2018届高三数学(理)一轮复习夯基提能作业本:第六章 数列第一节 数列的概念及简单表示法

合集下载

2018课标版理数一轮(6)第六章-数列(含答案)2第二节等差数列及其前n项和夯基提能作业本

2018课标版理数一轮(6)第六章-数列(含答案)2第二节等差数列及其前n项和夯基提能作业本

2018课标版理数一轮(6)第六章-数列(含答案)2第二节等差数列及其前n项和夯基提能作业本第二节等差数列及其前n项和A组基础题组1.(2016青岛模拟)在等差数列{a n}中,a2+a12=32,则2a3+a15的值是()A.24B.48C.96D.无法确定2.在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则a9-13a11的值为()A.14B.15C.16D.173.(2016淄博模拟)设等差数列{a n}的前n项和为S n,若-a m<a1<-a m+1(m∈n*,m≥2),则必有()<="" p="">A.S m>0且S m+1<0B.S m<0且S m+1>0C.S m>0且S m+1>0D.S m<0且S m+1<04.数列{a n}的前n项和S n=2n2+3n(n∈N*),若p-q=5,则a p-a q=()A.10B.15C.-5D.205.设数列{a n}的前n项和为S n,若S nS2n为常数,则称数列{a n}为“吉祥数列”.已知等差数列{b n}的首项为1,公差不为0,若数列{b n}为“吉祥数列”,则数列{b n}的通项公式为()A.b n=n-1B.b n=2n-1C.b n=n+1D.b n=2n+16.在等差数列{a n}中,公差d=12,前100项的和S100=45,则a1+a3+a5+…+a99=.7.等差数列{a n}中,已知a5>0,a4+a7<0,则{a n}的前n项和S n中最大的为.8.(2016福建莆田期中)如果数列{a n}满足a1=2,a2=1,且an-1-a nan-1=a n-a n+1a n+1(n≥2),则这个数列的第10项等于.9.(2016威海模拟)已知S n为正项数列{a n}的前n项和,且满足S n=12a n2+12a n(n∈N*).(1)求a1,a2,a3,a4的值;(2)求数列{a n}的通项公式.10.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数,(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.B组提升题组11.(2016德州模拟)已知正项数列{a n}的前n项的乘积T n=14n2-6n(n∈N*),b n=log2a n,则数列{b n}的前n项和S n中最大的是()A.S6B.S5C.S4D.S312.已知等差数列{a n}的公差d>0,若a1+a2+…+a2017=2017a m(m∈N*),则m=.13.(2016四川成都一诊)设等差数列{a n}的前n项和为S n,若a2+a4+a9=24,则S88·S1010的最大值为.14.(2016安徽安庆二模)已知数列{a n}是各项均不为零的等差数列,S n为其前n项和,且a n=S2n-1(n∈N*).若不等式λa n ≤n+8n对任意n∈N*恒成立,则实数λ的最大值为.15.已知数列{a n}是等差数列,b n=a n2-a n+12.(1)证明:数列{b n}是等差数列;(2)若a1+a3+a5+…+a25=130,a2+a4+a6+…+a26=143-13k(k为常数),求数列{b n}的通项公式;(3)在(2)的条件下,若数列{b n}的前n项和为S n,是否存在实数k,使S n当且仅当n=12时取得最大值?若存在,求出k的取值范围;若不存在,说明理由.16.已知函数f(x)=x2-2(n+1)x+n2+5n-7.(1)设函数y=f(x)的图象的顶点的纵坐标构成数列{a n},求证:{a n}为等差数列;(2)设函数y=f(x)的图象的顶点到x轴的距离构成数列{b n},求{b n}的前n项和S n.答案全解全析 A 组基础题组1.B 由等差数列的通项公式知,a 2+a 12=2a 1+12d=2(a 1+6d)=32,所以 a 1+6d=16,所以2a 3+a 15=3a 1+18d=3(a 1+6d)=48.2.C 设等差数列{a n }的公差为d,∵a 4+a 6+a 8+a 10+a 12=120,∴5a 8=120,a 8=24,∴a 9-13a 11=(a 8+d)-13(a 8+3d)=23a 8=16.3.A 由题意知,a 1+a m >0,a 1+a m+1<0,得S m =m (a 1+a m )2>0,S m+1=(m +1)(a 1+a m +1)2<0.4.D 解法一:当n ≥2时,a n =S n -S n-1=2n 2+3n-[2(n-1)2+3(n-1)]=4n+1, 当n=1时,a 1=S 1=5,符合上式, ∴a n =4n+1,∴a p -a q =4(p-q)=20.解法二:由题意可知{a n }为等差数列,且公差d=2×2=4,∴a p -a q =d(p-q)=20.5.B 设等差数列{b n }的公差为d(d ≠0),S n S 2n=k,因为b 1=1,则n+12n(n-1)d=k 2n +12×2n(2n-1)d ,即2+(n-1)d=4k+2k(2n-1)d,整理得(4k-1)dn+(2k-1)(2-d)=0.因为对任意的正整数n 上式均成立,所以(4k-1)d=0,(2k-1)(2-d)=0,解得d=2,k=14.所以数列{b n }的通项公式为b n =2n-1.6.答案 10 解析 S 100=1002(a 1+a 100)=45,a 1+a 100=0.9,a 1+a 99=a 1+a 100-d=0.4,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×0.4=10.7.答案 S 5解析∵ a 4+a7=a 5+a 6<0,a 5>0,∴ a 5>0,a 6<0,∴S n 中最大的为S 5. 8.答案15解析∵a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),∴a n =2a n -1a n +1an +1+a n -1(n ≥2),∴2a n=1an +1+1a n -1(n ≥2),∴ 1a n为等差数列.∴公差d=1a 2-1a 1=1-12=12,∴1a 10=12+9×12=5,∴a 10=15.9.解析(1)已知{a n}是正项数列,由S n=1 2a n2+12a n(n∈N*),可得a1=12a12+12a1,解得a1=1;S2=a1+a2=12a22+12a2,解得a2=2;同理,a3=3,a4=4.(2)S n=12a n2+12a n,①当n≥2时,S n-1=12an-12+12a n-1,②①-②化简得(a n-a n-1-1)(a n+a n-1)=0(n≥2),又{a n}为正项数列,∴a n-a n-1=1(n≥2).由(1)知a1=1,故数列{a n}是首项为1,公差为1的等差数列,故a n=n.10.解析(1)证明:由题设a n a n+1=λS n-1,知a n+1a n+2=λS n+1-1.两式相减可得a n+1(a n+2-a n)=λa n+1. 由于a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,可得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.此时a n+2-a n=4,由此可得,{a2n-1}(n∈N*)是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3; {a2n}(n∈N*)是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.B组提升题组11.D当n=1时,a1=T1=14-5=45,当n≥2时,a n=T nTn-1=142n-7,显然a1=45也适合上式,所以数列{a n}的通项公式为a n=142n-7,所以b n=log2a n=14-4n,数列{b n}是以10为首项,-4为公差的等差数列,所以S n=10n+n(n-1)(-4)2=-2n2+12n=-2[(n-3)2-9],易得S n中最大的是S3.12.答案1009解析因为数列{a n}是等差数列,所以a1+a2+…+a2017=2017a1+2017×20162d=2017(a1+1008d),又 a m=a1+(m-1)d,所以根据题意得,2017(a1+1008d)=2017[a1+(m-1)d],解得m=1009.13.答案 64解析设等差数列{a n }的公差为d,则a 2+a 4+a 9=3a 1+12d=24,即a 1+4d=8,所以S n n=na 1+n (n -1)2d n=a 1+n -12d=8-4d+n -12d,则S 88=8-4d+72d=8-d 2,S 1010=8-4d+92d=8+d 2,S 88·S 1010= 8-d 2 8+d2 =64-d 24≤64,当且仅当d=0时取等号,所以S88·S 1010的最大值为64.14.答案 9解析 a n = S 2n -1?a n = (2n -1)(a 1+a 2n -1)2= (2n -1)a n ?a n 2=(2n-1)a n ?a n =2n-1,n ∈N *.因为λa n ≤n +8n,所以λ≤(+8)(2n -1)n,即λ≤2n-8n+15.易知y=2x-8x(x>0)为增函数,∴2n -8n+15≥2×1-81+15=9,所以λ≤9,故实数λ的最大值为9. 15.解析 (1)证明:设{a n }的公差为d,则b n+1-b n =(a n +12-a n +22)-(a n 2-a n +12)=2a n +12-(a n+1-d)2-(a n+1+d)2=-2d 2,∴数列{b n }是以-2d 2为公差的等差数列.(2)∵a 1+a 3+a 5+…+a 25=130,a 2+a 4+a 6+…+a 26=143-13k,∴13d=13-13k,∴d=1-k,又13a 1+13×(13-1)2×2d=130,∴a 1=-2+12k,∴a n =a 1+(n-1)d=(-2+12k)+(n-1)(1-k)=(1-k)n+13k-3,∴b n =a n 2-a n +12=(a n +a n+1)·(a n -a n+1)=-2(1-k)2n+25k 2-30k+5.(3)存在.要满足当且仅当n=12时S n 最大,则b 12>0,b 13<0.即-2(1-k )2·12+25k 2-30k +5>0,-2(1-k )2·13+25k 2-30k +5<0? k 2+18k-19>0,k 2-22k +21>0? k >1或k <-19,k >21或k <1?k>21或k<-19,故存在满足题意的实数k,此时k ∈(-∞,-19)∪(21,+∞). 16.解析 (1)证明:∵f(x)=x 2-2(n+1)x+n 2+5n-7=[x-(n+1)]2+3n-8,∴a n =3n-8.∵a n+1-a n =3(n+1)-8-(3n-8)=3,∴数列{a n }为等差数列.(2)由题意知,b n =|a n |=|3n-8|,∴当1≤n ≤2,n ∈N *时,b n =8-3n,S n =n (b 1+b n )2=n [5+(8-3n )]2=13n -3n 22;当n ≥3,n ∈N *时,b n =3n-8,S n =b 1+b 2+b 3+…+b n =5+2+1+…+(3n-8)=7+(n -2)[1+(3n -8)]2=3n 2-13n+282.∴S n = 13n-3n 22,1≤n ≤2,n ∈N *,3n 2-13n+282,n ≥3,n ∈N *.</a1<-a>。

