sin 2 13°+cos 2 17°-sin 13°cos 17°. (2)sin 2 15°+cos 2 15°-sin 15°cos 15°. (3)sin 2 18°+cos 2 12°-sin 18°cos 12°. (4)sin 2 (-18°)+cos 2 48°-sin (-18)°cos 48°. (5)sin 2 (-25°)+cos 2 55°-sin (-25)°cos 55°. ①试从上述五个式子中选择一个,求出这个常数;②根据①的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] ①选择(2)式计算如下sin 2 15°+cos 2 15°-sin 15°cos 15°=1-12sin 2 30°=34.②三角恒等式为sin 2 α+cos 2 (30°-α)-sin αcos (30°-α)=34.证明如下:sin 2 α+cos 2 (30°-α)-sin αcos (30°-α)=sin 2 α+(cos 30°cos α+sin 30°sin α)2-sin α (cos 30°cos α+sin 30°sin α)=sin 2 α+34cos 2 α+32sin αcos α+14sin 2 α-32sin αcos α-12sin 2 α =34sin 2 α+34cos 2 α=34. 20.(本题满分12分)已知△ABC 的三个内角A 、B 、C 为等差数列,且a ,b ,c 分别为角A 、B 、C 的对边.导学号 18674288求证:(a +b )-1+(b +c )-1=3(a +b +c )-1.[分析] 利用分析法得出c 2+a 2=b 2+ac ,再利用综合法证明其成立. [解析] 要证(a +b )-1+(b +c )-1=3(a +b +c )-1, 即证1a +b +1b +c =3a +b +c ,只需证a +b +c a +b +a +b +c b +c=3.化简,得c a +b +ab +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ), 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°,所以cos B =a 2+c 2-b 22ac =12,即a 2+c 2-b 2=ac 成立.∴(a +b )-1+(b +c )-1=3(a +b +c )-1成立.21.(本题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.导学号 18674289(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N +),求证:数列{b n }中任意不同的三项都不可能成等比数列.[解析] (1)设等差数列公差为d , 则3a 1+3×22d =9+32,解得d =2,∴a n =1+2+(n -1)×2=2n +2-1, S n =1+2+2n +2-12n =n (n +2).(2)b n =S nn=n + 2.用反证法证明.设b n ,b m ,b k 成等比数列(m 、n 、k 互不相等),则b n b k =b 2m ,即(n +2)(k +2)=(m +2)2,整理得:nk -m 2=2(2m -n -k ),左边为有理数,右边是无理数,矛盾,故任何不同三项都不可能成等比数列.22.(本题满分12分)(2017·哈六中期中)已知函数f (x )=(x -2)e x -12x 2+x +2.导学号 18674290(1)求函数f (x )的单调区间和极值;(2)证明:当x ≥1时,f (x )>16x 3-12x .[解析] (1)f ′(x )=(x -1)(e x -1),当x <0或x >1时,f ′(x )>0,当0<x <1时,f ′(x )<0, ∴f (x )在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减, 当x =0时,f (x )有极大值f (0)=0,当x =1时,f (x )有极小值f (1)=52-e.(2)设g (x )=f (x )-16x 3+12x ,则g ′(x )=(x -1)(e x -x 2-32),令u (x )=e x -x 2-32,则u ′(x )=e x -12,当x ≥1时,u ′(x )=e x -12>0,u (x )在[1,+∞)上单调递增,u (x )≥u (1)=e -2>0,所以g ′(x )=(x -1)(e x -x 2-32)≥0,g (x )=f (x )-16x 3+12x 在[1,+∞)上单调递增.g (x )=f (x )-16x 3+12x ≥g (1)=176-e>0,所以f (x )>16x 3-12x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修1-2 学业质量标准自测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数1-3i2-i =导学号 18674584( B )A .1+iB .1-iC .iD .-i[解析] 1-3i 2-i =(1-3i )(2+i )(2-i )(2+i )=5-5i5=1-i.2.已知集合A ={2,a },B ={1,2,3},则“a =3”是“A ⊆B ”的导学号 18674585( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 本题考查了充要条件的判断.当a =3时,A ={2,3},故A ⊆B ,若A ⊆B ⇒a =1或a =3,故为充分不必要条件. 3.下列命题的否命题为“邻补角互补”的是导学号 18674586( C ) A .邻补角不互补 B .互补的两个角是邻补角 C .不是邻补角的两个角不互补 D .不互补的两个角不是邻补角[解析] “邻补角”的否定是“不是邻补角”,“互补”的否定是“不互补”,故选C . 4.