白国仲《高等代数》§10.3 双线性函数

合集下载

高等代数白皮书

高等代数白皮书

高等代数白皮书1. 前言高等代数是现代数学中的一门重要学科,它研究的是向量空间、线性变换和矩阵等代数结构。

作为数学的基础学科,高等代数在各个领域都有广泛的应用,尤其在物理学、经济学、计算机科学等领域发挥着重要的作用。

本文将全面、详细、完整地探讨高等代数的基本概念、理论和应用,并给出一些实例进行说明。

2. 高等代数基本概念2.1 向量空间向量空间是高等代数中的核心概念之一。

它是由一些元素组成的集合,这些元素可以进行加法和数乘运算,并满足一些特定的性质,比如闭性、结合律和分配律等。

向量空间具有很多重要的性质和定理,如向量空间的基、维数、秩等。

2.2 线性变换线性变换是高等代数中另一个核心概念,它描述了向量空间之间的关系。

线性变换是一种保持加法和数乘运算的映射,它保持向量空间的结构不变。

线性变换具有很多重要的性质和定理,如线性变换的表示、特征值和特征向量等。

2.3 矩阵矩阵是高等代数中常用的工具,它能够用于表示线性变换和解线性方程组。

矩阵具有很多重要的性质和定理,如矩阵的行列式、逆矩阵和特征值分解等。

矩阵在各个领域中都有广泛的应用,如图像处理、数据分析和系统控制等。

2.4 线性方程组线性方程组是高等代数中研究的重点之一。

它是由一些线性方程组成的方程组,其中未知数的系数是常数。

线性方程组的求解是高等代数中的一项重要任务,它涉及到矩阵运算和高斯消元法等技巧。

3. 高等代数理论3.1 线性无关和生成子空间线性无关和生成子空间是高等代数中重要的概念。

线性无关指的是一组向量中不存在非平凡线性关系,生成子空间指的是一组向量所有线性组合构成的空间。

线性无关和生成子空间在向量空间的研究中发挥着重要的作用。

3.2 线性映射和线性变换线性映射是高等代数中研究的重点之一。

它是一种保持加法和数乘运算的映射,可以看作是一种特殊的线性变换。

线性映射在向量空间之间建立了一种关系,它具有很多重要的性质和定理。

3.3 特征值与特征向量特征值与特征向量是高等代数中重要的概念。

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。

高等代数第11章双线性函数与辛空间

高等代数第11章双线性函数与辛空间

高等代数第11章双线性函数与辛空间<i>大学必修课之高等数学的课件,讲解细致,内容详尽、全面。

对于大学更好地学习数学很有帮助,对于考研复习数学也很有帮助。

大学学习主要针对非数学专业同学;考研复习针对数一的学生。

</i> §1 线性函数定义设V是数域上的线性空间f是V到是数域P上的线性空间是数域上的线性空间, 是到P的映射如果α,β∈V, k∈P, f满足的映射, 满足: 的映射如果∈ 满足(1) f (α +β ) = f (α)+f(β ); ; (2) f (kα) = kf(α), 则称f为线性函数. 则称为f (0) = 0, f (-α) = - f(α), 若β =k1α1+k2α2+…+ksαs … 则f(β )=k1f(α1)+k2f(α2)+…,+ksf(αs)<i>大学必修课之高等数学的课件,讲解细致,内容详尽、全面。

对于大学更好地学习数学很有帮助,对于考研复习数学也很有帮助。

大学学习主要针对非数学专业同学;考研复习针对数一的学生。

</i> 第11章双线性函数与辛空间章§1 线性函数§2 对偶空间§3 双线性函数*§4 辛空间§<i>大学必修课之高等数学的课件,讲解细致,内容详尽、全面。

对于大学更好地学习数学很有帮助,对于考研复习数学也很有帮助。

大学学习主要针对非数学专业同学;考研复习针对数一的学生。

</i> 例 1 设a1,a2,…,an是P中任意数中任意数, … 中任意数X=(x1,x2,…, xn)是Pn中的向量函数… 是中的向量. f(X)=f(x1,x2,…,xn)= a1x1+a2x2+…+anxn … … 是Pn上的一个线性函数上的一个线性函数.零函数0: 当a1=a2=…=an=0时, f(X)=0. … 时一般地Pn上的任一个线性函数都可表成一般地, f(X)=a1x1+a2x2+…+anxn … 证明如下:证明如下:<i>大学必修课之高等数学的课件,讲解细致,内容详尽、全面。