2018版高考数学(理)一轮复习文档:第六章6.3 等比数列及其前n项和含解析

2018版高考数学(理)一轮复习文档:第六章6.3 等比数列及其前n项和含解析

1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).2.等比数列的通项公式设等比数列{a n}的首项为a1,公比为q,则它的通项a n=a1·q n-1.3.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n=a m·q n-m(n,m∈N*).(2)若{a n}为等比数列,且k+l=m+n(k,l,m,n∈N*),则a k·a l=a m·a n.(3)若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),错误!,{a错误!},{a n·b n},错误!仍是等比数列.5.等比数列的前n项和公式等比数列{a n}的公比为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n=错误!=错误!.6.等比数列前n项和的性质公比不为-1的等比数列{a n}的前n项和为S n,则S n,S2n-S n,S3n-S2n仍成等比数列,其公比为q n。

【知识拓展】等比数列{a n}的单调性(1)满足错误!或错误!时,{a n}是递增数列.(2)满足错误!或错误!时,{a n}是递减数列.(3)当错误!时,{a n}为常数列.(4)当q<0时,{a n}为摆动数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列.(×)(2)G为a,b的等比中项⇔G2=ab。

(×)(3)如果数列{a n}为等比数列,b n=a2n-1+a2n,则数列{b n}也是等比数列.(×)(4)如果数列{a n}为等比数列,则数列{ln a n}是等差数列.(×)1.(教材改编)已知{a n}是等比数列,a2=2,a5=错误!,则公比q等于()A.-错误!B.-2C.2 D.错误!答案 D解析由题意知q3=错误!=错误!,∴q=错误!。

2018课标版理数一轮(6)第六章-数列(含答案)1 第一节 数列的概念及简单表示法

2018课标版理数一轮(6)第六章-数列(含答案)1 第一节 数列的概念及简单表示法

3.已知数列 , , , ,
3 5 2 4
9 7 6 a b
ab ,…,根据前三项给出的规律,则实数对 10
(a,b)可能是 (
A.(19,3)
19 3 C. , 2 2
)
B.(19,-3)
19 3 D. , 2 2
2n 1 (n∈N*). 2n
a an
③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法 先根据已知条件求出数列的前几项,确定数列的周期,再根据周期求值. (3)数列的最值可以利用数列的单调性或求函数最值的方法求解.
2 an
栏目索引
3-1 已知数列{an}满足a1=1,an+1= -2an+1(n∈N*),则a2 018= ( A.1 B.0 C.2 018 D.-2 018
1 1 1 + 1 1 + 1 1 +…+ = 1 , n 1 n 2 2 3 3 4
1 即n≥2时,an-a1=1- , n
1 又∵a1= , 2
1 1 3 1 ∴n≥2时,an=1- + = - , n
=f ( n )
a n 1 an
· · · …· · = (n≥2)
a2 a1 a3 a2
a4 a3
a n 1 a n2
an a n 1
an a1
an+1=pan+q(p≠0,1,q≠0) 转化法
化为an+1+m=p(an+m),以此构造等比数列{an+m}
2-1 数列{an}中,a1=2,an+1=an+n+1,则an= 答案

2018版高考数学(人教A版理科)一轮复习真题演练集训:第六章 数列6-1含答案

2018版高考数学(人教A版理科)一轮复习真题演练集训:第六章 数列6-1含答案

课外拓展阅读由递推公式求通项的常用方法和技巧递推数列是高考考查的热点,由递推公式求通项时,一般需要先对递推公式进行变形,然后利用转化与化归的思想解决递推数列问题.下面给出几种常见的递推数列,并讨论其通项公式的求法.类型1 a n+1=a n+f(n)把原递推公式转化为a n+1-a n=f(n),再利用累加法(逐差相加法)求解.已知数列{a n}中,a1=2,a n+1=a n+n+1,求数列{a n}的通项公式.因为a1=2,a n+1-a n=n+1,所以a n-a n-1=(n-1)+1,a n-1-a n-2=(n-2)+1,a n-2-a n-3=(n-3)+1,…a2-a1=1+1,由已知,a1=2=1+1,将以上各式相加,得a n=+n+1=错误!+n+1=错误!+n+1=错误!+1。

类型2 a n+1=f(n)a n把原递推公式转化为错误!=f(n),再利用累乘法(逐商相乘法)求解.已知数列{a n}满足a1=错误!,a n+1=错误!·a n,求数列{a n}的通项公式.由a n+1=错误!·a n,得错误!=错误!。

当n ≥2,n ∈N *时,a n =错误!·错误!·…·错误!·a 1=错误!·错误!·…·错误!·错误!=错误!,即a n =错误!。

又当n =1时,错误!=错误!=a 1,故a n =错误!.类型3 a n +1=pa n +q先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =错误!,再利用换元法转化为等比数列求解. 已知数列{a n }中,a 1=1,a n +1=2a n +3,求数列{a n }的通项公式.设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,解得t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且错误!=错误!=2.所以{b n }是以4为首项,以2为公比的等比数列.所以b n =4×2n -1=2n +1, 即a n =2n +1-3。

