人教版理科数学课时试题及解析(42)立体几何中的向量方法(一)——位置关系的证明含答案解析

合集下载

高考数学 试题汇编 第五节 立体几何中的向量方法 理(含解析)

高考数学 试题汇编 第五节 立体几何中的向量方法 理(含解析)

第五节立体几何中的向量方法向量法证明平行、垂直关系考向聚焦高考常考内容,主要以向量为工具,通过直线的方向向量、平面的法向量证明线线、线面、面面平行与垂直,常以解答题形式出现,难度中档,所占分值6分左右1.(2011年辽宁卷,理18)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:平面PQC ⊥平面DCQ.(2)求二面角Q BP C 的余弦值.解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D xyz.(1)证明:依题意有Q(1,1,0),C(0,0,1),P(0,2,0)则=(1,1,0),=(0,0,1),=(1,-1,0).所以·=0,·=0.即PQ⊥DQ,PQ⊥DC.且DQ∩DC=D.故PQ⊥平面DCQ.又PQ⊂平面PQC,所以平面PQC⊥平面DCQ.(2)解:依题意有B(1,0,1),=(1,0,0),=(-1,2,-1).设n=(x,y,z)是平面PBC的法向量,则即因此可取n=(0,-1,-2).设m是平面PBQ的法向量,则可取m=(1,1,1),所以cos<m,n>=-.故二面角Q BP C的余弦值为-.2.(2011年北京卷,理16)如图,在四棱锥P ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.(1)证明:∵PA⊥平面ABCD,∴PA⊥BD,∵底面ABCD为菱形,∴AC⊥BD,∵PA∩AC=A,∴BD⊥平面PAC.解:(2)设AC∩BD=O,∵∠BAD=60°,PA=AB=2,∴BO=1,AO=OC=,如图,以O为坐标原点,OB、OC所在直线为x,y轴,建立空间直角坐标系O xyz,则P(0,-,2),A(0,-,0),B(1,0,0),C(0,,0),∴=(1,,-2),=(0,2,0),设PB与AC所成的角为θ,则cos θ=|cos<,>|=||=.(3)由(2)知,=(-1,,0),设|PA|=t>0,则P(0,-,t),∴=(-1,-,t),设平面PBC的法向量为m=(x,y,z),则即,令y=,则x=3,z=,∴m=(3,,),同理可得平面PDC的法向量n=(-3,,), ∵平面PBC⊥平面PDC,∴m·n=0,即-6+=0,∴t=,即PA=.求直线与平面所成的角考向聚焦高考热点内容,主要以向量为工具,考查通过求直线的方向向量和平面的法向量的夹角,进而转化为直线与平面所成的角,主要以解答题形式出现,难度中档,所占分值6分左右备考指津解决这类问题的关键是建立适当的坐标系,准确的求出直线的方向向量和平面的法向量,计算要准确3.(2012年湖北卷,理19,12分)如图(1),∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图(2)所示).(1)当BD的长为多少时,三棱锥A BCD的体积最大;(2)当三棱锥A BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.(1)解:法一:在如题图(1)所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后(如题图(2)),AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD=BD·CD=x(3-x).于是=AD·S △BCD=(3-x)·x(3-x)=·2x(3-x)(3-x)≤[]3=,当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A BCD的体积最大.法二:同法一,得=AD·S△BCD=(3-x)·x(3-x)=(x3-6x2+9x).令f(x)=(x3-6x2+9x),由f'(x)=(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f'(x)>0;当x∈(1,3)时,f'(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A BCD的体积最大.(2)解:法一:以D为原点,建立如图a所示的空间直角坐标系D xyz.由(1)知,当三棱锥A BCD的体积最大时,BD=1,AD=CD=2,于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E(,1,0),且=(-1,1,1). 设N(0,λ,0),则=(-,λ-1,0).因为EN⊥BM等价于·=0,即(-,λ-1,0)·(-1,1,1)=+λ-1=0,故λ=,N(0,,0).所以当DN=(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由及=(-1,,0),得可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由=(-,-,0),n=(1,2,-1),可得sin θ=cos(90°-θ)===,即θ=60°.故EN与平面BMN所成角的大小为60°.法二:由(1)知,当三棱锥A BCD的体积最大时,BD=1,AD=CD=2,如图b,取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图c,延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF.因为MF⊥平面BCD.又EN⊂面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=(即N是CD的靠近点D的一个四等分点),EN⊥BM.连接MN,ME,由计算得NB=NM=EB=EM=,所以△NMB与△EMB是两个共底边的全等的等腰三角形,如图d所示,取BM的中点G,连接EG,NG,则BM⊥平面EGN.在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN,故∠ENH是EN与平面BMN所成的角, 在△EGN中,易得EG=GN=NE=,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.4.(2010年辽宁卷,理19)已知三棱锥P ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(1)证明:CM⊥SN;(2)求SN与平面CMN所成角的大小.设PA=1,以A为原点,AB,AC,AP所在直线分别为x,y,z轴建立空间直角坐标系如图. 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(1)证明:=(1,-1,),=(-,-,0),因为·=-++0=0,所以CM⊥SN.(2)解:=(-,1,0),设a=(x,y,z)为平面CMN的一个法向量,由得令x=2,得a=(2,1,-2).设SN与平面CMN所成的角为θ,则sin θ=|cos<a,>|.又|cos<a,>|=||=,∴sin θ=,又θ∈[0°,90°],∴θ=45°,故SN与平面CMN所成角为45°.5.(2010年全国新课标卷,理18)如图,已知四棱锥P ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.(1)证明:以H为原点,HA,HB,HP分别为x,y,z轴.线段HA的长为单位长度,建立空间直角坐标系如图.则A(1,0,0),B(0,1,0).设C(m,0,0),P(0,0,n)(m<0,n>0).则D(0,m,0),E(,,0),可得=(,,-n),=(m,-1,0).因为·=-+0=0.所以PE⊥BC.(2)解:由已知条件可得m=-,n=1,故C(-,0,0).D(0,-,0),E(,-,0),P(0,0,1).设n=(x,y,z)为平面PEH的法向量.则即因此可以取n=(1,,0).又=(1,0,-1),可得|cos<,n>|=,所以直线PA与平面PEH 所成角的正弦值为.求二面角考向聚焦高考重点考查内容,主要以向量为工具,考查通过求两平面的法向量及其角,进而转化为二面角的大小,考查空间向量的线性运算及学生的空间想象能力,难度中档偏上,所占分值8分左右6.(2012年重庆卷,理19,12分)如图,在直三棱柱ABC A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(1)求点C到平面A1ABB1的距离;(2)若AB1⊥A1C,求二面角A1CD C1的平面角的余弦值.解:(1)∵AC=BC,DA=DB,∴CD⊥AB,又∵AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,∵AA1∩AB=A,AA1⊂平面ABB1A1,AB⊂平面ABB1A1∴CD⊥平面ABB1A1,∴点C到平面ABB1A1的距离为CD===.(2)如图,过点D作DD1∥AA1交A1B1于D1,由(1)知DB、DC、DD1两两垂直,以D为原点,射线DB、DC、DD1分别为x 轴、y轴、z轴的正半轴建立空间坐标系D xyz.