高等代数(第三版)10.3双线性函数

高等代数(第三版)10.3双线性函数
i=1 i=1 n n
f ( , ) x1 y1
xr yr (0 r n)
第十章 双线性函数与辛空间 10.3 双线性函数
推论2 设V为实数域上n维线性空间, f ( , )V上的一个对称双线性函数, 则存在V的一组基1, 2, , n, 对V中任意向量= xi i , = yi i , 有
结论2 V上的反对称双线性函数f ( , ) 如果是非退化的,则存在V的一组基
1, -1 , r , -r使
f ( i , i ) 1 i 1, , r f ( , ) 0 i j 0 i j
第十章 双线性函数与辛空间 10.3 双线性函数
式中1 , 2 ,1 ,2是V中任意向量, k1 ,k2是P中任意数,则称f ( , ) 为V上的一个双线性函数.
第十章 双线性函数与辛空间 10.3 双线性函数
例1 欧氏空间V的内积是V上双线性函 数 例2 设 f1 ( ), f 2 ( ) 都是线性空间V上的线性函数,则
f ( , ) f1 ( ) f 2 ( )
i=1 i=1 n n
f ( , ) x1 y1 (0 p r n)
x p y p x p 1 y p 1
xr yr
第十章 双线性函数与辛空间 10.3 双线性函数
定义7 设V为数域P上线性空间, f ( , )是V上的对称双线性函数, 当= 时,V上函数f ( , )称为 f ( , )对应的二次齐次函数.
第十章 双线性函数与辛空间 10.3 双线性函数
结论
双线性函数是对称的
当且仅当f ( , )=f ( , ) 当且仅当它在任一组基下的 度量矩阵是对称矩阵. 双线性函数是反对称的 当且仅当f ( , )=-f ( , ) 当且仅当它在任一组基下的 度量矩阵是反对称矩阵.

高等代数第11章双线性函数与辛空间PPT优秀课件

高等代数第11章双线性函数与辛空间PPT优秀课件
量, ,根据f 都唯一对应P中一个数f(,)
满足:
(1) f(, k1 +k2 )= k1f(, 1)+k2f(, 2); (2) f(k11+k22, )= k1f(1, )+k2f(2, )
则称f(,)是V上一个双线性函数.
18
• 例1 欧氏空间V的内积是V上的双线性函数.
• 例2 设f1(,), f2(,) 都是线性空间V上的线性函
f(n,2) f(n,n)
• 为f(,)在基1,2,,n下的度量矩 阵.
20
• 取V的一组基1,2,,n,设
•则
x1
(
1
,
2
,
,
n
)
x2
( 1, 2 , , n ) X
x
n
y1
(
1
,
2
,
,
n
)
y2
( 1 , 2 , , n )Y
y
n
f(, )f i n 1x i i,jn 1yj j i n 1jn 1f(i, j)x ix j
a11 a12 a1n
A
a21
a22
a2
n

an1
an2
ann
• 则A的迹 Tr(A)= a11+a22++ann
• 是Pnn上的一个线性函数.
• 例3 设V=P[x], t是P中一个取定的数,定义 P[x]上的函数Lt为:

Lt(p(x))=p(t), p(x)P[x]
• 即 P[xL]t(上p(x的))线为性p(x函)在数t.点的值, 则Lt(p(x))是
定义设v是数域p上的线性空间义了一个非退化双线性函数则v称为一当f是非退化对称双线性函数时v称为p当v是n维实线性空间f是非退化对称双线性函数时v称为p上的当f是非退化反对称双线性函数时v称为有着非退化双线性函数f的双线性度量空间常记作v2任一2n阶是非退化反对称矩阵k可把一个数域p上2n维空间v化成一个辛空间故k合同于j