2018版高三数学文一轮复习能力大提升 第六章数列 含答

2018版高三数学文一轮复习能力大提升 第六章数列 含答

第六章 数 列考点1 数列的概念及简单表示法1.(2014·新课标全国Ⅱ,16)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________.1.解析 将a 8=2代入a n +1=11-a n,可求得a 7=12;再将a 7=12代入a n +1=11-a n ,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2. 由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案 122.(2014·江西,17)已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列. 2. (1)解 由S n =3n 2-n2,得a 1=S 1=1,当n ≥2时,a n =S n -S n -1=3n -2, 所以数列{a n }的通项公式为:a n =3n -2.(2)证明 要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m , 即(3n -2)2=1·(3m -2),即m =3n 2-4n +2, 而此时m ∈N *,且m >n .所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.3.(2014·湖南,16)已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.3.解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.考点2 等差数列及其前n 项和1.(2015·新课标全国Ⅰ,7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( ) A.172B.192C.10D.12 1.解析 由S 8=4S 4知,a 5+a 6+a 7+a 8=3(a 1+a 2+a 3+a 4), 又d =1,∴a 1=12,a 10=12+9×1=192.答案 B2.(2015·新课标全国Ⅱ,5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A.5 B.7 C.9 D.112.解析 ∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5(a 1+a 5)2=5a 3=5.故选A.答案 A3.(2014·天津,5)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=( ) A.2 B.-2 C.12D.-123.解析 由S 1=a 1,S 2=2a 1-1,S 4=4a 1-6成等比数列可得(2a 1-1)2=a 1(4a 1-6), 解得a 1=-12.答案 D4.(2014·新课标全国Ⅱ,5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A.n (n +1) B.n (n -1)C2)1(+n n D 2)1(-n n 4.解析 因为a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8, 所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2. 所以S n =na 1+n (n -1)2d =n (n +1).故选A.答案 A5.(2014·重庆,2)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A.5 B.8 C.10 D.145.解析 由等差数列的性质得a 1+a 7=a 3+a 5, 因为a 1=2,a 3+a 5=10,所以a 7=8,选B. 答案 B6.(2015·安徽,13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.6.解析 由已知数列{a n }是以1为首项,以12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.答案 277.(2015·陕西,13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________7.解析 由题意设首项为a 1, 则a 1+2 015=2×1 010=2 020, ∴a 1=5. 答案 58.(2014·江西,13)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.8.解析 由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案⎝⎛⎭⎫-1,-789.(2016·新课标全国Ⅱ,17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0, [2.6]=2.9.解(1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3, 解得a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎡⎦⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.(2014·大纲全国,17)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.10.(1)证明由a n +2=2a n +1-a n +2得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)解由(1)得b n =1+2(n -1),即a n +1-a n =2n -1. 于是111()(21)nnk k k k aa k +==-=-∑∑,所以a n +1-a 1=n 2,即a n +1=n 2+a 1. 又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.11.(2014·浙江,19)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. (1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 11.解(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)·(k +1), 所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1>k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4.12.(2014·重庆,16)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0.求{b n }的通项公式及其前n 项和T n .12.解(1)因为{a n }是首项a 1=1,公差d =2的等差数列, 所以a n =a 1+(n -1)d =2n -1. 故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q =23(4n-1).考点3 等比数列及其前n 项和1.(2015·新课标全国Ⅱ,9)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A.2B.1C.12D.181.解析 由{a n }为等比数列,得a 3a 5=a 24, 所以a 24=4(a 4-1),解得a 4=2.设等比数列{a n }的公比为q ,则a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.选C.答案 C2.(2014·大纲全国,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A.31 B.32 C.63 D.642.解析 方法一 设等比数列{a n }的首项为a 1,公比为q . 若q =1,则有S n =na 1,显然不符合题意,故q ≠1.由已知可得⎩⎪⎨⎪⎧S 2=a 1(1-q 2)1-q=3,S 4=a 1(1-q 4)1-q =15,两式相除得1+q 2=5,解得q 2=4.故q =2或q =-2.若q =2,代入解得a 1=1,此时S 6=a 1(1-q 6)1-q =1×(1-26)1-2=63.若q =-2,代入解得a 1=-3,此时S 6=a 1(1-q 6)1-q =(-3)×[1-(-2)6]1-(-2)=63.故选C.方法二 因为数列{a n }为等比数列,若q =1,则有S n =na 1,显然不符合题意,故q ≠1. 设其前n 项和为S n =Aq n -A .由题意可得⎩⎪⎨⎪⎧S 2=A ×q 2-A =3S 4=A ×q 4-A =15,两式相除得1+q 2=5, 解得q 2=4,代入解得A =1. 故S n =q n -1.所以S 6=q 6-1=(q 2)3-1=43-1=63.故选C. 方法三 设等比数列的公比为q .则S 2=a 1+a 2=3,S 4=a 1+a 2+a 3+a 4=(1+q 2)(a 1+a 2)=(1+q 2)×3=15, 解得q 2=4.故S 6=a 1+a 2+a 3+a 4+a 5+a 6=(1+q 2+q 4)(a 1+a 2)=(1+4+42)×3=63.故选C. 答案 C3.(2015·新课标全国Ⅰ,13)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.3.解析 由a n +1=2a n 知,数列{a n }是以a 1=2为首项,q =2为公比的等比数列, 由S n =2(1-2n )1-2=126,解得n =6.答案 64.(2015·广东,13)若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =________. 4.解析 ∵三个正数a ,b ,c 成等比数列, ∴b 2=ac =(5+26)(5-26)=1. ∵b 为正数,∴b =1. 答案 15.(2014·广东,13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.5.解析 由等比数列的性质可知a 1a 5=a 2a 4=a 23, 于是由a 1a 5=4得a 3=2,故a 1a 2a 3a 4a 5=32,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 232=5. 答案 56.(2016·新课标全国Ⅲ,17)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式. 6.解(1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.7.(2016·北京,15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和. 7.解(1)设数列{a n }的公差为d ,{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎪⎨⎪⎧b 1=1,q =3. ∴{b n }的通项公式b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴{a n }的通项公式a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…). (2)设数列{c n }的前n 项和为S n . ∵c n =a n +b n =2n -1+3n -1,∴S n =c 1+c 2+c 3+…+c n=2×1-1+30+2×2-1+31+2×3-1+32+…+2n -1+3n -1=2(1+2+…+n )-n +30×(1-3n )1-3=2×(n +1)n 2-n +3n -12=n 2+3n -12.即数列{c n }的前n 项和为n 2+3n -12.8.(2015·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求T n .8.解(1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n . (2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n 1-12=1-12n .9.(2014·北京,15)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.9.解(1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1,b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…),数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以数列{b n }的前n 项和为32n (n +1)+2n -1.10.(2014·福建,17)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .10.解(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.所以a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2.考点4 数列的综合应用1.(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.1.2011解析 ∵a 1=1,a n +1-a n =n +1, ∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2,令b n =1a n ,故b n =2n (n +1)=2⎣⎡⎦⎤1n -1n +1,故S 10=b 1+b 2+…+b 10=2⎣⎡⎦⎤1-12+12-13+…+110-111=2011.2.(2015·浙江,10)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________. 2.解析 ∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7,即(a 1+2d )2=(a 1+d )(a 1+6d ),∴a 1=-23d ,∵2a 1+a 2=1,∴2a 1+a 1+d =1,即3a 1+d =1, ∴a 1=23,d =-1.答案 23-13.(2016·新课标全国Ⅰ,17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n +1+b n +1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.3.解(1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1. (2)由(1)和a n b n +1+b n +1=nb n 得b n +1=b n3,所以{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝⎛⎭⎫13n1-13=32-12×3n -1. 4.(2016·浙江,17)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.4.解(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3. 又当n ≥2时,a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n . 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1,当n ≥3时,因为3n -1>n +2, 所以b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112,n ≥2,n ∈N *. 5.(2016·山东,19)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .5.解(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式. 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2. 所以T n =-3n ·2n +2.6.(2016·四川,19)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1, 其中q >0,n ∈N *.(1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=2,求e 21+e 22+…+e 2n . 6.解 (1)由已知,S n +1=qS n +1,S n +2=qS n +1+1, 两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立. 所以数列{a n }是首项为1,公比为q 的等比数列,a n =q n -1. 由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3, 所以a 3=2a 2,q =2, 所以a n =2n -1(n ∈N *).(2)由(1)可知,a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=2解得q =3,所以e 21+e 22+…+e 2n=(1+1)+(1+q 2)+…+[1+q 2(n -1)]=n +[1+q 2+…+q 2(n-1)]=n +q 2n -1q 2-1=n +12(3n -1).7.(2015·北京,16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 7.解(1)设等差数列{a n }的公差为d , 因为a 4-a 3=2,所以d =2. 又因为a 1+a 2=10, 所以2a 1+d =10,故a 1=4.所以a n =4+2(n -1)=2n +2(n =1,2,…). (2)设等比数列{b n }的公比为q , 因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4. 所以b 6=4×26-1=128. 由128=2n +2,得n =63, 所以b n 与数列{a n }的第63项相等.8.(2015·重庆,18)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 8.解(1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92,化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n-1.9.(2015·广东,19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式.9.(1)解当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得:a 4=78. (2)证明因为4S n +2+5S n =8S n +1+S n -1(n ≥2),所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2), 因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,因为a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.(3)解由(2)知;数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12公比为的等比数列,所以a n +1-12a n =⎝⎛⎭⎫12n -1,即a n +1⎝⎛⎭⎫12n +1-a n ⎝⎛⎭⎫12n =4, 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,4为公差的等差数列,所以a n⎝⎛⎭⎫12n =2+(n -1)×4=4n -2,即a n =(4n -2)×⎝⎛⎭⎫12n=(2n -1)×⎝⎛⎭⎫12n -1,所以数列{a n }的通项公式是a n =(2n -1)×⎝⎛⎭⎫12n -1.10.(2015·湖北,19)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q , 已知b 1=a 1,b 2=2,q =d ,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .10.解(1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.11.(2015·安徽,18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .11.解(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.(2)S n =a 1(1-q n )1-q =2n -1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝⎛⎭⎫1S 1-1S 2+⎝⎛⎭⎫1S 2-1S 3+…+⎝⎛⎭⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.12.(2015·福建,17)在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值. 12.解(1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.13.(2015·天津,18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1, b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.13.解(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,又因为q >0,解得q =2,所以d =2.所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *.(2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n , 则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 两式相减得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)×2n =-(2n -3)×2n -3,所以S n =(2n -3)·2n +3,n ∈N *.14.(2015·山东,19)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 14.解(1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,所以a 1a 2=3.令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.解得a 1=1,d =2,所以a n =2n -1. (2)由(1)知b n =2n ·22n -1=n ·4n , 所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n +1, 两式相减得,-3T n =41+42+…+4n-n ·4n +1=4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43.所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.15.(2015·浙江,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . 15.解(1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1n b n =b n +1-b n ,整理得b n +1n +1=b n n ,所以b n =n (n ∈N *).(2)由(1)知a n b n =n ·2n .因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).16.(2015·湖南,19)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S n .16.(1)证明由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ≥2,n ∈N *,有a n +1=3S n -1-S n +3. 两式相减得,a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2. 又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *,a n +2=3a n . (2)解由(1)知,a n ≠0,所以a n +2a n=3,所以数列{a 2n -1}是首项a 1=1,公比为3等比数列; 数列{a 2n }是首项a 2=2,公比为3的等比数列, 所以a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=3(3n -1)2.所以S 2n -1=S 2n -a 2n =3(3n -1)2-2×3n -1=32(5×3n -2-1).综上所述,S n=⎩⎨⎧32(5×3n -32-1),当n 是奇数,32(3n2-1),当n 是偶数.17.(2014·安徽,18)数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列{a nn}是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . 17.(1)证明由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1.所以{a n n }是以a 11=1为首项,1为公差的等差数列.(2)解由(1)得a nn =1+(n -1)·1=n ,所以a n =n 2,b n =n ·3n .S n =1·31+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+…+(n -1)·3n +n ·3n +1.②①-②得,-2S n =31+32+…+3n -n ·3n +1 =3·(1-3n )1-3-n ·3n +1=(1-2n )·3n +1-32.所以S n =(2n -1)·3n +1+34.18.(2014·新课标全国Ⅰ,17)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列{a n2n }的前n 项和.18.解(1)方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3. 设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12, a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设数列{a n2n }的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+⎝⎛⎭⎫123+…+12n +1-n +22n +2=34+14⎝⎛⎭⎫1-12n -1-n +22n +2. 所以S n =2-n +42n +1.19.(2014·山东,19)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =(1)2n n a +,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .19.解(1)由题意知(a 1+d )2=a 1(a 1+3d ),即(a 1+2)2=a 1(a 1+6),解得a 1=2. 所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)n n ×(n +1). 因为b n +1-b n =2(n +1),所以可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n ) =4+8+12+…+2n =n2(4+2n )2=n (n +2)2;当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n =⎩⎨⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.20.(2014·广东,19)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1a 1 a 1+1 +1a 2 a 2+1 +…+1a n a n +1 <13.20(1)解由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. 令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或S 1=2,即a 1=-3或a 1=2, 又a n 为正数,所以a 1=2.(2)解由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3,又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1), 所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n .(3)证明当n =1时,1a 1(a 1+1)=12×3=16<13成立;当n ≥ 2时,1a n (a n +1)=12n (2n +1)<1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<16+12⎣⎡⎦⎤⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =16+12⎝⎛⎭⎫13-12n +1<16+16=13. 所以对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.。