设直棱柱的侧棱AA1=a,则A(-2,0,0),A1(-2,0,a),B1(2,0,a),C1(0,,a),C(0,,0),∴=(2,,-a),=(4,0,a),∵AB1⊥A1C,∴·=0,∴8-a2=0,∴a=2,∴=(0,,0),=(-2,0,2),=(0,0,2),设平面A1CD的法向量n1=(x1,y1,z1),则,∴,令z1=1,则n1=(,0,1),因AB⊥平面C1CD,故可取面C1CD的法向量n2=(1,0,0),∴cos<n1,n2>===.所以二面角A1CD C1的平面角的余弦值为.本题考查了立体几何中点到平面的距离和二面角大小的求法,空间向量的运用,主要考查学生的空间想象力、推理论证能力、化归能力和运算求解能力,难度适中.7.(2012年江西卷,理19,12分)在三棱柱ABC A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1,因为A1O⊥平面ABC,所以A1O⊥BC.由AB=AC,OB=OC,得AO⊥BC,而A1O∩AO=O,所以BC⊥平面AA1O,所以BC⊥OE,而BB1∩BC=B,所以OE⊥平面BB1C1C,又AO==1,AA1=,得AE==.(2)解:如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,-2,0),A1(0,0,2),由=得点E的坐标是(,0,),由(1)得平面BB1C1C的一个法向量是=(,0,),设平面A1B1C的法向量为n=(x,y,z),由,得,令y=1,得x=2,z=-1,即n=(2,1,-1),所以cos<,n>==,即平面BB1C1C与平面A1B1C夹角的余弦值是.8.(2012年安徽卷,理18,12分)平面图形ABB1A1C1C如图(1)所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图(2)所示的空间图形,对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A BC A1的余弦值.解:本题考查空间中的垂直关系,求线段长,考查求二面角的余弦值,考查空间向量在求解立体几何问题中的应用.考查空间想象能力,推理论证能力,计算求解能力等.(1)如图,过点A作AO⊥平面A1B1C1,垂足为O,连接OB1,OC1,OA1,∵△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,BB1C1C是矩形,∴ABC A1B1C1为直三棱柱,由BC=2,AB=AC=知∠BAC为直角,且OB1=OC1,∵A1B1=A1C1=,∴OA1⊥B1C1,∵AO⊥平面A1B1C1,∴OA⊥B1C1,∴B1C1⊥平面OAA1,∵AA1⊂平面OAA1,所以AA1⊥BC.(2)由(1)可知OA=BB1=4,OA1=+=3,由OA⊥OA1,∴AA1==5.(3)由(1)知∠BAC=90°,则∠B1OC1=90°,且OA1在角∠B1OC1的平分线上.以O为坐标原点,OB1,OC1,OA所在的直线分别为x轴,y轴,z轴,建立空间直角坐标系.A(0,0,4),B(,0,4),C(0,,4),A1(,,0),则=(-,,0),=(,,-4).设平面BCA1的法向量为n=(x,y,z),则,即,取x=1,则n=(1,1,).由平面ABC的一个法向量为=(0,0,4),∴cos<n,>===,由图形可知二面角为钝角,所以二面角A BC A1的余弦值为-.解决本题的关键是能正确理解由平面几何图形到空间几何体的转换,其中的平行和垂直关系,线段长度关系等,然后通过添加辅助线构造常见几何体,就容易找出所需要的平行和垂直关系,也容易得出特殊的图形,也容易建立空间直角坐标系来求解.9.(2012年山东卷,理18,12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F BD C的余弦值.(1)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,∴∠DCB=120°,∵CD=CB,∴∠CBD=∠CDB=30°,∴∠ABD=30°,∴∠ADB=90°,即AD⊥DB,又∵DB⊥AE,AE∩AD=A,∴BD⊥平面AED.(2)解:取BD中点P,连结CP,FP.∵CD=CB,∴CP⊥BD.又∵FC⊥平面ABCD,∴BD⊥FC,∴BD⊥平面FCP,∴BD⊥FP,∴∠FPC是二面角F BD C的平面角.设CD=1,则CP=,∴在Rt△FCP中,FP==,∴cos∠FPC==,即二面角F BD C的余弦值为.10.(2012年新课标全国卷,理19,12分)如图,直三棱柱ABC A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1BD C1的大小.(1)证明:不妨设AC=BC=AA1=1.又∵D为AA1中点,∴DC1=,BC1=,∴BD2=3=AD2+AB2,∴AB2=2=AC2+BC2,∴∠ACB=90°,即BC⊥AC,又∵BC⊥CC1,∴BC⊥平面ACC1A1,又∵DC1⊂平面ACC1A1,∴DC1⊥BC.(2)解:由(1)知CA、CB、CC1两两垂直.分别以CA、CB、CC1为x、y、z轴建立空间直角坐标系,则B(0,1,0),D(1,0,1),A1(1,0,2),C1(0,0,2),∴=(1,-1,1),=(0,-1,2),设平面BDC1的一个法向量n=(x,y,z).则即令z=1,则y=2,x=1,即n=(1,2,1).可取平面A1BD的一个法向量m=(1,1,0),∴cos<m,n>===,又∵二面角A1BD C1为锐二面角,∴该二面角的大小为.该题应属立体几何的常规考查形式,一证一求,难度适中.11.(2012年广东卷,理18,13分)如图所示,在四棱锥P ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC 上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PA=1,AD=2,求二面角B PC A的正切值.解:(1)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,同理PC⊥BD.∵PA、PC是平面PAC中的两条相交直线,∴BD⊥平面PAC.(2)解:法一:设AC、BD的交点为O,连接OE,则∠BEO即为所求二面角B PC A的平面角,由(1)知BD⊥平面PAC,∴BD⊥AC,又∵四边形ABCD为矩形.∴四边形ABCD是正方形,∴AB=AD=2,AC=BD=2,∴BO=OC=BD=×2=,PC===3,由Rt△PAC∽Rt△OEC知=,=,OE=,在Rt△BOE中,tan ∠BEO===3.即二面角B PC A的正切值为3.法二:如图,分别以AB、AD、AP所在直线为x、y、z轴,A为坐标原点,建立空间直角坐标系, 由(1)知BD⊥平面PAC,∴BD⊥AC,∴矩形ABCD为正方形,∴P(0,0,1),B(2,0,0),D(0,2,0),C(2,2,0),=(-2,2,0)是平面PAC的一个法向量,设n=(x,y,z)是平面PBC的法向量,由得,令x=1,则z=2,y=0,∴n=(1,0,2),∴cos<n,>===-,sin <n,>==,∴tan <n,>==-=-3又二面角B PC A为锐角,∴二面角B PC A的正切值为3.12.(2012年浙江卷,理20,15分)如图,在四棱锥P ABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A MN Q的平面角的余弦值.(1)证明:因为M,N分别是PB,PD的中点,所以MN是△PBD的中位线,所以MN∥BD.又因为MN⊄平面ABCD,所以MN∥平面ABCD.(2)解:法一:连结AC交BD于O,以O为原点,OC,OD所在直线为x,y轴,建立空间直角坐标系Oxyz,如图所示.在菱形ABCD中,∠BAD=120°,得AC=AB=2,BD=AB=6.又因为PA⊥平面ABCD,所以PA⊥AC.在Rt△PAC中,AC=2,PA=2,AQ⊥PC,得QC=2,PQ=4.由此知各点坐标如下:A(-,0,0),B(0,-3,0)C(,0,0),D(0,3,0),P(-,0,2),M(-,-,),N(-,,),Q(,0,).设m=(x1,y1,z1)为平面AMN的法向量.由=(,-,),=(,,)取z1=-1,得m=(2,0,-1).设n=(x2,y2,z2)为平面QMN的法向量.由=(-,-,),=(-,,)知取z2=5,得n=(2,0,5).于是cos<m,n>==.所以二面角A MN Q的平面角的余弦值为.法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA,BD=AB.又因为PA⊥平面ABCD,所以PA⊥AB,PA⊥AC,PA⊥AD.所以PB=PC=PD.所以△PBC≌△PDC.因M,N分别是PB,PD的中点,所以MQ=NQ,且AM=PB=PD=AN.取线段MN的中点E,连结AE,EQ,则AE⊥MN,QE⊥MN,所以∠AEQ为二面角A MN Q的平面角.由AB=2,PA=2,故在△AMN中,AM=AN=3,MN=BD=3,得AE=.