高等代数(北大版)第10章习题参考答案

高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的一个线性函数,已知f(ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3求f (X1ε1+X2ε2+X3ε3).解因为f是V上线性函数,所以有f(ε1)+ f (ε3)=1f (ε2)-2 f (ε3)=-1f(ε1)+f (ε2)=-3解此方程组可得f(ε1)=4,f (ε2)=-7,f (ε3)=-3 于是f (X1ε1+X2ε2+X3ε3).=X1f(ε1)+X2 f (ε2)+X3 f (ε3)=4 X1-7 X2-3 X32、设V与ε1,ε2,ε3同上题,试找出一个线性函数f ,使f(ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1解设f为所求V上的线性函数,则由题设有f(ε1)+ f (ε3)=0f (ε2)-2 f (ε3)=0f(ε1)+f (ε2)=1解此方程组可得f(ε1)=-1,f (ε2)=2,f (ε3)=1于是∀a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为a= X1ε1+X2ε2+X3ε3时,就有f (a)=f (X1ε1+X2ε2+X3ε3)= X 1 f(ε1)+X 2 f (ε2)+X 3 f (ε3)=-X 1+2 X 2+ X 3 3、 设ε1,ε2,ε3是线性空间V 的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3试证:α1,α2,α3是V 的一组基,并求它的对偶基。

证: 设〔α1,α2,α3〕=〔ε1,ε2,ε3〕A由已知,得A =110011111⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦因为A ≠0,所以α1,α2,α3是V 的一组基。

设g1,g2,g3是α1,α2,α3得对偶基,则 〔g1,g2,g3〕=〔f1,f2,f3〕〔A ˊ〕1-=〔f1,f2,f3〕011112111-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦因此g1=f2-f3g2=f1-f2+f3 g3=-f1+2f2-f34.设V 是一个线性空间,f1,f2,…fs 是V *中非零向量,试证:∃α∈V ,使 fi(α)≠0 (i=1,2…,s)证:对s 采用数学归纳法。

高等代数【北大版】10-4

高等代数【北大版】10-4
f (α , β ) = f ( β ,α )
对称双线性函数. 则称 f (α , β ) 为对称双线性函数
§10.4 对称双线性函数
2. 对称双线性函数的有关性质 命题1 数域 P上n 维线性空间 V上双线性函数 命题 上 上双线性函数 是对称的(反对称的) 是对称的(反对称的) f (α , β ) 在V的任意 的任意 一组基下的度量矩阵是对称的(反对称的) 一组基下的度量矩阵是对称的(反对称的). 证:任取V的一组基 ε 1 , ε 2 , , ε n , 任取 的一组基
" " f (α + β ,α + β )
α ∈ V
= f (α , β ) + f ( β ,α ) + f (α ,α ) + f ( β , β )
f (α , β ) + f ( β ,α ) = 0
f (α , β ) = f ( β ,α )
§10.4 对称双线性函数
二, 反对称双线性函数
§10.4 对称双线性函数
2. 反对称双线性函数的有关性质 定理6 维线性空间V上反对称 定理 设 f (α , β ) 为 n 维线性空间 上反对称 双线性函数( 双线性函数(即 α , β ∈ V , f (α , β ) = f ( β ,α ) ) 则存在V的一组基 则存在 的一组基 ε 1 , ε 1 , , ε r , ε r ,η1 , ,η s 使
α = (ε 1 , ε 2 , , ε n ) X , β = (ε 1 , ε 2 , , ε n )Y .
f (ε i , ε j ) = aij ,

A = (aij )
f (α , β ) = X ' AY .

北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)

北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)