2018版高考数学(人教A版理科)大一轮复习配套(讲义)第六章数列第1讲含解析

2018版高考数学(人教A版理科)大一轮复习配套(讲义)第六章数列第1讲含解析

基础巩固题组(建议用时:40分钟)一、选择题1。

数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( )A。

错误! B.cos 错误!C.cos 错误!πD。

cos 错误!π解析令n=1,2,3,…,逐一验证四个选项,易得D正确。

答案D2.数列错误!,-错误!,错误!,-错误!,…的第10项是( )A。

-错误! B.-错误!C。

-错误! D.-错误!解析所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n}的通项公式a n=(-1)n+1·2n2n+1,故a10=-错误!。

答案C3。

(2017·保定调研)在数列{a n}中,已知a1=1,a n+1=2a n+1,则其通项公式a n=()A.2n-1B.2n-1+1C.2n-1 D。

2(n-1)解析法一由a n+1=2a n+1,可求a2=3,a3=7,a4=15,…,验证可知a n=2n-1。

法二由题意知a n+1+1=2(a n+1),∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1.答案A4.数列{a n}的前n项积为n2,那么当n≥2时,a n等于()A。

2n-1 B.n2C。

错误! D.错误!解析设数列{a n}的前n项积为T n,则T n=n2,当n≥2时,a n=错误!=错误!.答案D5.数列{a n}满足a n+1+a n=2n-3,若a1=2,则a8-a4=()A。

7 B.6 C。

5 D。

4解析依题意得(a n+2+a n+1)-(a n+1+a n)=[2(n+1)-3]-(2n -3),即a n+2-a n=2,所以a8-a4=(a8-a6)+(a6-a4)=2+2=4。

答案D二、填空题6.若数列{a n}满足关系a n+1=1+错误!,a8=错误!,则a5=________。

解析 借助递推关系,则a 8递推依次得到a 7=错误!,a 6=错误!,a 5=错误!。

2018版高考数学(理)一轮复习文档:第六章6.1 数列的概念与简单表示法含解析

1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1__>__a n其中n∈N*递减数列a n+1__<__a n常数列a n+1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列3。

数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法.4.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.【知识拓展】1.若数列{a n}的前n项和为S n,通项公式为a n,则a n=错误!2.在数列{a n}中,若a n最大,则错误!若a n最小,则错误!3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有数列的第n项都能使用公式表达.( ×)(2)根据数列的前几项归纳出数列的通项公式可能不止一个.(√)(3)1,1,1,1,…,不能构成一个数列.(×)(4)任何一个数列不是递增数列,就是递减数列.( ×) (5)如果数列{a n}的前n项和为S n,则对∀n∈N*,都有a n+1=S n+1-S n。

(√)1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图所示).则第7个三角形数是( )A.27 B.28C.29 D.30答案B解析由图可知,第7个三角形数是1+2+3+4+5+6+7=28。

2.已知数列错误!,错误!,错误!,…,错误!,…,下列各数中是此数列中的项的是()A.错误!B.错误!C.错误!D.错误!答案B3.(教材改编)在数列{a n}中,a1=1,a n=1+错误!(n≥2),则a5等于( )A.错误!B.错误!C。

2018版高考数学理人教大一轮复习讲义教师版文档第六章

1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 【知识拓展】1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ )1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29 D .30答案 B解析 由图可知,第7个三角形数是1+2+3+4+5+6+7=28.2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( )A.135B.142C.148D.154 答案 B3.(教材改编)在数列{a n }中,a 1=1,a n =1+(-1)n a n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.4.数列{a n }中,a n =-n 2+11n ,则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-(n -112)2+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 5.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)(2016·太原模拟)数列1,3,6,10,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2D .a n =n (n -1)2(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)C (2)2n +1n 2+1解析 (1)观察数列1,3,6,10,…可以发现1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,…第n 项为1+2+3+4+…+n =n (n +1)2.∴a n =n (n +1)2.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的绝对值的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n-32n. 题型二 由a n 与S n 的关系求通项公式例2 (1)(2017·南昌月考)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.(2)已知下列数列{a n }的前n 项和S n ,求{a n }的通项公式.①S n =2n 2-3n ;②S n =3n +b . 解 ①a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式; 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.思维升华 已知S n ,求a n 的步骤(1)当n =1时,a 1=S 1;(2)当n ≥2时,a n =S n -S n -1;(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式.(1)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.(2)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n 等于( ) A .2n -1B .(32)n -1C .(32)nD.12n -1 答案 (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)B解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)由a n +1=S n +1-S n ,得12S n =S n +1-S n ,即S n +1=32S n (n ≥1),又S 1=a 1=1,所以数列{S n }是首项为1,公比为32的等比数列,所以S n =(32)n -1,故选B.题型三 由数列的递推关系求通项公式例3 根据下列条件,确定数列{a n }的通项公式. (1)a 1=2,a n +1=a n +ln(1+1n );(2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln(1+1n),∴a n -a n -1=ln(1+1n -1)=ln nn -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lnn n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln(n n -1.n -1n -2 (3)2·2)=2+ln n (n ≥2).又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1.思维升华 已知数列的递推关系求通项公式的典型方法(1)当出现a n =a n -1+m 时,构造等差数列;(2)当出现a n =xa n -1+y 时,构造等比数列;(3)当出现a n =a n -1+f (n )时,用累加法求解;(4)当出现a n a n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2且n ∈N *),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5等于( ) A .-16 B .16 C .31 D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1,∴a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16. 题型四 数列的性质 命题点1 数列的单调性例4 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=____________________________.答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)(2016·哈尔滨模拟)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0答案 (1)25(2)D解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 503×4+3=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.12.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·(1011)n ,则此数列的最大项是第________项.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析. 解析 (1)∵a n +1-a n =(n +2)(1011)n +1-(n +1)(1011)n=(1011)n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9、10项. (2)由a n +1>a n 知该数列是一个递增数列, 又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. 答案 (1)9或10 (2)(-3,+∞)1.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.2.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项和第6项 答案 D解析 令a n =3,即n 2-8n +15=3,整理得n 2-8n +12=0,解得n =2或n =6. 3.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1 B .(n +1n )n -1C .n 2D .n 答案 D解析 ∵a n =n (a n +1-a n ),∴a n +1a n =n +1n, ∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n -1·n -1n -2·n -2n -3·…·32·21·1=n .4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12, a 5=a 4a 3=13,a 6=a 5a 4=23, a 7=a 6a 5=2,a 8=a 7a 6=3, ∴数列{a n }具有周期性,T =6,∴a 2 018=a 336×6+2=a 2=3.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,若S n 是数列{a n }的前n 项和,则S 21为( ) A .5B.72C.92D.132 答案 B解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧ -32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 6.(2016·开封一模)已知函数y =f (x )的定义域为R .当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f (-2-a n )(n ∈N *),则a 2 015的值为( )A .4 029B .3 029C .2 249D .2 209 答案 A解析 根据题意,不妨设f (x )=(12)x ,则a 1=f (0)=1,∵f (a n +1)=1f (-2-a n ),∴a n +1=a n +2,∴数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1,∴a 2 015=4 029.7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________.答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.已知数列{a n }的通项公式a n =(n +2)·(67)n ,则数列{a n }的项取最大项时,n=________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1, 即⎩⎨⎧ (n +2)·(67)n ≥(n +1)·(67)n -1,(n +2)·(67)n ≥(n +3)·(67)n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5, 又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 10.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则该数列的前2 019项的乘积a 1·a 2·a 3·…·a 2 019=________.答案 3解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1, ∴数列{a n }是以4为周期的数列,而2 019=4×504+3,a 1a 2a 3a 4=1, ∴前2 019项的乘积为1504·a 1a 2a 3=3.11.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解 (1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1), 又a 1也适合此式,所以a n =(-1)n +1·(2n -1). (2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1] =2×3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2. 12.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,① 当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .*13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.。