在Rt△PAC中,AQ⊥PC,得AQ=2,QC=2,PQ=4.在△PBC中,cos∠BPC==,得MQ==.在等腰△MQN中,MQ=NQ=,MN=3,得QE==.在△AEQ中,AE=,QE=,AQ=2,得cos∠AEQ==.所以二面角A MN Q的平面角的余弦值为.13.(2012年天津卷,理17,13分)如图,在四棱锥P ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A PC D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.解:如图,以点A为原点,射线AD、AC、AP分别为x轴、y轴、z轴的正半轴建系, 则A(0,0,0),D(2,0,0),B(-,,0),C(0,1,0),P(0,0,2),(1)∵=(0,1,-2),=(2,0,0),∴·=0,∴PC⊥AD.(2)=(0,1,-2),=(2,-1,0),设平面PCD的法向量为n1=(x,y,z),则,即,令x=1,则n1=(1,2,1).又平面PAC的一个法向量可取n2=(1,0,0),∴cos<n1,n2>===.∴sin<n1,n2>=.∴二面角A PC D的正弦值为.(3)设点E(0,0,a),a∈[0,2],则=(,-,a),又=(2,-1,0),故cos<,>===,∴=cos 30°=,∴a=,∴AE=.本小题主要考查了空间两直线的位置关系,二面角,异面直线所成的角等基础知识,主要考查学生的空间想象力,化归能力和运算能力,难度适中.14.(2012年四川卷,理19,12分)如图,在三棱锥P ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.(1)求直线PC与平面ABC所成的角的大小;(2)求二面角B AP C的大小.解:法一:(1)设AB的中点为D,AD的中点为O,连结PO、CO、CD.由已知,△PAD为等边三角形.所以PO⊥AD.又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD,所以PO⊥平面ABC.所以∠OCP为直线PC与平面ABC所成的角.不妨设AB=4,则PD=2,CD=2,OD=1,PO=.在Rt△OCD中,CO==.所以,在Rt△POC中,tan∠OCP===.故直线PC与平面ABC所成的角的大小为arctan .(2)过D作DE⊥AP于E,连结CE.由已知可得,CD⊥平面PAB.根据三垂线定理知,CE⊥PA.所以∠CED为二面角B AP C的平面角.由(1)知,DE=.在Rt△CDE中,tan∠CED===2.故二面角B AP C的大小为arctan 2.法二:(1)设AB的中点为D,作PO⊥AB于点O,连结CD.因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AD,所以PO⊥平面ABC.所以PO⊥CD.由AB=BC=CA,知CD⊥AB.设E为AC中点,则EO∥CD,从而OE⊥PO,OE⊥AB.如图,以O为坐标原点,OB、OE、OP所在直线分别为x、y、z轴建立空间直角坐标系O xyz. 不妨设PA=2,由已知可得,AB=4,OA=OD=1,OP=,CD=2.所以O(0,0,0),A(-1,0,0),C(1,2,0),P(0,0,).所以=(-1,-2,),而=(0,0,)为平面ABC的一个法向量.设α为直线PC与平面ABC所成的角,则sin α=||=||=.故直线PC与平面ABC所成的角的大小为arcsin .(2)由(1)有,=(1,0,),=(2,2,0).设平面APC的一个法向量为n=(x1,y1,z1),则⇔⇔从而取x1=-,则y1=1,z1=1,所以n=(-,1,1).设二面角B AP C的平面角为β,易知β为锐角.而平面ABP的一个法向量为m=(0,1,0),则cos β=||=||=.故二面角B AP C的大小为arccos .15.(2011年天津卷,理17)如图,在三棱柱ABC A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.(1)求异面直线AC与A1B1所成角的余弦值;(2)求二面角A A1C1B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.解:如图所示,建立空间直角坐标系,点H为原点,依题意得A(2,0,0),B1(-2,0,0),A1(0,2,0),B(0,-2,0),C1(0,0,),C(2,-2,).(1)∵=(0,-2,),=(-2,-2,0),∴cos<,>===,∴异面直线AC与A1B1所成角的余弦值为.(2)设平面AA1C1的法向量m=(x,y,z),则,即,取x=,可得m=(,,2),同理设平面A1B1C1的法向量n=(x',y',z'), 则,即,取x'=,可得n=(,-,-2).∴cos<m,n>==-=-,从而sin<m,n>=.所以二面角A A1C1B1的正弦值为.(3)B1C1的中点N(-1,0,),设M(a,b,0),则=(-1-a,-b,),由⊥平面A1B1C1,得,即,∴,∴M(,-,0),∴=(,,0),∴||==.∴线段BM的长为.16.(2011年新课标全国卷,理18)如图,四棱锥P ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A PB C的余弦值.(1)证明:∵∠DAB=60°,AB=2AD,不妨设AD=1.由余弦定理得BD=,∴BD2+AD2=AB2,∴BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD,∵AD∩PD=D,∴BD⊥平面PAD.∴PA⊥BD.(2)解:如图,以D为坐标原点,DA,DB,DP分别为x,y,z轴,建立空间直角坐标系D xyz.设AD=1,则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1),=(-1,,0),=(0,,-1),=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则,即.设z=,则得n=(,1,).同理设平面PBC的法向量为m,则可取m=(0,-1,-),cos<m,n>===-.故二面角A PB C的余弦值为-.17.(2010年浙江卷,理20)如图, 在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=FD=4.沿直线EF将△AEF翻折成△A'EF,使平面A'EF⊥平面BEF.(1)求二面角A'FD C的余弦值;(2)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A'重合,求线段FM的长.解:法一:(1)取线段EF的中点H,连接A'H.因为A'E=A'F及H是EF的中点,所以A'H⊥EF.又因为平面A'EF⊥平面BEF,及A'H⊂平面A'EF,所以A'H⊥平面BEF.如图建立空间直角坐标系A xyz,则A'(2,2,2),C(10,8,0),F(4,0,0),D(10,0,0),故=(-2,2,2),=(6,0,0).设n=(x,y,z)为平面A'FD的一个法向量,所以取z=,则n=(0,-2,).又平面BEF的一个法向量m=(0,0,1).故cos<n,m>==.所以二面角A'FD C的余弦值为.(2)设FM=x,则M(4+x,0,0),因为翻折后C与A'重合,所以CM=A'M,故(6-x)2+82+02=(-2-x)2+22+(2)2,得x=,经检验,此时点N在线段BC上,所以FM=.法二:(1)取线段EF的中点H,AF的中点G,连接A'G,A'H,GH.因为A'E=A'F及H是EF的中点,所以A'H⊥EF,又因为平面A'EF⊥平面BEF,A'H⊂平面A'EF,所以A'H⊥平面BEF,又AF⊂平面BEF,故A'H⊥AF,又因为G,H分别是AF,EF的中点,易知GH∥AB,所以GH⊥AF,又∵GH∩A'H=H,∴AF⊥平面A'GH,所以∠A'GH为二面角A'FD C的平面角,在Rt△A'GH中,A'H=2,GH=2,A'G=2,所以cos∠A'GH=.故二面角A'FD C 的余弦值为.(2)设FM=x,因为翻折后C与A'重合, 所以CM=A'M,而CM2=DC2+DM2=82+(6-x)2,A'M2=A'H2+MH2=A'H2+MG2+GH2=(2)2+(x+2)2+22,得x=,经检验,此时点N在线段BC上,所以FM=.立体几何的开放性问题考向聚焦高考常考内容,主要考查立体几何的开放性问题:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型.考查学生分析问题、解决问题的能力,多在解答题的最后一问,难度中档偏上,所占分值4~8分18.(2012年上海数学,理14,4分)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.解析:过点A作AE⊥BC于E,连结DE,则DE⊥BC,所以四面体ABCD的体积为S△ADE.由对称性知,点E为BC的中点,且AB=BD=a时,△ADE的面积最大,又AB+BD>AD,即a>c.所以S△ADE=c,因此四面体ABCD的体积的最大值为.答案:19.