第10章 双线性函数与辛空间1.V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,f是V上一个线性函数,已知f(ε1+ε3)=1,f(ε2-2ε3)=-1,f(ε1+ε2)=-3,求f(x1ε1+x2ε2+x3ε3).解:先计算出f(ε1)=4,f(ε2)=-7,f(ε3)=-3,就得到f(x1ε1+x2ε2+x3ε3)=4x1-7x2-3x3.2.V及ε1,ε2,ε3同上题,试找出一个线性函数f,使f(ε1+ε3)=f(ε1-2ε3)=0,f(ε1+ε2)=1.解:可算出f(ε1)=f(ε3)=0,f(ε2)=1,就得到f(x1ε1+x2ε2+x3ε3)=x2.3.设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,a1=ε1-ε3,a2=ε1+ε2+ε3,a3=ε2+ε3.试证a1,a2,a3是V的一组基并求它的对偶基(用f1,f2,f3表出).解:可利用定理3.计算由于右端的矩阵的行列式≠0,故a1,a2,a3是V的一组基.设g1,g2,g3是a1,a2,a3的对偶基,则即g1=f2-f3,g2=f1-f2+f3,g3=-f1+2f2-f3.4.设V是一个线性空间,f1,f2,…,f n是V*中非零向量,试证,存在a∈V,使f(a)≠0,i=1,2, (5)证明:每个f i(a)=0作为V上向量的方程,其全体解向量构成V的一个子空间V,且都不等于V.由第六章补充题第5题的结论及解答后面的注,必有a∈V,a∈,i=1,2,…,s.所以a满足f i(a)≠0,i=1,2,V…,s.5.设a1,a2,…,a s是线性空间V中非零向量,证明有f∈V*使f(a i)≠0,i=1,2,…,s.证明:由于a i**∈(V*)*,a i**(f)=f(a i),f∈V*,a i**是(V*)*上的非零向量.由第四题必有f∈V*使f(a i)=a i**(f)≠0.6.V=P[x]3,对p(x)=c0+c1x+c2x2∈V定义试证f1,f2,f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x)使f1,f2,f3是它的对偶基.证明:易证f1,f2,f3都是V=P[x]3上线性函数.令p1(x)=c0+c1x+c2x2使得f1(p1(x))=1,f2(p1(x))=f3(p1(x))=0,即有解出得同样可算出满足由于p1(x),p2(x),p3(x)是V的一组基,而f1,f2,f3是它的对偶基.7.设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V 上一个函数α*:α*(β)=(α,β).(1)证明α*是V上线性函数;(2)证明V到V*的映射:α→α*是V到V*的一个同构映射.(在这个同构下,欧氏空间可看成自身的对偶空间)证明:(1)易证α*是V上线性函数,即α*∈v*.(2)现在令映射φ为下面逐步证明φ是线性空间的同构.①φ是单射.即证明当φ(α)=φ(β)时有α=β.对γ∈V,(φ(α))(γ)=α*(γ)=(α,γ),(φ(β))(γ)=(β,γ).故(α,γ)=(β,γ),∨γ∈V.这样(α,α)=(β,α),(α,β)=(β,β).于是(α-β,α-β)=(α,α)-(α,β)-(β,α)-(β,β)=0,即有α-β=0,因此α=β.②φ是满射.取ε1,ε2,…,εn 是V 的一组标准正交基,令f 1,f 2,…,f n 是它们的对偶基,对f =l 1f 1+…+l n f n ∈V*,令a =l 1ε1+l 2ε2+…+l n εn 则对所有εi ,∀故对所有εi ,有φ(α)(εi )=f (εi ),即φ(α)=f .③φ是线性映射.对α,β,γ∈V,k∈R,∀ φ(α+β)(γ)=(α+β,γ)=(α,γ)+(β,γ)=φ(α)(γ)+φ(β)(γ)=[φ(α)+φ(β)](γ).故φ(α+β)=φ(α)+φ(β).又φ(kα)(γ)=(kα,γ)=k (α,γ)=kφ(α)(γ)=(kφ(α))(γ),故φ(kα)=kφ(α).以上证明了φ是线性空间V 到V *的同构.8.设A 是P 上n 维线性空间V 的一个线性变换.(1)证明:对V 上的线性函数f ,fA 仍是V 上线性函数;(2)定义V *到自身的映射A *为f→fA证明A *是V *上的线性变换(3)设ε1,ε2,…,εn 是V 的一组基,f 1,f 2,…,f n 是它的对偶基,并设A 在ε1,ε2,…,εn 下的矩阵为A .证明:A *在f 1,f 2,…,f n 下的矩阵为A'.(因此A *称作A 的转置映射)证明:(1)α,β∈V,k∈P,有∀∀f A (α+β)=f (A (α+β))=f (A α+A β)=f A α+f A β,f A (kα)=f (A (kα))=f (k A α)=kf A α.故f A 是V 上线性函数.(2)由定义A *f =f A ,对f ,g∈V *,k∈P,α∈V 有∀A *(f +g )(α)=[(f +g )A ](α)=(f +g )(A (α))=f A (α)+g A (α)=(f A +g A )(α)=(A *f +A *g )(α)故A *(f +g )=A *(f )+A *(g ).又(A *(kf ))(α)=(kf )A (α)=kf (A (α))=k (A *f )(α),故A *(kf )=k (A *f ).以上证明了A *是V *上的线性变换.(3)由A (ε1,ε2,…,εn )=(ε1,ε2,…,εn )A ,f i A (ε1,ε2,…,εn )=(f i (ε1),…,f i (εn ))A =(a i1,a i2,…,a in ),于是即有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i 1
i 1
则 g( , ) x1 x2
y1
xn