2018年高考新课标数学(理)一轮考点突破练习第六章数列Word版含答案

第六章数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用等差数列、等比数列的有关知识解决相应的问题.(4)了解等差数列与一次函数的关系、等比数列与指数函数的关系.6.1 数列的概念与简单表示法1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做 ),排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成,其中a n是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n}.(2)通项公式:如果数列{a n}的与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数(离散的),当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项 (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5) 数列的表示方法有_________、_________、_________、_________.2.数列的分类(1) 数列按项数是有限还是无限来分,分为_________、_________.(2)按项的增减规律分为_________、_________、_________和________.递增数列⇔a n +1_________a n;递减数列⇔a n+1_________a n;常数列⇔a n+1 _________a n.递增数列与递减数列统称为_________.3.数列前n项和S n与a n的关系已知S n,则a n=⎩⎪⎨⎪⎧(n=1),(n≥2).4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n=____________;(2)2,4,6,8,…的一个通项公式为a n=____________;(3)3,5,7,9,…的一个通项公式为a n=____________;(4)2,4,8,16,…的一个通项公式为a n=____________;(5)-1,1,-1,1,…的一个通项公式为a n=______________________;(6)1,0,1,0,…的一个通项公式为a n=___________;(7)a,b,a,b,…的一个通项公式为a n=___________;(8)9,99,999,…的一个通项公式为a n=___________.注:据此,很易获得数列1,11,111, (2)22,222,…;…;8,88,888,…的通项公式分别为19(10n-1),29(10n-1),…,89(10n-1).自查自纠:1.(1)项 首项 a 1,a 2,a 3,…,a n ,… (2)第n 项 n (3)函数值 (4)a n a n -1 (5)通项公式法(解析式法) 列表法 图象法 递推公式法2.(1)有穷数列 无穷数列 (2)递增数列 递减数列摆动数列 常数列 > < = 单调数列 3.S 1 S n -S n -14.(1)n (2)2n (3)2n +1 (4)2n(5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n-1已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解:检验知①②③都是所给数列的通项公式.故选A.把1,3,6,10,15,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图所示).则第七个三角形数是( ) A .27 B .28 C .29 D .30解:观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是本身的序号,所以根据这个规律计算即可.根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28.故选B.在数列{a n }中,a 1=1,a n a n -1=a n -1+ (-1)n(n ≥2,n ∈N +),则a 3a 5的值是( )A.1516 B.158 C.34 D.38解:因为a n a n -1=a n -1+(-1)n, 所以a n =1+(-1)na n -1(a n -1≠0).因为a 1=1,所以a 2=2,a 3=12,a 4=3,a 5=23,所以a 3a 5=34.故选C.(2015·黄冈联考)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解:由S n =23a n +13得:当n ≥2时,S n -1=23a n -1+13,所以当n ≥2时,a n =S n -S n -1,所以 a n=-2a n -1,又n =1时,S 1=a 1=23a 1+13,所以 a 1=1,所以a n =(-2)n -1.故填(-2)n -1.(2015·江苏)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:由a 1=1,且a n +1-a n =n +1(n ∈N *),得a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n+(n -1)+…+2+1=n (n +1)2,则1a n=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝ ⎛⎭⎪⎫1-12+12-13+…+110-111=2⎝ ⎛⎭⎪⎫1-111=2011.故填2011.类型一 数列的通项公式根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解:(1)偶数项为正,奇数项为负,故通项公式正负性可用(-1)n调节,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n(6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故数列的一个通项公式为a n =2n(2n -1)(2n +1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,故数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故数列的一个通项公式为a n =59(10n-1).点拨:①注意通项公式的形式不一定是惟一的,如数列1,0,1,0,…的通项公式可写成a n =1+(-1)n +12或a n =⎪⎪⎪⎪⎪⎪sin n π2,甚至分段形式a n=⎩⎪⎨⎪⎧1,n 是奇数,0,n 是偶数等.②对于此类归纳猜想求通项的题目,一定要掌握一些常见数列的通项公式,如{n },{2n },{(-1)n },{2n },{n 2},{2n -1}等,在此基础之上还要掌握一定的方法,如将各项分解成若干个数的和、差、积、商,分离分子分母等.写出下列数列的一个通项公式:(1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)3,33,333,3 333,…; (4)23,-1,107,-179,2611,…. 解:(1)a n =(-1)n·1n;(2)a n =2n+1; (3)a n =13(10n-1);(4)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即 {n 2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1.类型二 由前n 项和公式求通项公式(1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n+1,则此数列的通项公式为a n =_____________.解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -=2n -11. 当n =1时,2×1-11=-9=a 1. 所以a n =2n -11.故填2n -11. (2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n+1)-(2n -1+1)=2n-2n -1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).点拨:任何一个数列,它的前n 项和S n 与通项a n 都存在关系:a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).若a 1适合S n - S n-1,则应把它们统一起来,否则就用分段函数表示.另外一种快速判断技巧是利用S 0是否为0来判断:若S 0=0,则a 1适合S n -S n -1,否则不符合,这在解小题时比较有用.已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n .(1)S n =2n 2-3n ; (2)S n =3n+b . 解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-=4n -5,a 1也适合此等式,所以a n =4n -5.(2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2·3n -1,n ≥2. 类型三 由递推公式求通项公式写出下面各数列{a n }的通项公式. (1)a 1=2,a n +1=a n +n +1; (2)a 1=1,前n 项和S n =n +23a n ;(3)a 1=1,a n +1=3a n +2.解:(1)由题意得,当n ≥2时,a n -a n -1=n , 所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,适合上式,因此a n =n (n +1)2+1.(2)由题设知,a 1=1. 当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1.所以a n a n -1=n +1n -1. 所以a n a n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3. 以上n -1个式子的等号两端分别相乘,得到a n a 1=n (n +1)2.又因为a 1=1,所以a n =n (n +1)2.(3)解法一:(累乘法)a n +1=3a n +2,得a n +1+1=3(a n +1),即a n +1+1a n +1=3, 所以a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…, a n +1+1a n +1=3. 将这些等式两边分别相乘得a n +1+1a 1+1=3n. 因为a 1=1,所以a n +1+11+1=3n,即a n +1=2×3n-1(n ≥1), 所以a n =2×3n -1-1(n ≥2),又a 1=1也适合上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.解法二:(迭代法)a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1)= (3)(a 1+1)=2×3n(n ≥1), 所以a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.点拨:已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,一般用累加法求通项;当出现a na n -1=f (n )时,一般用累乘法求通项.还须注意检验n =1时,是否适合所求.写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=2,a n +1=a n +1n (n +1);(2)a 1=1,a n +1=2na n ; (3)a 1=1,a n +1=2a n +1. 解:(1)因为当n ≥2时,a n -a n -1=1n (n -1)=1n -1-1n,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n-2)+…+(a 2-a 1)+a 1=⎝⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -2-1n -1+…+(12-13)+⎝ ⎛⎭⎪⎫1-12+2=3-1n . 当n =1时,适合.故a n =3-1n.(2)因为a n +1a n =2n ,所以a 2a 1=21,a 3a 2=22,…, a n a n -1=2n -1, 将这n -1个等式叠乘,得a n a 1=21+2+…+(n -1)=2n (n -1)2, 所以a n =2n (n -1)2.当n =1时,适合.故a n =2n (n -1)2.(3)由题意知a n +1+1=2(a n +1),所以数列 {a n +1}是以2为首项,2为公比的等比数列,所以a n +1=2n ,所以a n =2n -1.类型四 数列通项的性质已知函数f (x )=x -1x,设a n =f (n )(n ∈N +).(1)求证:a n <1;(2){a n }是递增数列,还是递减数列?为什么?解:(1)证明:因为a n =n -1n =1-1n,又n ∈N +,所以1≥1n>0.所以a n <1.(2)因为a n +1-a n =⎝⎛⎭⎪⎫1-1n +1-⎝ ⎛⎭⎪⎫1-1n =1n (n +1),又因为n +1>n ≥1,所以a n +1-a n >0,即a n +1>a n .所以{a n }是递增数列. 点拨:要证明数列{a n }是单调的,可利用“{a n }是递增数列⇔a n <a n +1,数列{a n }是递减数列⇔a n >a n +1”来证明.注意数列的单调性是探索数列的最大、最小项及解决其他许多数列问题的重要途径,因此要熟练掌握上述求数列单调性的方法.(2016·宝鸡5月模拟)已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2 (a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3C .(2,3)D .(1,3)解:因为{a n }是递增数列,且2<94<3,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2<a 2,解得2<a <3.故选C.1.已知数列的前几项,求数列的通项公式,应从以下几方面考虑:(1)如果符号正负相间,则符号可用(-1)n或(-1)n +1来调节.(2)分式形式的数列,分子和分母分别找通项,并充分借助分子和分母的关系来解决.(3)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差、等比或其他特殊数列)等方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),注意a n =S n -S n -1的条件是n ≥2,还须验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项掌握先由a 1和递推关系求出前几项,再归纳、猜想a n 的方法,以及“累加法”“累乘法”等.(1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得:a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ).(2)已知a 1且a na n -1=f (n ),可以用“累乘法”得: a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ).注:以上两式均要求{f (n )}易求和或积. 4.数列的简单性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.1.数列0.9,0.99,0.999,…的一个通项公式是( )A .1+⎝ ⎛⎭⎪⎫110nB .