(2012年北京卷,理16,14分)如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE ∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.解:(1)在图(1)中,DE∥BC,AC⊥BC,∴DE⊥AD,DE⊥DC.∴折起后在图(2)中,DE⊥A1D,DE⊥DC.又∵A1D∩DC=D,且A1D,DC⊂平面A1CD,∴DE⊥平面A1CD.∴DE⊥A1C.又∵CD⊥A1C,且CD∩DE=D,且CD,DE⊂平面BCDE,∴A1C⊥平面BCDE.(2)在图(1)中,∵DE∥BC,AC=6,DE=2,BC=3,∴AD=4,DC=2,∴折起后在图(2)中,A1D=4,DC=2,又∵A1C⊥CD,∴A1C=2.由(1)知,建立如图所示的空间直角坐标系C xyz,则C(0,0,0),A1(0,0,2),D(0,2,0),B(3,0,0),E(2,2,0),∴中点M(0,1,),∴=(0,1,).又∵=(-1,2,0),=(3,0,-2).设平面A1BE的法向量为n=(x1,y1,z1),则,∴不妨取x1=1,则n=(1,,).设直线CM与平面A1BE所成角为α,则sin α=|cos(-α)|===,∴α=,∴直线CM与平面A1BE所成角为.(3)不存在点P,使平面A1DP与平面A1BE垂直.证明:假设存在点P,使平面A1DP与平面A1BE垂直.记P的坐标为P(m,0,0),且0≤m≤3.∴=(m,0,-2),=(0,2,-2),设平面A1PD的法向量为m,且m=(x2,y2,z2),∴∴令z2=1,得m=(,,1).又当平面A1DP⊥平面A1BE时,m·n=0,∴++=0,∴m=-2∉[0,3].∴假设不成立,∴不存在点P,使平面A1DP与平面A1BE垂直.本题考查了空间向量在立体几何中的应用,尤其第三问中更好地体现了空间向量的优越性.20.(2012年福建卷,理18,13分)如图,在长方体ABCD A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A B1E A1的大小为30°,求AB的长.解:(1)以A为原点,,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图).设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1),故=(0,1,1),=(-,1,-1),=(a,0,1),=(,1,0).∵·=-×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0)(0≤z0≤1),使得DP∥平面B1AE.此时=(0,-1,z0).设平面B1AE的法向量n=(x,y,z),∵n⊥平面B1AE,∴n⊥,n⊥,得取x=1,得平面B1AE的一个法向量n=(1,-,-a).要使DP∥平面B1AE,只要n⊥,有-az0=0,解得z0=.即AP=.(3)连接A1D,B1C,由长方体ABCD A1B1C1D1及AA1=AD=1,得AD1⊥A1D.∵B1C∥A1D,∴AD1⊥B1C.又由(1)知B1E⊥AD1,且B1C∩B1E=B1,∴AD1⊥平面DCB1A1,∴是平面A1B1E的一个法向量,此时=(0,1,1).设与n所成的角为θ,则cos θ==.∵二面角A B1E A1的大小为30°,∴|cos θ|=cos 30°,即=,解得a=2,即AB的长为2.利用空间向量解决立体几何中的判定与求解问题的关键是合理建系,准确设点,本题第3问较为创新,更能体现向量法的优点,而在法向量的应用上,要注意赋值的有效性.21.(2010年湖南卷,理18)如图所示,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.(1)求直线BE与平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:法一:设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系A xyz.(1)依题意,得B(1,0,0),E(0,1,),A(0,0,0),D(0,1,0),所以=(-1,1,),=(0,1,0).在正方体ABCD A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE与平面ABB1A1所成的角为θ,则sin θ===.即直线BE与平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=(-1,1,).设n=(x,y,z)是平面A1BE的一个法向量,则由n·=0,n·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).设F是棱C1D1上的点,则F(t,1,1)(0≤t≤1).又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.法二:(1)如图(1)所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD A1B1C1D1中,AD⊥平面ABB1A1,所以EM⊥平面ABB1A1,从而BM为BE在平面ABB1A1上的射影,∠EBM为BE和平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE==3.于是,在Rt△BEM中,sin∠EBM==,即直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:事实上,如图(2)所示,分别取C1D1和CD的中点F、G,连接B1F,EG,BG,CD1,FG.因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别是D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG⊂平面A1BE.因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG.而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.(2011年福建卷,理20)如图,四棱锥P ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(1)求证:平面PAB⊥平面PAD;(2)设AB=AP.①若直线PB与平面PCD所成的角为30°,求线段AB的长;②在线段AD上是否存在一个点G,使得点G到点P、B、C、D的距离都相等?说明理由.解:(1)因为PA⊥平面ABCD,AB⊂平面ABCD,所以PA⊥AB.1分又AB⊥AD,PA∩AD=A,所以AB⊥平面PAD.2分又AB⊂平面PAB,所以平面PAB⊥平面PAD.3分第(1)问赋分细则:(1)证出PA⊥AB得1分,未写出AB⊂平面ABCD不得分;(2)证出AB⊥平面PAD得1分,未写出PA∩AD=A不得分;(3)写出平面PAB⊥平面PAD得1分.(2)以A为坐标原点,建立空间直角坐标系A xyz(如图).在平面ABCD内,作CE∥AB交AD于点E,则CE⊥AD.4分在Rt△CDE中,DE=CD·cos 45°=1,CE=CD·sin 45°=1.设AB=AP=t,则B(t,0,0),P(0,0,t).由AB+AD=4得AD=4-t,所以E(0,3-t,0),C(1,3-t,0),D(0,4-t,0),=(-1,1,0),=(0,4-t,-t).5分①设平面PCD的法向量为n=(x,y,z),由n⊥,n⊥,得取x=t,得平面PCD的一个法向量n=(t,t,4-t).又=(t,0,-t),故由直线PB与平面PCD所成的角为30°得cos 60°=||,即=,解得t=或t=4(舍去,因为AD=4-t>0),6分所以AB=.7分②假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等.8分设G(0,m,0)(其中0≤m≤4-t),则=(1,3-t-m,0),=(0,4-t-m,0),=(0,-m,t).由||=||得12+(3-t-m)2=(4-t-m)2,即t=3-m;(ⅰ)由||=||得(4-t-m)2=m2+t2.(ⅱ)由(ⅰ)、(ⅱ)消去t,化简得m2-3m+4=0.(ⅲ)由于方程(ⅲ)没有实数根,所以在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.11分从而,在线段AD上不存在一个点G,使得点G到点P、B、C、D的距离都相等.12分第(2)问赋分细则:(1)建立坐标系得1分,未说明如何建立坐标系扣1分;(2)用t表示出、得1分;(3)设出平面法向量,计算正确得1分;(4)在线段AD上设出G点得1分;(5)计算错误扣2分,如t值计算错;(6)没有结论扣1分.通过高考阅卷分析,造成失分原因如下:(1)解题过程不全,错过得分点,如不建立坐标系;(2)计算错误,如t值求错,平面法向量求错;(3)对参数没有限制范围,如0≤m≤4-t;(4)没有写出结论或未写清结论导致扣分,如不写在线段AD上不存在一个点G,使得点G到P、B、C、D的距离相等.。