(2016·江西抚州高二检测)为了帮家里减轻负担,高二学生小明利用暑假时间打零工赚学费,他统计了其中五天的工作时间x (小时)与报酬y (元)的数据,分别是(2,30)、(4,40)、(5,m )、(6,50)、(8,70),他用最小二乘法得出y 与x 的线性回归方程为y =6.5x +17.5,则其中m 为导学号 18674587( D )A .45B .50C .55D .60[解析] 由题意知x -=2+4+5+6+85=5,又∵点(x -,y -)在回归直线y -=6.5x +17.5上,∴y -=6.5×5+17.5=50, ∴50=30+40+m +50+705,∴m =60,故选D .5.用反证法证明命题“2+3是无理数”时,下列假设正确的是导学号 18674588( D )A .假设2是有理数B .假设3是有理数C .假设2或3是有理数D .假设2+3是有理数[解析] “2+3是无理数”的否定是“2+3不是无理数”,故选D .6.某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是导学号 18674589( D )A .f (x )=x 2B .f (x )=1xC .f (x )=ln x +2x -6D .f (x )=sin x[解析] 第一个判断框的目的是判断输入的函数是否为奇函数,第二个判断框的目的是判断输入的函数是否存在零点.结合选项知,函数f (x )=sin x 为奇函数,且存在零点,故选D .7.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为导学号18674590(D)A.25%C.2.5% D.97.5%[解析]查表可得K2>5.024.因此有97.5%的把握认为“x和y有关系”.8.如图是《选修1-2》第二章“推理与证明”的知识结构图,不是证明方法的是导学号18674591(A)A.类比B.综合法C.反证法D.分析法[解析]据推理的相关知识及结构图知,类比不是证明方法.故选A.9.过抛物线焦点F的直线与抛物线相交于A、B两点,若A、B在抛物线准线上的射影是A1、B1,则∠A1FB1等于导学号18674592(C)A.45°B.60°C.90°D.120°[解析]如图由抛物线的定义得,|AF|=|AA1|,|BF|=|BB1|,∴∠1=∠2,∠3=∠4,又∠1+∠2+∠3+∠4+∠A1AF+∠B1BF=360°,且∠A1AF+∠B1BF=180°,∴∠1+∠2+∠3+∠4=180°,∴2(∠2+∠4)=180°,即∠2+∠4=90°,故∠A 1FB 1=90°.10.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M 、N 两点,MN 中点的横坐标为-23,则此双曲线的方程是导学号 18674593( D )A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=1[解析] 由题知c =7,设双曲线方程为x 2t -y 27-t=1(t >0)由⎩⎨⎧x 2t -y 27-t=1y =x -1消去y 得,(7-2t )x 2+2tx -8t +t 2=0. 由题意知x 1+x 22=-23,∴x 1+x 2=2t 2t -7=-43,∴t =2,∴双曲线方程为x 22-y 25=1.11.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值依次是导学号 18674594( B )A .12,-15B .5,-15C .5,-4D .-4,-15[解析] y ′=6x 2-6x -12=6(x 2-x -2)=6(x -2)·(x +1),令y ′=0,得x =-1或x =2,∵x ∈[0,3],∴x =-1舍去. 列表如下:由上表可知,函数在[0,3]上的最大值为5,最小值为-15,故选B . 12.已知函数f (x )(x ∈R )满足f ′(x )>f (x ),则导学号 18674595( D ) A .f (2)<e 2f (0) B .f (2)≤e 2f (0) C .f (2)=e 2f (0)D .f (2)>e 2f (0)[分析] 所给四个选项实质是比较f (2)与e 2f (0)的大小,即比较f (2)e 2与f (0)e 0的大小,故构造函数F (x )=f (x )ex 解决.[解析] 设F (x )=f (x )e x ,则f ′(x )=f ′(x )-f (x )e x >0,∴F (x )在R 上为增函数,故F (2)>F (0), ∴f (2)e 2>f (0)e0,即f (2)>e 2f (0). 二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.已知命题p :∃x ∈R ,使sin x =52,则¬p = ∀x ∈R ,使sin x ≠2.导学号 18674596 [解析] 全称命题的否定是特称命题.14.(2016·福建宁德市高二检测)已知复数z 满足z (1+i)=1(i 为虚数单位),则z = 12-12i .导学号 18674597 [解析] z =11+i=1-i 2=12-12i.15.观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 ……照此规律,第五个等式应为__5+6+7+8+9+10+11+12+13=81__.导学号 18674598[解析] 第1个等式有1项,从1开始;第2个等式有3项,从2开始; 第3个等式有5项,从3开始; 第4个等式有7项,从4开始.每个等式左边都是相邻自然数的和,右边是项数的平方,故由已知4个等式的变化规律可知,第5个等式有9项,从5开始,等式右边是92,故为5+6+7+8+9+10+11+12+13=81.16.已知点A (x 1,ax 1)、B (x 2,ax 2)是函数y =a x (a >1)的图象上任意不同的两点,依据图象可知,线段AB 总是位于A ,B 两点之间的函数图象的上方,因此有结论ax 1+ax 22>ax 1+x 22成立.运用类比的思想方法可知,若点A (x 1,sin x 1)、B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同的两点,则类似地有sin x 1+sin x 22<sin x 1+x 22成立.导学号 18674599 [解析] 依据函数y =sin x (x ∈(0,π))的图象可知,线段AB 总是位于A 、B 两点之间函数图象的下方,所以有sin x 1+sin x 22<sin x 1+x 22.