-1+⎝ ⎛⎭⎪⎫110nC .1-⎝ ⎛⎭⎪⎫110n D .1-⎝ ⎛⎭⎪⎫110n +1 解:原数列前几项可改写为1-110,1-1102, 1-1103,…,故通项a n =1-⎝ ⎛⎭⎪⎫110n .故选C. 2.(2016·广东3月测试)设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n-2n) B .3n+2 C .3nD .3·2n -1解:当n =1时,a 1=3;当n ≥2时,a n =S n -S n -1=32(a n -1)-32(a n -1-1),得到a n =3a n -1,所以a n =3n.故选C . 3.(2016·天水联考)已知数列{a n }的前n 项和为S n =2a n -1,则使得a n n≤2的正整数n 的集合为( )A .{1,2}B .{1,2,3,4}C .{1,2,3}D .{1,2,4}解:当n ≥2时,a n =S n -S n -1=2a n -1- (2a n-1-1)=2a n -2a n -1,所以a n =2a n -1,因为 S 1=2a 1-1=a 1,所以a 1=1,a n =2n -1,把n =1,2,3,4代入a nn 都满足a n n≤2.故选B.4.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=25,则a 2 017等于( ) A.15 B.25 C.35 D.45解:因为a 1=25<12,所以a 2=45.a 3=35,a 4=15,a 5=25,所以数列具有周期性,周期为4,所以a 2 017=a 1=25.故选B.5.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( ) A.2(n +1)2B.2n (n +1)C.12n -1D.22n -1解:S 2=22·a 2,所以1+a 2=4a 2,所以a 2=13;S 3=32·a 3,所以1+13+a 3=9a 3,所以a 3=12×3; S 4=42·a 4,所以1+13+12×3+a 4=16a 4,所以a 4=12×5. 可见a 1=21×2,a 2=22×3,a 3=23×4,a 4=24×5,由此可以猜想a n =2n (n +1).故选B.6.(2016·荆门联考)若数列{a n },{b n }的通项公式分别是a n =(-1)n +24a ,b n =2+(-1)n +2 017n,且a n <b n 对任意n ∈N *恒成立,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12 B.⎣⎢⎡⎭⎪⎫-2,12C.⎣⎢⎡⎭⎪⎫-2,32D.⎣⎢⎡⎭⎪⎫-1,32解:(1)当n 为奇数时,a n =-a ,b 1=2+1,b 3=2+13,b 5=2+15,…若a n <b n 恒成立,只须-a ≤2,即a ≥-2; (2)当n 为偶数时,a n =a ,b 2=2-12,b 4=2-14,b 6=2-16,若a n <b n 恒成立,只须a <32,综上所述,a的取值范围是⎣⎢⎡⎭⎪⎫-2,32.故选C.7.已知数列{a n }满足a s ·t =a s a t (s ,t ∈N *),且a 2=2,则a 8=________. 解:令s =t =2,则a 4=a 2×a 2=4,令s =2, t =4,则a 8=a 2×4=a 2×a 4=8.故填8.8.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n =________解:由条件可得S n +1=2n +1,则S n =2n +1-1,当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n,因为当n =1时不满足a n =2n,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2. 故填⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2. 9.根据数列{a n } 的前几项,分别写出下列数列的一个通项公式.(1)7,77,777,7 777,…; (2)4,-52,2,-74,85,…;(3)3,5,3,5,…; (4)1,2,2,4,3,8,4,16,…. 解:(1)将各项改写如下79(10-1),79(102-1),79(103-1),79(104-1),… 易知a n =79(10n-1).(2)将各项绝对值改写如下 41,52,63,74,85,… 综合考查分子、分母,以及各项符号可知a n =(-1)n -1n +3n. (3)a n =⎩⎪⎨⎪⎧3(n 为奇数),5(n 为偶数),或a n =(3+5)+(-1)n -1(3-5)2=4+(-1)n.(4)观察数列{a n }可知,奇数项成等差数列,偶数项成等比数列,所以a n=⎩⎪⎨⎪⎧n +12(n 为奇数),2n 2(n 为偶数).10.已知二次函数f (x )=ax 2+bx 的图象过点(-4n ,0),且f ′(0)=2n (n ∈N *).(1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1an ,且a 1=4,求数列{a n }的通项公式.解:(1)由f ′(x )=2ax +b ,f ′(0)=2n, 得b =2n ,又f (x )的图象过点(-4n ,0), 所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n+2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1),1a n -1-1a n -2=2(n -2), (1)a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 11.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n = T 2n+1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2). 所以b n =⎩⎪⎨⎪⎧23(n =1),1n(n ≥2).(2)因为c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, 所以c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, 所以{c n }是递减数列.设数列{a n }的前n 项和为S n .已知 a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解:(1)依题意,S n +1-S n =a n +1=S n +3n, 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n),又S 1-31=a -3(a ≠3),故数列{S n -3n}是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n+(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n-2=2×3n -1+(a -3)2n -2,当n =1时,a 1=a 不适合上式,故a n =⎩⎪⎨⎪⎧a , n =1,2×3n -1+(a -3)2n -2,n ≥2. a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9.又a 2=a 1+3>a 1.综上,所求a 的取值范围是, 同理a n +1=12.从而a n +1-a n =12.整理得(n -1)a n +1+(n -1)a n -1=2(n -1)a n , 因为n ≥2,所以a n +1+a n -1=2a n . 所以{a n }是等差数列. 点拨:判定数列是等差数列的方法可参看本节“考点梳理”,证明一个数列是等差数列只能用前两种方法,做客观题时可用后两种方法判断.(2016·南昌联考)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .解:(1)证明:当n ≥2时,a n =S n -S n -1=-2S n S n -1,因为S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *), 将等式S n -S n -1=-2S n S n -1,两边同除以S n S n -1,得1S n -1S n -1=2(n ≥2),1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)因为1S n =1S 1+(n -1)d =2n ,所以S n =12n .当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=12不适合上式,所以a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.类型二 等差数列基本量的计算在等差数列{a n }中, (1)已知a 15=33,a 45=153,求a n ; (2)已知a 6=10,S 5=5,求S n ;(3)已知前3项和为12,前3项积为48,且d >0,求a 1.解:(1)解法一:设首项为a 1,公差为d ,依条件得⎩⎪⎨⎪⎧33=a 1+14d ,153=a 1+44d , 解得⎩⎪⎨⎪⎧a 1=-23,d =4. 所以a n =-23+(n -1)×4=4n -27.解法二:由d =a n -a mn -m,得d =a 45-a 1545-15=153-3330=4,由a n =a 15+(n -15)d ,得a n =4n -27.(2)因为a 6=10,S 5=5,所以⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解得a 1=-5,d =3. 所以S n =-5n +n (n -1)2·3=32n 2-132n .(3)设数列的前三项分别为a 2-d ,a 2,a 2+d ,依题意有:⎩⎪⎨⎪⎧(a 2-d )+a 2+(a 2+d )=12,(a 2-d )·a 2·(a 2+d )=48, 即⎩⎪⎨⎪⎧a 2=4,a 2(a 22-d 2)=48,解得⎩⎪⎨⎪⎧a 2=4,d =±2.因为d >0,所以d =2,所以a 1=a 2-d =2. 点拨:在等差数列五个基本量a 1,d ,n ,a n ,S n 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.(1)已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(Ⅰ)求a 及k 的值;(Ⅱ)设数列{b n }的通项b n =S nn,证明数列{b n }是等差数列,并求其前n 项和T n .解:(Ⅰ)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,a n =2n . 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(Ⅱ)由(Ⅰ)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是2为首项,1为公差的等差数列,b n =n +1.所以T n =n (2+n +1)2=n (n +3)2.(2)各项均为正数的数列{a n }满足a 2n =4S n - 2a n -1(n ∈N *),其中S n 为{a n }的前n 项和.(Ⅰ)求a 1,a 2的值; (Ⅱ)求数列{a n }的通项公式.解:(Ⅰ)当n =1时,a 21=4S 1-2a 1-1=2a 1-1, 即(a 1-1)2=0,解得a 1=1. 当n =2时,a 22=4S 2-2a 2-1=4a 1+2a 2-1=3+2a 2,解得a 2=3或a 2=-1(舍去). (Ⅱ)a 2n =4S n -2a n -1,①a 2n +1=4S n +1-2a n +1-1.②②-①得a 2n +1-a 2n =4a n +1-2a n +1+2a n =2(a n +1+a n ),即(a n +1-a n )(a n +1+a n )=2(a n +1+a n ). 因为数列{a n }各项均为正数, 所以a n +1+a n >0,所以a n +1-a n =2, 所以数列{a n }是首项为1,公差为2的等差数列.所以a n =2n -1.类型三 等差数列的性质(1)已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;(2)设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________;(3)若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,则这个数列的项数为________;(4)已知S n 为等差数列{a n }的前n 项和,S n =m ,S m =n (n ≠m ),则S m +n =________.解:(1)S 11=11(a 1+a 11)2=11a 6=1 100.故填1 100.(2)因为数列{}a n ,{}b n 都是等差数列,所以数列{}a n +b n 也是等差数列.故由等差中项的性质,得()a 5+b 5+()a 1+b 1=2()a 3+b 3,即a 5+b 5+7=2×21,解得a 5+b 5=35.故填35.(3)设该等差数列的项数为n ,则a 1+a 2+a 3+a 4=36,a n +a n -1+a n -2+a n -3=124,a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,所以4(a 1+a n )=160,即a 1+a n =40. 所以S n =n (a 1+a n )2=20n =780,解得n =39.故填39.(4)解法一:令S n =An 2+Bn ,则⎩⎪⎨⎪⎧An 2+Bn =m ,Am 2+Bm =n , 得A (n 2-m 2)+B (n -m )=m -n . 因为n ≠m ,所以A (n +m )+B =-1. 所以S m +n =A (m +n )2+B (m +n )=-(m +n ). 解法二:不妨设m >n ,S m -S n =a n +1+a n +2+a n +3+…+a m -1+a m=(m -n )(a n +1+a m )2=n -m ,所以a 1+a m +n =a n +1+a m =-2.所以S m +n =(m +n )(a 1+a m +n )2=-(m +n ).解法三:因为{a n }是等差数列,所以⎩⎨⎧⎭⎬⎫S n n 为等差数列,D 为公差.所以S m +n m +n -S m m =nD ,S n n -S mm=(n -m )D . 所以m n -n m n -m =S m +n m +n -nm n,解得S m +n =-(m +n ).故填-(m +n ). 点拨:(1)可利用等差数列的性质S 2n +1=(2n +1)a n +1来求解,这一性质表明:若等差数列有奇数项,则正中间一项是该数列各项的平均数;(2)利用等差数列的性质及等差中项来求;(3)可利用“等差数列前m 项与后m 项的和等于m (a 1+a n )”这一性质来求解;(4)可利用等差数列下标和性质:若“p +q = m +n ,则a p +a q =a m +a n ”来求解.等差数列的性质是其定义、通项公式及前n 项和公式等基础知识的推广与变形,解题时灵活应用这些性质常常可化繁为简,起到事半功倍的效果.(1)若两个等差数列{a n }和{b n }的前n项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于( )A .7 B.23 C.278 D.214(2)已知等差数列{a n }的公差为4,项数为偶数,所有奇数项的和为15,所有偶数项的和为55,则这个数列的项数为( )A .10B .20C .30D .40(3)已知等差数列{a n }的前n 项和为S n ,且 S 10=10,S 20=30,则S 30=________.