立体几何中的向量方法(一)-课后练习及答案解析

立体几何中的向量方法(一)-课后练习及答案解析

§立体几何中的向量方法(一)——证明平行与垂直.直线的方向向量:在空间直线上任取两点,,则称为直线的方向向量.平面的法向量:如果直线垂直于平面α,那么把直线的方向向量叫作平面α的法向量..用向量证明空间中的平行关系()设直线和的方向向量分别为和,则∥(或与重合)⇔∥.()设直线的方向向量为,与平面α共面的两个不共线向量和,则∥α或α⇔存在两个实数,,使=+.()设直线的方向向量为,平面α的法向量为,则∥α或α⇔⊥.()设平面α和β的法向量分别为,,则α∥β⇔∥..用向量证明空间中的垂直关系()设直线和的方向向量分别为和,则⊥⇔⊥⇔·=.()设直线的方向向量为,平面α的法向量为,则⊥α⇔∥.()设平面α和β的法向量分别为和,则α⊥β⇔⊥⇔·=..判断下面结论是否正确(请在括号中打“√”或“×”)()直线的方向向量是唯一确定的.(×)()平面的单位法向量是唯一确定的.(×)()若两平面的法向量平行,则两平面平行.(×)()若两直线的方向向量不平行,则两直线不平行.(√)()若∥,则所在直线与所在直线平行.(×)()若空间向量平行于平面α,则所在直线与平面α平行.(×).若直线,的方向向量分别为=(,-),=(-),则().∥.⊥.与相交但不垂直.以上均不正确答案解析·=-+-=,故⊥,即⊥选..已知平面α内有一点(,-),平面α的一个法向量为=(,-),则下列点中,在平面α内的是().() .(-).(-) .(,-)答案解析逐一验证法,对于选项,=(),∴·=-+=,∴⊥,∴点在平面α内,同理可验证其他三个点不在平面α内..若(,),(,-,),(-,)是平面α内的三点,设平面α的法向量=(,,),则∶∶=.答案∶∶(-).已知=(,-),=(,),若⊥,=(-,,-),且⊥平面,则实数,,分别为.答案,-,解析由题意知,⊥,⊥.所以错误!即(\\(×+×+(-)×=,,(-)++(-)×(-)=,(-)+-=,))解得,=,=-,=.题型一证明平行问题例(·浙江改编)如图,在四面体-中,⊥平面,⊥,=,=,是的中点,是的中点,点在线段上,且=.证明:∥平面.思维启迪证明线面平行,可以利用判定定理先证线线平行,也可利用平面的法向量.证明方法一如图,取的中点,以为原点,、所在射线为、轴的正半轴,建立空间直角坐标系.由题意知,(,,),(,-,),(,,).设点的坐标为(,).因为=,所以.因为为的中点,故(,,).又为的中点,故,所以=.又平面的一个法向量为=(),故·=.又 平面,所以∥平面.方法二在线段上取点,使得=,连接,同证法一建立空间直角坐标系,写出点、、的坐标,设点坐标为(,).∵=,设点坐标系(,)则(-,-)=(-,-)∴(\\(=()=(())+()))∴=(,+)又由证法一知=(,+),∴=,∴∥.又 平面,平面,∴∥平面.思维升华用向量证明线面平行的方法有()证明该直线的方向向量与平面的某一法向量垂直;()证明该直线的方向向量与平面内某直线的方向向量平行;()证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.如图所示,平面⊥平面,为正方形,△是直角三角形,且==,、、分别是线段、、的中点.求证:∥平面.证明∵平面⊥平面且为正方形,∴、、两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,则()、()、()、()、()、()、()、().∴=(,-),=(,-),=(,-),设=+,即(,-)=(,-)+(,-),∴(\\(=,-=,,-=-,))解得==.∴=+,又∵与不共线,∴、与共面.∵ 平面,∴∥平面.题型二证明垂直问题例如图所示,正三棱柱—1C的所有棱长都为,为的中点.求证:⊥平面.思维启迪证明线面垂直可以利用线面垂直的定义,即证线与平面内的任意一条直线垂直;也可以证线与面的法向量平行.证明方法一设平面内的任意一条直线的方向向量为.由共面向量定理,则存在实数λ,μ,使=λ+μ.令=,=,=,显然它们不共面,并且===,·=·=,·=,以它们为空间的一个基底,则=+,=+,=-,=λ+μ=+μ+λ,·=(-)·=-μ-λ=.故⊥,结论得证.方法二如图所示,取的中点,连接.因为△为正三角形,所以⊥.因为在正三棱柱—1C中,平面⊥平面,所以⊥平面.取1C的中点,以为原点,以,,为轴,轴,轴建立空间直角坐标系,则(),(-),(,),(,),().设平面的法向量为=(,,),=(-,),=(-).因为⊥,⊥,故(\\(·(,\(→))=,·(,\(→))=))⇒(\\(-++()=,,-+=,))令=,则=,=-,故=(,-)为平面的一个法向量,而=(,-),所以=,所以∥,故⊥平面.思维升华用向量证明垂直的方法()线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.()线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.()面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如图所示,在四棱锥-中,⊥平面,=,在四边形中,∠=∠=°,=,=,点在上,=,与平面成°角.()求证:∥平面;()求证:平面⊥平面.证明以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴建立如图所示的空间直角坐标系,∵⊥平面,∴∠为与平面所成的角,∴∠=°.∵=,∴=,=.∴(),(,),(,),(),(,,),∴=(,-),=(,),=(,,),()令=(,,)为平面的一个法向量,则(\\((,\(→))·=,,(,\(→))·=,))即(\\(-+=,()+=,))∴(\\(=(),=-(()),))令=,得=(-,).∵·=-×+×+×=,∴⊥,又 平面,∴∥平面.()取的中点,则(,),=(-,).∵=,∴⊥.又∵·=(-,)·(,)=,∴⊥,∴⊥,又∩=,∴⊥平面,又∵平面,∴平面⊥平面.题型三解决探索性问题例(·福建)如图,在长方体-1C中,==,为的中点.()求证:⊥;()在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.思维启迪利用向量法建立空间直角坐标系,将几何问题进行转化;对于存在性问题可通过计算下结论.()证明以为原点,,,的方向分别为轴,轴,轴的正方向建立空间直角坐标系(如图).设=,则(),(),(),,(),故=(),=,=(),=.∵·=-×+×+(-)×=,∴⊥.()解假设在棱上存在一点(,).使得∥平面,此时=(,-,).又设平面的法向量=(,,).∵⊥平面,∴⊥,⊥,得(\\(+=,,()+=.))取=,得平面的一个法向量=.要使∥平面,只要⊥,有-=,解得=.又 平面,∴存在点,满足∥平面,此时=.思维升华对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.如图所示,四棱锥—的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.()求证:⊥.()若⊥平面,则侧棱上是否存在一点,使得∥平面.若存在,求∶的值;若不存在,试说明理由.()证明连接,设交于,则⊥.由题意知⊥平面.以为坐标原点,,,分别为轴、轴、轴正方向,建立空间直角坐标系如图.设底面边长为,则高=,于是,,,,=,=,则·=.