B

y2

,
yn
是V上的一个双线性函数. 为满射.
§10.3 双线性函数
若双线性函数 f ( , ) g( , ), 但 ( f ) ( g).
设 f ( , ) A f (i , j ) ,
第十章 双线性函数
§10.1 线性函数 §10.2 对偶空间 §10.3 双线性函数 §10.4 对称双线性函数
§10.3 双线性函数
一、双线性函数 二、度量矩阵 三、非退化双线性函数
§10.3 双线性函数
一、双线性函数
定义 设V 是数域 P上的n 维线性空间,映射 f :V V P 为 V上的二元函数. 即对 , V , 根据 f 唯一地对应于P 中一个数 f ( , ) , 如果 f ( , ) 具有性质:
易证 f g, kf 仍为V上双线性函数.
并且 ( f g)(i , j ) f (i , j ) g(i , j )
f g A B f (i , j ) g(i , j ) kf kA k f (i , j )
§10.3 双线性函数
而 A' X 0只有零解 A' 0. 即 A 0, 即 A 非退化.
推论: V , 由 f ( , ) 0 可推出 0,
则 f 非退化.
§10.3 双线性函数
例、设 A P mm , 定义 Pmn 上的一个二元函数 f ( X ,Y ) Tr( X ' AY )nn, X ,Y P mn (1) 证明 f 是 Pmn上得双线性函数; (2) 求 f ( X ,Y ) 在基 E11, , E1n , E21, , E2n , , Em1, , Emn 下的度量矩阵.
f ( i , j )xi x j ,
i1 j1
a11
a1n
令 aij f (i , j ),i, j 1,2,
, n,
A an1
ann
则 f ( , ) x1 x2
y1
xn

A
y2

,
yn
其中
f (1,1 )

(1, 2 , , n )Y (1,2 , ,n )Y1

X CX1,Y CY1
f ( , ) X ' AY (CX1)' A(CY1)' X1 'C ' ACY1 '
§10.3 双线性函数
f ( , ) X1 ' BY1. B C ' AC.
x1

n
)

x2

xn
y11 y2 2 yn n (1 2 (1 2 n )Y
y1
n
)

y2

yn
§10.3 双线性函数
nn
则 f ( , ) f ( xii , yii )
A


f
( 2 ,1 )
f ( 2 , 2 )
f ( n ,1 ) f ( n , 2 )
f (1, n )
f
(
2
,
n
)

.
f ( n , n )
称为 f ( , ) 在 1, 2 , , n下的度量矩阵.
§10.3 双线性函数
命题1 在给定基下, V上全体双线性函数与 P上全体
A
f ( n ,1 )
f (1, n )
.
f ( n , n )
§10.3 双线性函数
二、度量矩阵
定义 设 f ( , )是数域 P 上任意上的 n 维线性 空间V上一个双线性函数,1, 2 , , n 为V的
一组基,则矩阵
f (1,1 ) f (1, 2 )
§10.3 双线性函数
命题1′ 线性空间V上双线性函数空间 V与* Pn同n 构.
证:取定V 的一组基 1, 2, , n , 作映射
:V * P nn , f ( , ) A f ( i , j )
则 为 V *到P nn 的1─1对应.
n
n
事实上,任取 B Pnn , xii , yii V ,
命题2 n 维线性空间V上同一双线性函数,f ( , )
在V 的不同基下的矩阵是合同的.
证:设 f ( , ) 在V 的基 1, 2 , , n 与 1,2 , ,n
下的度量矩阵分别为 A, B.
(1,2 , ,n ) (1, 2 , , n )C (1, 2 , , n ) X (1,2, ,n ) X1
n 级矩阵之间存在1─1对应.
证:取定 V 的一组基 1, 2, , n , 双线性函数
nn
f ( , ) f ( xii , yii )
f ( i , j )xi x j ,
i1 j1
f (1,1 )
f (1, n )
令 A
.
f ( n ,1 )
§10.3 双线性函数