解:(1)因为a 5=a 1+a 92,b 5=b 1+b 92,所以a 5b 5=a 1+a 92b 1+b 92=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×99+3=214.故选D. (2)等差数列{a n }的公差为4,设项数为n ,前n 项和为S n ,则S 偶-S 奇=d2n =2n =40,解得n =20,所以这个数列的项数为20.故选B.(3)因为S 10,S 20-S 10,S 30-S 20成等差数列,所以2(S 20-S 10)=S 10+(S 30-S 20),所以40=10+S 30-30,所以S 30=60.故填60.类型四 等差数列的最值问题等差数列{a n }的首项a 1>0,设其前n项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?解法一:由题意知d <0,因为S n =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝⎛⎭⎪⎫a 1-d 2x ,如图,由S 5=S 12知,抛物线的对称轴为x =5+122=172,由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减,且S 8=S 9.又n ∈N *,所以当n =8或9时,S n 有最大值. 解法二:设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或9时,S n 有最大值.解法三:由解法二得d =-18a 1<0.设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n=a 1+(n -1)·⎝ ⎛⎭⎪⎫-18a 1≥0,a n +1=a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8, 即8≤n ≤9,又n ∈N *,所以当n =8或9时,S n 有最大值. 解法四:由解法二得d =-18a 1<0,又S 5=S 12得a 6+a 7+a 8+a 9+a 10+a 11+a 12=0, 所以7a 9=0,所以a 9=0.所以当n =8或9时,S n 有最大值. 点拨:求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值.(1)(2015·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解:因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,又因为S n =n (a 1+a n )2,所以 S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.故选C.(2)设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 017=0.①求S n 的最小值及此时n 的值; ②求n 的取值集合,使a n ≥S n .解:①设公差为d ,则由S 2 017=0得2 017a 1+2 017×2 0162d =0,得a 1+1 008d =0,d =-11 008a 1,a 1+a n =2 017-n1 008a 1, 所以S n =n 2(a 1+a n )=n 2·2 017-n 1 008a 1=a 12 016(2 017n -n 2). 因为a 1<0,n ∈N *,所以当n =1 008或1 009时,S n 取最小值1 0092a 1.②a n =1 009-n 1 008a 1,S n ≤a n ⇔a 12 016(2 017n -n 2)≤1 009-n 1 008a 1. 因为a 1<0,所以n 2-2 019n +2 018≤0, 即(n -1)(n -2 018)≤0,解得1≤n ≤2 018. 故所求n 的取值集合为{n|1≤n ≤2 018,n ∈N *}.1.等差数列中,已知5个元素a 1,a n ,n ,d ,S n 中的任意三个,便可求出其余两个.除已知a 1,d ,n 求a n ,S n 可以直接用公式外,其他情况一般都要列方程或方程组求解,因此这种问题蕴含着方程思想.注意,我们把a 1,d 叫做等差数列的基本元素.将所有其他元素都转化成基本元素是解决等差数列问题的一个非常重要的基本思想.2.求等差数列{a n }前n 项的绝对值{|a n |}之和,首先应分清这个数列哪些项是负的,哪些项是非负的,然后再分段求和.3.等差数列前n 项和的最值通常是在正负项分界的位置产生,利用这一性质可求其最值;另一种方法是利用二次函数的性质.4.灵活运用等差数列的性质(如等差中项的性质),可简化运算.5.等差数列{a n }的前n项和满足:⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且首项与{a n }的首项相同,公差为{a n }公差的一半.6.数列{a n }是等差数列的充要条件是S n = An 2+Bn (A ,B 是常数,n ∈N *).1.(2015·云南月考)设等差数列{a n }的前n 项和为S n ,已知a 3=5,S 11=22,则数列{a n }的公差d 为( )A .-1B .-13 C.13D .1解:因为S 11=11a 6=22,所以a 6=2, 所以d =a 6-a 36-3=-1.故选A.2.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差d 为( )A .2B .4C .5D .6解:依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,解得d =6.故选D .3.(2016·鄂东南联盟期中检测)已知等差数列{a n },其前n 项和为S n ,若a 4+a 5+a 6=π4,则cos S 9的值为( )A.12B.22 C .-12D .-22解:由已知得a 4+a 5+a 6=π4=3a 5,所以a 5=π12,S 9=9a 5=3π4,cos S 9=-22.故选D .4.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( )A.94B.32C.53D .4 解:设S 2=x ,则S 4=4x ,因为S 2,S 4-S 2,S 6-S 4成等差数列,所以S 6-S 4=5x ,即S 6=9x ,所以S 6S 4=9x 4x =94.故选A. 5.(2015·浙江名校联考)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *且n ≥2),则 a 81=( )A .641B .640C .639D .638解:由已知S n S n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,所以{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,所以a 81=S 81-S 80=1612-1592=640.故选B.6.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21 解:因为a 11a 10<-1,且S n 有最大值, 所以a 10>0,a 11<0,且a 10+a 11<0, 所以S 19=19(a 1+a 19)2=19·a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0,故使得S n >0的n 的最大值为19.故选B.7.(2015·东北四市联考)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为________.解:依题意,设这100份面包所分成的五份由小到大依次为a -2m ,a -m ,a ,a +m ,a +2m (m >0),则有⎩⎪⎨⎪⎧5a =100,a +(a +m )+(a +2m )=7(a -2m +a -m ), 解得a =20,m =11a 24,a -2m =a 12=53,即其中最小的一份为53.故填53.8.(2016·山西四校联考)设数列{a n }满足a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量1n n P P +=(1,2),则数列{a n }的前n 项和S n =________.解:因为P n (n ,a n ),所以P n +1(n +1,a n +1),所以1n n P P +=(1,a n +1-a n )=(1,2),所以a n +1-a n =2,所以{a n }是公差d 为2的等差数列.又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1,所以S n =n +n (n -1)2×2=n 2.故填n 2.9.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22,求a n 和S n .解:因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13, 所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项公式a n =4n -3. 所以S n =na 1+n (n -1)2×d =2n 2-n .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n-30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:因为2a n +1=a n +a n +2, 所以a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72, 解得⎩⎪⎨⎪⎧a 1=2,d =4. 所以a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧b n ≤0,b n +1≥0, 即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,解得292≤n ≤312,因为n ∈N *,所以n =15,即数列{b n }的前15项均为负值,第16项为正值.所以T 15最小.因为数列{b n }的首项是-29,公差为2,所以T 15=15(b 1+b 15)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )= λa n +1,由于a n +1≠0,所以a n +2-a n =λ.(2)存在λ使得{a n }为等差数列,理由如下: 由题设a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1,由(1)知a 3=λ+1.假设{a n }为等差数列,则a 1,a 2,a 3成等差数列,所以a 1+a 3=2a 2,解得λ=4.以下证明λ=4时,{a n }为等差数列. 由a n +2-a n =4知,数列奇数项构成的数列{a 2m -1}是首项为1,公差为4的等差数列,a 2m -1=4m -3,令n =2m -1,则m =n +12,所以a n =2n -1(n =2m -1).数列偶数项构成的数列{a 2m }是首项为3,公差为4的等差数列,a 2m =4m -1,m ∈N *.令n =2m ,则m =n2,所以a n =2n -1(n =2m ).所以a n =2n -1(n ∈N *),a n +1-a n =2. 因此,存在λ=4,使得{a n }为等差数列.1.{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解:由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11- 10d =0-10×(-2)=20.故选B .2.设等差数列{a n }的前n 项和为S n ,若a 5+ a 14=10,则S 18=( )A .20B .60C .90D .100解:因为{a n }是等差数列,所以S 18=18(a 1+a 18)2=9(a 5+a 14)=90.故选C .3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( )A .-1B .1C .3D .7解:两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1.故选B.4.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( )A .8B .7C .6D .5解:由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5.故选D.5.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( )A .6B .7C .8D .9解:依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8.故选C .6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5 解:由A nB n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个.故选D.7.(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解:设公差为d ,则由题意可得a 1+(a 1+d )2=-3,5a 1+10d =10,解得a 1=-4,d =3,则a 9=-4+8×3=20.故填20.8.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解:设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+59(n -1)≤0,所以n ≤325,又n ∈N *,前6项和最小,S 6=6a 1+6×52×d =-293, 所以S n 的最小值为-293.故填-293.9.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解:(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,此式可看作关于a 1的一元二次方程,则Δ=(9d )2-8(10d 2+1)≥0,即d 2≥8,故d 的取值范围为{d|d ≤-22或d ≥22}.10.(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =,其中表示不超过x 的最大整数,如=0,=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和. 解:(1)设{a n }的公差为d ,S 7=7a 4=28, 所以a 4=4,所以d =a 4-a 13=1,所以a n =a 1+(n -1)d =n .所以b 1===0,b 11== =1,b 101===2. (2)记{b n }的前n 项和为T n , 则T 1 000=b 1+b 2+…+b 1 000 =++…+.当0≤lg a n <1时,n =1,2,…,9; 当1≤lg a n <2时,n =10,11,…,99; 当2≤lg a n <3时,n =100,101,…,999; 当lg a n =3时,n =1 000.所以T 1 000=0×9+1×90+2×900+3×1=1 893.(2015·福建)在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2a 3=45,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)令b n =S nn +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)由题意得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎪⎨⎪⎧a 1=1,d =4. 所以a n =4n -3(n ∈N *).。