故⊥.从而⊥.()解棱上存在一点使∥平面.理由如下:由已知条件知是平面的一个法向量,且=,=,=.设=,则=+=+=,而·=⇔=.即当∶=∶时,⊥.而不在平面内,故∥平面.利用向量法解决立体几何问题典例:(分)(·湖南)如图所示,在四棱锥-中,⊥平面,=,=,=,∠=∠=°,是的中点.()证明:⊥平面;()若直线与平面所成的角和与平面所成的角相等,求四棱锥-的体积.思维启迪本题中的()有两种证明思路:()利用常规方法,将证明线面垂直转化为证明线线垂直,利用线面垂直的判定定理证之;()将证明线面垂直问题转化为向量间的关系问题,证明向量垂直;然后计算两个向量的数量积.规范解答方法一()证明如图,连接.由=,=,∠=°得=. [分]又=,是的中点,所以⊥. [分]因为⊥平面,平面,所以⊥.[分]而,是平面内的两条相交直线,所以⊥平面. [分]()解过点作∥,分别与,相交于点,,连接.由()⊥平面知,⊥平面.于是∠为直线与平面所成的角,[分]且⊥.由⊥平面知,∠为直线与平面所成的角.[分]由题意得∠=∠,因为∠=,∠=,所以=.由∠=∠=°知,∥.又∥,所以四边形是平行四边形.故==.于是=.在△中,=,=,⊥,所以==,===.于是==.[分]又梯形的面积为=×(+)×=,所以四棱锥-的体积为=××=××=.[分]方法二如图,以为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系.设=,则(),(),(),(),(),(,).[分]()证明易知=(-),=(),=(,).因为·=-++=,·=,[分]所以⊥,⊥.而,是平面内的两条相交直线,所以⊥平面.[分]()解由题设和()知,,分别是平面,平面的法向量.[分]而与平面所成的角和与平面所成的角相等,所以〈,〉=〈,〉,即=.[分]由()知,=(-),=(,-),又=(,-),故=.解得=.[分]又梯形的面积为=×(+)×=,所以四棱锥-的体积为=××=××=.[分]温馨提醒()利用向量法证明立体几何问题,可以建立坐标系或利用基底表示向量;()建立空间直角坐标系时要根据题中条件找出三条互相垂直的直线;()对于和平面有关的垂直问题,也可利用平面的法向量.方法与技巧用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:()建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;()通过向量运算,研究点、线、面之间的位置关系;()根据运算结果的几何意义来解释相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线∥,只需证明向量=λ(λ∈)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.组专项基础训练(时间:分钟)一、选择题.若直线的一个方向向量为=(),平面α的一个法向量为=(,-),则() .∥α或α.⊥α.α.与α斜交答案.若直线的方向向量为,平面α的法向量为,能使∥α的是().=(),=(-).=(),=().=(),=(-,-).=(,-),=()答案解析若∥α,则·=,中,·=×+(-)×+×=,∴⊥..设平面α的法向量为=(,-),平面β的法向量=(-,,),若α∥β,则+的值为().-.-8 ..-答案解析由α∥β得∥,∴==,∴=-,=,∴+=..已知=(,-),=(-,-),=(,λ),若,,三向量共面,则实数λ等于()答案解析由题意得=+μ=(-μ,-+μ,-μ),∴(\\(=-μ=-+μ,λ=-μ)),∴(\\(=(),μ=(),λ=()))..如图,在长方体—1C中,=,=,=,为的中点,为的中点.则与所成的角为().°.°.°.以上都不正确答案解析以点为原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系,依题意,可得,(),(,),(),(,),(,).∴=(,,-),=(-,),∴·=(,,-)·(-,)=,即⊥,∴⊥.二、填空题.已知平面α和平面β的法向量分别为=(),=(,-,),且α⊥β,则=.答案-解析∵·=-+=,∴=-..设点(2a+,+)在点()、(,-)、(,-,)确定的平面上,则=.答案解析=(-,-),=(,-).根据共面向量定理,设=+ (、∈),则(2a-,+)=(-,-)+(,-)=(-+,--+),∴(\\(-=-+,+=--,=+,))解得=-,=,=..如图,在正方体—1C中,棱长为,、分别为和上的点,1M==,则与平面1C1C的位置关系是.答案平行解析∵正方体棱长为,1M==,∴=,=,∴=++=++=(+)++(+)=+.又∵是平面的法向量,∴·=·=,∴⊥.又∵ 平面,∴∥平面.三、解答题.如图,四边形为正方形,⊥平面,∥,==.证明:平面⊥平面.证明如图,以为坐标原点,线段的长为单位长,射线为轴的正半轴建立空间直角坐标系.依题意有(,),(),(),则=(),=(),=(,-).∴·=,·=.即⊥,⊥,又∩=,故⊥平面,又平面,∴平面⊥平面..如图,在底面是矩形的四棱锥-中,⊥底面,,分别是,的中点,==,=.()求证:∥平面;()求证:平面⊥平面.证明()以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图所示的空间直角坐标系,则(),(),(),(),(),∴(,,),(,),=(-,),=(,-),=(,-),=(),=(),=(),=().∵=-,∴∥,即∥,又平面, 平面,∴∥平面.()∵·=()·()=,·=()·()=,∴⊥,⊥,即⊥,⊥.又∩=,∴⊥平面.∵平面,∴平面⊥平面.组专项能力提升(时间:分钟).已知=(),=(,-),=++(,-).若与及都垂直,则,的值分别为().-.,-..-,-答案解析由已知得=(+,+-,-+),故·=3m++=,·=+-=.解得(\\(=-,=.)).已知平面,点是空间任意一点,点满足条件=++,则直线().与平面平行.是平面的斜线.是平面的垂线.在平面内答案解析由已知得、、、四点共面.所以在平面内,选..在正方体—1C中,为正方形1C四边上的动点,为底面正方形的中心,,分别为,的中点,点为平面内一点,线段与互相平分,则满足=λ的实数λ的有个.答案解析建立如图的坐标系,设正方体的边长为,则(,),(),∴的中点坐标为,又知(),∴(+,+),而在上,∴+=,∴+=,即点坐标满足+=.∴有个符合题意的点,即对应有个λ..如图所示,已知直三棱柱—1C中,△为等腰直角三角形,∠=°,且=,、、分别为1A、1C、的中点.求证:()∥平面;()1F⊥平面.证明()如图建立空间直角坐标系,令==,则(),(),(),(),().取中点为,连接,则(),(),(),∴=(-),=(-),∴=,∴∥,又∵平面, 平面.故∥平面.()=(-,-),=(,-,-),=().·=(-)×+×(-)+(-)×(-)=,·=(-)×+×+(-)×=.∴⊥,⊥,即1F⊥,1F⊥,又∵∩=,∴1F⊥平面..在四棱锥—中,⊥底面,底面为正方形,=,、分别是、的中点.()求证:⊥;()在平面内求一点,使⊥平面,并证明你的结论.()证明如图,以、、所在直线分别为轴、轴、轴建立空间直角坐标系,设=,则()、()、(,)、(,)、、(,)、.=,=(,).∵·=,∴⊥,即⊥.()解设(,),则=,若使⊥平面,则由·=·()==,得=;由·=·(,-,)=+=,得=.∴点坐标为,即点为的中点.。