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算(1+i 2)2+5i3+4i ;导学号 18674600(2)复数z =x +y i(x 、y ∈R )满足z +2i z -=3+i ,求复数z 的对应点Z 所在的象限. [解析] (1)原式=2i2+5i (3-4i )(3+4i )(3-4i )=i +4+3i 5=45+85i.(2)由z +2i z -=3+i 得 (x +2y )+(y +2x )i =3+i ,∴⎩⎪⎨⎪⎧x +2y =3y +2x =1, 解得x =-13,y =53,∴z =-13+53i ,∴复数z 对应点Z 的坐标为(-13,53),即在第二象限.18.(本题满分12分)已知命题p :方程x 22-m +y 2m -1=1的曲线是焦点在y 轴上的双曲线,命题q :方程4x 2+4(m -2)x +1=0无实根,又p ∨q 为真,¬q 为真,求实数m 的取值范围.导学号 18674601[解析] p :⎩⎪⎨⎪⎧2-m <0m -1>0,∴m >2.故p :m >2.q :△=16(m -2)2-16<0, 即m 2-4m +3<0, ∴1<m <3. 故q :1<m <3.又∵p ∨q 为真,¬q 为真, ∴p 真q 假,即⎩⎨⎧m >2m ≤1或m ≥3,∴m ≥3.19.(本题满分12分)(2016·广东河源市高二检测)为了解人们对于国家新颁布的“生育二胎开放”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:导学号 18674602“生育二胎放开”政策的支持度有差异.参考数据:[解析] 列联表如下:由公式得K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )=50(3×11-7×29)210×40×32×18≈6.272<6.635.故没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异. 20.(本题满分12分)已知a 、b 、c 是全不相等的正实数,求证:b +c -a a +a +c -bb +a +b -cc>3.导学号 18674603 [解析] 解法一:(分析法)要证b +c -a a +a +c -b b +a +b -c c >3,只需证明b a +c a -1+c b +a b -1+a c +bc -1>3,即证b a +c a +c b +a b +a c +bc>6.而事实上,由a 、b 、c 是全不相等的正实数, 得b a +a b >2,c a +a c >2,c b +b c >2. 从而b a +c a +c b +a b +a c +b c >6.故b +c -a a +a +c -b b +a +b -cc>3得证. 解法二:(综合法) ∵a 、b 、c 全不相等,∴b a 与a b ,c a 与a c ,c b 与bc 全不相等. ∴b a +a b >2,c a +a c >2,c b +b c >2. 三式相加得b a +c a +c b +a b +a c +bc >6,∴(b a +c a -1)+(c b +a b -1)+(a c +bc -1)>3, 即b +c -a a +a +c -b b +a +b -cc>3. 21.(本题满分12分)(2017·全国Ⅲ文,20)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:导学号 18674604(1)能否出现AC ⊥BC 的情况?说明理由.(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. [解析] (1)解:不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为(x 22,12),可得BC 的中垂线方程为y -12=x 2(x 2-x 22).由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m 2,y -12=x 2(x -x22),又x 22+mx 2-2=0,可得⎩⎨⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为(-m 2,-12),半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-(m2)2=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.22.(本题满分12分)(2017·全国Ⅱ文,21)设函数f (x )=(1-x 2)e x .导学号 18674605 (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. [解析] (1)解:f ′(x )=(1-2x -x 2)e x . 令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x ) 在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)解:f (x )=(1+x )(1-x )e x . 当a ≥1时,设函数h (x )=(1-x )e x , 则h ′(x )=-x e x <0(x >0), 因此h (x )在[0,+∞)单调递减. 而h (0)=1,故h (x )≤1所以f (x )=(x +1)h (x )≤x +1≤ax +1. 当0<a <1时,设函数g (x )=e x -x -1, 则g ′(x )=e x -1>0(x >0), 所以g (x )在[0,+∞)单调递增.而g(0)=0,故e x≥x+1.当0<x<1时,f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=5-4a-12,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=5-12,则x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax+1.综上,a的取值范围是[1,+∞).11。