2018年高考数学课标通用(理科)一轮复习配套教师用书第六章 数列 6.1 数列的概念与简单表示 Word版含答案

必考部分
第六章数列
§数列的概念与简单表示
考纲展示►.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
.了解数列是自变量为正整数的一类特殊函数.
考点由数列的前几项求数列的通项公式
.数列的概念()数列的定义:按照排列的一列数称为数列,数列中的每一个数叫做这个数列的.()数列与函数的关系:从函数观点看,数列可以看成以正整数集*(或它的有限子集)为的函
数=().当自变量按照从小到大的顺序依次取值时所对应的一列函数值.
()数列有三种表示法,它们分别是、和.
答案:()一定顺序项()定义域
()列表法图象法通项公式法
.数列的分类
答案:有限无限><
.数列的两种常用的表示方法()通项公式:如果数列{}的第项与之间的关系可以用一个式子来表示,那么这个公式叫做
这个数列的通项公式.()递推公式:如果已知数列{}的第项(或前几项),且从第二项(或某一项)开始的任一项与
它的前一项-(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递
推公式.
答案:()序号=()
.已知数列{}的前项和,则=(\\(,=,,,≥.))
答案:--
()[教材习题改编]已知数列{}的前四项分别为,给出下列各式:
①=;
②=;
③=;
④=π);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节数列的概念及简单表示法
A组基础题组
1.(2016济宁模拟)数列0,,,,…的一个通项公式为()
A.a n=(n∈N*)
B.a n=(n∈N*)
C.a n=(n∈N*)
D.a n=(n∈N*)
2.已知数列{a n}的通项公式是a n=,那么这个数列是()
A.递增数列
B.递减数列
C.摆动数列
D.常数列
3.(2016临沂模拟)已知数列{a n}满足a1=0,a n+1=(n∈N*),则a20等于()
A.0
B.-
C.
D.
4.(2016广东3月测试)设S n为数列{a n}的前n项和,且S n=(a n-1)(n∈N*),则a n=()
A.3(3n-2n)
B.3n+2
C.3n
D.3·2n-1
5.若数列{a n}满足a1=19,a n+1=a n-3(n∈N*),则数列{a n}的前n项和数值最大时,n的值为()
A.6
B.7
C.8
D.9
6.在数列-1,0,,,…,,…中,0.08是它的第项.
7.(2016威海模拟)在数列{a n}中,a1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N*),则的值是.
8.已知数列{a n}满足a1=1,a n=-1(n>1),则a2017=,当n>1时,|a n+a n+1|=.
9.已知数列{a n}满足前n项和S n=n2+1,数列{b n}满足b n=,且前n项和为T n,设c n=T2n+1-T n.
(1)求数列{b n}的通项公式;
(2)判断数列{c n}的增减性.
10.设数列{a n}的前n项和为S n.已知a1=a(a≠3),a n+1=S n+3n,n∈N*.
(1)设b n=S n-3n,求数列{b n}的通项公式;
(2)若a n+1≥a n,n∈N*,求a的取值范围.
B组提升题组
11.(2016浙江杭州三模)数列{a n}定义如下:a1=1,当n≥2时,a n=若a n=,则n的值为()
A.7
B.8
C.9
D.10
12.若数列{a n}满足a1=1,且对于任意的n∈N*,都有a n+1=a n+n+1,则++…+等于()
A. B. C. D.
13.如图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第(n)个图案中需用黑色瓷砖块.(用含n的代数式表示)
14.已知数列{a n}的通项公式为a n=(-1)n·2n+1,将该数列的项排成一个数阵(如图),则该数阵中的
第10行第3个数为.
15.已知数列{a n}中,a n=1+(n∈N*,a∈R且a≠0).
(1)若a=-7,求数列{a n}中的最大项和最小项的值;
(2)若对任意的n∈N*,都有a n≤a6成立,求a的取值范围.
答案全解全析
A组基础题组
1.C将0写成,观察数列中每一项的分子、分母可知,分子可表示为2(n-1),n∈N*,分母可表示为2n-1,n∈N*.
2.A因为a n+1-a n=-=>0,所以a n+1>a n,数列{a n}为递增数列.
3.B由a1=0,a n+1=(n∈N*),得a2=-,a3=,a4=0,……,所以{a n}是周期为3的数列,所以
a20=a2=-.
4.C由题意知解得代入选项逐一检验,只有C符合.
5.B∵a1=19,a n+1-a n=-3,∴数列{a n}是以19为首项,-3为公差的等差数列,∴a n=19+(n-1)×(-3)=22-3n.
设{a n}的前k项和数值最大,则有k∈N*,∴∴≤k≤,∵k∈N*,∴k=7,∴满足条件的n的值为7.
6.答案10
解析令=0.08,得2n2-25n+50=0,
即(2n-5)(n-10)=0.
解得n=10或n=(舍去).
7.答案
解析由已知得a2=1+(-1)2=2.
又a3·a2=a2+(-1)3,所以a3=.
所以a4=+(-1)4,所以a4=3.
所以3a5=3+(-1)5,所以a5=.
所以=×=.
8.答案-1;1
解析由a1=1,a n=-1(n>1)得
a 2=-1=12-1=0,a3=-1=02-1=-1.
=-1=(-1)2-1=0,a5=-1=02-1=-1,
a
4
由此可猜想当n>1时,若n为奇数,则a n=-1,若n为偶数,则a n=0,
∴a2017=-1,当n>1时,|a n+a n+1|=1.
9.解析(1)由已知得,a1=2,a n=S n-S n-1=2n-1(n≥2,n∈N*).
则b n=
(2)∵c n=b n+1+b n+2+…+b2n+1=++…+(n∈N*),∴c n+1-c n=+-=-=
<0,∴c n+1<c n,
∴数列{c n}为递减数列.
10.解析(1)依题意得S n+1-S n=a n+1=S n+3n,
即S n+1=2S n+3n,由此得S n+1-3n+1=2(S n-3n),即b n+1=2b n,又b1=S1-3=a-3,因此,所求通项公式为
b n=(a-3)2n-1,n∈N*.
(2)由(1)可知S n=3n+(a-3)2n-1,n∈N*,于是,当n≥2时,a n=S n-S n-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2,a n+1-a n=4×3n-1+(a-3)2n-2=2n-2
,所以,当n≥2时,a n+1≥a n⇒12+a-3≥0⇒a≥-9,又a2=a1+3>a1,a≠3.所以,所求的a的取值范围是-9,3)∪(3,+∞).
B组提升题组
11.C因为a1=1,所以
a2=1+a1=2,a3==,a4=1+a2=3,a5==,a6=1+a3=,a7==,a8=1+a4=4,a9==,所以n=9,选C.
12.C∵a1=1,a n+1-a n=n+1,∴当n≥2时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+2+3+…+n=,又当n=1时,a1=1满足上式,∴a n=,则==2,则++…+=
21-++…+=2×=,故选C.
13.答案4n+8
解析第(1),(2),(3)…个图案中黑色瓷砖数依次为:15-3=12;24-8=16;35-15=20;……,由此可猜测从前往后的各图案中黑色瓷砖数成等差数列,且首项为12,公差为4,∴第(n)个图案中黑色瓷砖数为12+(n-1)×4=4n+8.
14.答案97
解析由题意可得该数阵中的第10行第3个数为数列{a n}的第1+2+3+…+9+3=+3=48项,又a48=(-1)48×96+1=97,故该数阵第10行第3个数为97.
15.解析(1)∵a=-7,∴a n=1+.
结合函数f(x)=1+的性质,可知1>a1>a2>a3>a4,a5>a6>a7>…>a n>1,∴数列{a n}中的最大项为a5=2,最小项为a4=0.
(2)a n=1+=1+.
∵对任意的n∈N*,都有a n≤a6成立,
∴利用函数g(x)=1+的性质,
可知5<<6,解得-10<a<-8.。

相关文档
最新文档