3.2.1立体几何中的向量方法(经典实用)

3.2.1立体几何中的向量方法(经典实用)
设 解:如图, A B = A A 1 = A D = 1,∠B A D = ∠B A A 1 = ∠D A A 1 = 60°
AC1 AB AD AA1
AC
2 1
(AB AD AA 1 )2
AB AD AA1 2( AB AD AB AA1 AD AA1 )
3.2.1立体几何中的向量方法(1)
学习目标
1.掌握直线的方向向量及平面的法向量的概念
2.掌握利用直线的方向向量及平面的法向量解 决平行、垂直等立体几何问题;
3.掌握向量模的计算公式,会用向量方法求两 点间距离。
立体几何中的向量方法(一)
前面,我们把 平面向量
推广到
空间向量
向量 渐渐成为重要工具
2 2 2
1 1 1 2(cos 60 cos 60 cos 60)
6
所以 |Байду номын сангаасAC1 | 6
A1 D1 C1
D
C
B
B1
答: 这个晶体的对角线 AC1 的长是棱长的 6 倍。 A
当堂检测7:如图,60°的二面角的棱上有A、B两点,
直线AC、BD分别在这个二面角的两个半平面内,且都垂直
二、垂直关系:
(1) l m a b a b 0
l
a b
m
设直线 l,m 的方向向量分别为 a , b , 平面 , 的法向量分别为 u, v ,则 (2) l a // u a u
l
a
⑷解方程组,取其中的一个解,即得法向量.
变式训练: 在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) , C (0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6) 解:设平面 ABC 的一个法向量为 n ( x , y , z ) n 则 n AB , AC .∵ AB ( 3, 4, 0) , AC ( 3, 0, 2)

【全程复习方略】(全国通用)高考数学 7.7 立体几何中的向量方法(一)证明空间中的位置关系课件

【全程复习方略】(全国通用)高考数学 7.7 立体几何中的向量方法(一)证明空间中的位置关系课件
所以 AM =(-2,0,1), ON =(1,0,2), AMON =-2+0+2=0,所以AM⊥ON.
答案:垂直
3.真题小试
感悟考题
试一试
(1)(2015·珠海模拟)若直线l∥平面α ,直线l的方向向量为s、平面α
的法向量为n,则下列结论正确的是( )
4
为OA的中点,N为BC的中点.利用向量方法证明:
直线MN∥平面OCD.
【证明】作AP⊥CD于点P,连接OP,如图,分别以AB,AP,AO所在 直线为x轴、y轴、z轴建立空间直角坐标系,
2 2 则 P(0, 2 ,, 0) D( , ,, 0) 2 2 2
O(0,0,2),M(0,0,1),N(1 2 , 2 ,, 0)
令x=1,则y=-1,z=-1,所以n=(1,-1,-1).
因为 MN·n=1+0-1=0,所以MN ⊥n.
又因为MN⊄平面A1BD,所以MN∥平面A1BD.
【一题多解】用向量法解答本题,你知道几种解法? 解答本题,用向量法还有以下两种解法. 方法一:因为 DA1 =(2,0,2), MN =(1,0,1), 所以 DA1 2MN,即DA1 MN,




所以 MN DA1 , 又因为MN与DA1不共线,所以MN∥DA1,


2
2
2
2
又因为MN⊄平面A1BD,A1D⊂平面A1BD,
所以MN∥平面A1BD.
【易错警示】解答本题有一点容易出错:
只证明 MN ⊥n,而忽视MN⊄平面A1BD的情况就下结论MN∥平面A1BD,而
2.教材改编
链接教材
练一练
(1)(选修2-1P104 T2改编)设 ,v分别是平面α ,β 的法向量, = (-2,2,5),当v=(3,-2,2)时,α 与β 的位置关系为 (4,-4,-10)时,α 与β 的位置关系为 . ; 当 v=

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。

立体几何中的向量方法真题与解析

立体几何中的向量方法真题与解析

立体几何中的向量方法A 级 基础一、选择题1.如图,F 是正方体ABCD-A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合2.如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A.43B.53C.23D .-233.在三棱柱ABC-A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.644.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上说法正确的个数为( ) A .1B .2C .3D .45.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22二、填空题6.(2019·东莞中学检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成的角的大小是________.7.如图所示,在正方体ABCD-A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.三、解答题8.(2018·北京卷)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.9.(2019·长郡中学模拟)如图1,直角梯形ABCD中,AD∥BC 中,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.B级能力提升10.(2019·天津卷)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为13,求线段CF的长.11.(2019·六安一中模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.A 级 基础一、选择题1.解析:以D 为坐标原点,以DA ,DC ,DD 1所在直线为坐标轴建立坐标系,设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),因为D 1F →·DE →=0×2+1×2-2z =0,所以z =1,所以B 1E =EB.答案:A2.解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C-AB-O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.答案:C3.解析:如图,建立空间直角坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案:D4. 解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,所以A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.答案:C5.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3). 则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故异面直线AD 1与DB 1所成角的余弦值为55.答案:C 二、填空题 6.解析:依题意,以C 为原点,建立如图所示的直角坐标系,设AB =BC =CD =a ,AB ⊥平面BCD .则B (a ,0,0),D (0,a ,0),C (0,0,0),A (a ,0,a ). 所以BD →=(-a ,a ,0),CA →=(a ,0,a ).所以cos 〈BD →,CA →〉=BD →·CA→|BD →|·|CA →|=-a 22a ·2a=-12,则〈BD →,CA →〉=2π3,故AC 与BD 所成角为π3.答案:π37. 解析:因为AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B , 所以AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF =sin ∠EDF =EFED =66.答案:66三、解答题8.(1)证明:在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.又EF∩BE=E,所以AC⊥平面BEF.(2)解:由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),E(0,0,0),F(0,0,2),G(0,2,1).所以BC→=(-1,-2,0),BD→=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0).则⎩⎪⎨⎪⎧n·BC→=0,n·BD→=0,即⎩⎪⎨⎪⎧x0+2y0=0,x0-2y0+z0=0.令y0=-1,则x0=2,z0=-4.于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B -CD -C 1为钝角,所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1).因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.9.(1)证明:取DE 中点G ,连接FG ,AG ,CG . 由条件CFDG ,所以CFGD 为平行四边形,所以FG ∥CD .又FG ⊄平面CBD ,CD ⊂平面CBD , 所以FG ∥平面CBD . 同理AG ∥平面CBD .又FG ∩AG =G ,FG ⊂平面AFG ,AG ⊂平面AFG . 所以平面AFG ∥平面CBD . 又AF ⊂平面AFG , 所以AF ∥平面CBD .(2)解:因为EF ⊥AE ,EF ⊥DE ,AE ∩DE =E ,所以EF ⊥平面ADE .又AD =AE =DE ,以AE 中点H 为原点,AE 为x 轴建立如图所示的空间直角坐标系,则A (-1,0,0),D (0,0,3),B (-1,-2,0),E (1,0,0), F (1,-2,0).因为CF →=12DE →,所以C ⎝ ⎛⎭⎪⎫12,-2,32,所以BC →=⎝ ⎛⎭⎪⎫32,0,32,BD →=(1,2,3).易知BA →是平面ADE 的一个法向量,BA →=n 1=(0,2,0), 设平面BCD 的一个法向量为n 2=(x ,y ,z ),由⎩⎨⎧n 2·BC →=(x ,y ,z )·⎝ ⎛⎭⎪⎫32,0,32=32x +32z =0,n 2·BD →=(x ,y ,z )·(1,2,3)=x +2y +3z =0,令x =2,则y =2,z =-23,所以n 2=(2,2,-23). cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=2×0+2×2-23×02×25=55.所以平面CBD 与平面DAE 所成锐角的余弦值为55.B 级 能力提升10.(1)证明:依题意,建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴、y 轴、z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的法向量. 又BF →=(0,2,h ),可得BF →·AB →=0, 又因为直线BF ⊄平面ADE . 所以BF ∥平面ADE .(2)解:依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0.即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0.不妨令z =1,可取n =(2,2,1). 因此有cos 〈CE →·n 〉=CE →·n |CE →||n |=-49.所以直线CE 与平面BDE 所成角的正弦值为49.(3)解:设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h2=13, 解得h =87 .经检验,符合题意.所以线段CF 的长为87.11.(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,由题意知SO ⊥平面ABCD ,以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立坐标系O-xyz , 设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解:由题设知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,所以所求二面角的大小为30°.(3)解:在棱SC 上存在一点E 使BE ∥平面PAC .根据第(2)问知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a .设CE →=tCS →.则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .由BE →·DS →=0,得-a 22+0+64a 2t =0,则t =13.所以当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面PAC ,故BE ∥平面PAC .因此在棱SC 上存在点E ,使BE ∥平面PAC ,此时SE ∶EC =2∶1.。