对于线性空间V上的一个双线性函数 f ( , ) 当固定一个向量 (或 )不变时,可以得出一
个双线性函数. 例1.线性空间 V 上的内积即为一个双线性函数.
f :V V P, f (, ) (, ),, V
§10.3 双线性函数
例2. V上两个线性函数 f1, f2 :V P, 定义 f :V V P, f ( , ) f1( ) f2( ) 证明: f 是V上的一个双线性函数. 证: f ( , k11 k22 ) f1( ) f2(k11 k22 )
k1 f ( , 1 ) k2 f ( , 2 ), f (k11 k22 , ) f1(k11 k22 ) f2( )
x1 x2 xn


事实上,①或②是数域 P上任意上的 n 维线性
空间 V 上双线性函数 f ( , ) 的一般形式.
设 1, 2 , , n 为数域 P上线性空间V的一组基,
设 x11 x2 2 xn n (1 2 (1 2 n ) X
n)X,
(1 2
y1
n
)

y2


( 1
2
yn
n )Y .
f ( , ) X ' AY .
§10.3 双线性函数
若 f ( , ) X ' AY 0 对任意 V 均成立.
即对任意 Y 均有 X ' AY 0. 必有 X ' A 0, A' X 0.
即 A与B 合同.
注:
若矩阵 A与B合同,则存在一个双线性函数
f ( , ) 及V上两组基,使 f ( , )在这两组基
下的度量矩阵为 A, B.
§10.3 双线性函数
三、非退化双线性函数
定义
设 f ( , ) 是线性空间V上的一个双线性函数, 如果从 f ( , ) 0, V 可推出 0. 则称 f ( , ) 是非退化的.
(1) f ( , k11 k22 ) k1 f ( , 1 ) k2 f ( , 2 )
(2) f (k11 k22 , ) k1 f (1, ) k2 f (2 , ) 其中 ,1,2 , , 1, 2 V , k1, k2 P 则 f ( , ) 称为 V上的一个双线性函数.
k1 f (1, ) k2 f2(2 , )
§10.3 双线性函数
例3.设 Pn是数域 P上的 n 维线性空间,A Pnn .
令 f : V V P ( X ,Y ) X ' AY .
x1 y1
X


x2

,Y


y2

V
,
xn
n
A f (i , j ) , B g(i , j )
且 f g 时 A B. 即
f (i , j ) g(i , j ), i, j 1,2, , n.
则对任意 x11 x2 2 xn n , y11 y2 2 yn n V . 有
§10.3 双线性函数
f ( , ) f ( xi i , yi i ) f ( i , j )xi x j
g( , ) g( xi i , yi i ) g( i , j )xi x j
f g. 矛盾.
反之,任取
a11 A
f ( n , n )
则 f 与 A f (i , j ) 对应.
即 f 与 f 在1, 2 , , n下的度量矩阵对应.
§10.3 双线性函数
且不同双线性函数对应的在 1, 2 , , n下的
度量矩阵不同.
事实上,若 f , g在 1, 2 ,
,
下的度量矩阵分别为
yn ①
则 f ( X ,Y ) 为Pn上的一个双线性函数.
若 A (aij )nn , 则
f ( X ,Y ) X ' AY x1 x2
n
aij xi x j
i , j1
§10.3 双线性函数来自 a11xn an1
a1n ann


§10.3 双线性函数
相关文档
最新文档