高考数学专题复习《空间几何中的向量方法》知识梳理及典型例题讲解课件(含答案)

探究三:求二面角的大小,例3,变式训练3?
变式1:
如图,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两 点,BE⊥平面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC. (1)证明:平面 AEC⊥平面 AFC; (2)求直线 AE 与直线 CF 所成角的余弦值.
在 Rt△FDG 中,可得 FG= 6. 2
在直角梯形 BDFE 中,由 BD=2,BE= 2,DF= 2,可得 EF=3 2.
2
2
从而 EG2+FG2=EF2,所以 EG⊥FG. ②
又因为 AC∩FG=G,③所以 EG⊥平面 AFC.(一)
因为 EG ⫋ 平面 AEC,(二)所以平面 AEC⊥平面 AFC.
例 1 如图所示,在三棱柱 ABC-A1B1C1 中,AA1⊥底面 ABC,AB=BC=AA1,∠
ABC=90°,点 E,F 分别是棱 AB,BB1 的中点,则直线 EF 和 BC1 所成的角是
()
A.30°
B.45°
C.60° D.90°
解析:选 C 以 B 为坐标原点,以 BC 所在直线为 x 轴,BA 所在直线为 y 轴,BB1 所 在直线为 z 轴,建立空间直角坐标系如图所示. 设 AB=BC=AA1=2,则 C1(2,0,2),E(0,1,0),F(0,0,1),∴ E→F=(0,-1,1),B→C1=(2,0,2),∴E→F·B→C1=2,设直线 EF 与
[解] (1)证明:如图,连接 BD,设 BD∩AC=G,连接 EG,FG,EF.
在菱形 ABCD 中,不妨设 GB=1.
由∠ABC=120°,可得 AG=GC= 3. 由 BE⊥平面 ABCD,AB=BC,可知 AE=EC.

3.2立体几何中的向量方法(经典例题及答案详解)

3.2立体几何中的向量方法(经典例题及答案详解)3.2立体几何中的向量方法第一课时立体几何中的向量方法(1)教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示;⑵考虑一些未知的向量能否用基向量或其他已知向量表式;⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢?⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b ??r r r r ,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ?a ·b =0可以解决线段或直线的垂直问题;⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题.二、例题讲解1. 出示例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥.证明:·OC AB u u u u r u u u r =·()OC OB OA -u u u u r u u u r u u u r =·OC OB u u u u r u u u r -·OC OA u u u u r u u u r .∵OA BC ⊥,OB AC ⊥,∴·0OA BC =u u u r u u u r ,·0OB AC =u u u r u u u u r ,·()0OA OC OB -=u u u r u u u u r u u u r ,·()0OB OC OA -=u u u r u u u u r u u u r .∴··OA OC OA OB =u u u r u u u u r u u u r u u u r ,··OB OC OB OA =u u u r u u u u r u u u r u u u r .∴·OC OB u u u u r u u u r =·OC OA u u u u r u u u r ,·OC ABu u u u r u u u r =0.∴OC AB ⊥ 2. 出示例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=o ,如果AB =a ,AC =BD =b ,求C 、D 间的距离.解:由AC α⊥,可知AC AB ⊥.由'30DBD ∠=o 可知,<,CA BD u u u r u u u u r >=120o ,∴2||CD u u u u r =2()CA AB BD ++u u u r u u u r u u u u r =2||CA u u u r +2||AB u u u r +2||BD u u u u r +2(·CA AB u u u r u u u r +·CA BD u u u r u u u u r +·AB BD u u u r u u u u r )=22222cos120b a b b +++o =22a b +.∴22CD a b =+.3. 出示例3:如图,M 、N 分别是棱长为1的正方体''''ABCD AB C D -的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角.解:∵MN u u u u r =1(')2CC BC +u u u u r u u u r ,'CD u u u u r ='CC CD +u u u u r u u u u r ,∴·'MN CD u u u u r u u u u r =1(')2CC BC +u u u u r u u u r ·(')CC CD +u u u u r u u u u r =12(2|'|CC u u u u r +'CC CD u u u u r u u u u r g +·'BC CC u u u r u u u u r +·BC CD u u u r u u u u r ).∵'CC CD ⊥,'CC BC ⊥,BC CD ⊥,∴'0CC CD =u u u u r u u u u r g,·'0BC CC =u u u r u u u u r ,·0BC CD =u u u r u u u u r ,∴·'MN CD u u u u r u u u u r =122|'|CC u u u u r =12.…求得 cos <,'MN CD u u u u r u u u u r >12=,∴<,'MN CD u u u u r u u u u r >=60o . 4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明.反思:本节课较好的完成了教学任务,实现了教学目标。

【专题5】(3)立体几何中的向量方法(含答案)

第3讲 立体几何中的向量方法考情解读 1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明,常出现在解答题的第(1)问中,考查空间想象能力,推理论证能力及计算能力,属低中档问题.2.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间角(主要是线面角和二面角)的计算,是高考的必考内容,属中档题.3.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题.1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1).平面α、β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)(以下相同).(1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3.(4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α、β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角设l ,m 的夹角为θ(0≤θ≤π2),则 cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ(0≤θ≤π2), 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)面面夹角设半平面α、β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.3.求空间距离直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).热点一 利用向量证明平行与垂直例1 如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ;(2)平面MDF ⊥平面EFCD .如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,P A=AB =2,∠BAD =60°,E 是P A 的中点.(1)求证:直线PC ∥平面BDE ;(2)求证:BD ⊥PC ;热点二 利用向量求空间角例2 如图,五面体中,四边形ABCD 是矩形,AB ∥EF ,AD ⊥平面ABEF ,且AD=1,AB =12EF =22,AF =BE =2,P 、Q 分别为AE 、BD 的中点. (1)求证:PQ ∥平面BCE ;(2)求二面角A -DF -E 的余弦值.(2013·山东)如图所示,在三棱锥P -ABQ 中,PB ⊥平面ABQ ,BA =BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(1)求证:AB ∥GH ;(2)求二面角D -GH -E 的余弦值.热点三 利用空间向量求解探索性问题例3 如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC的中点.(1)求证:A 1B ∥平面ADC 1;(2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.如图,在三棱锥P —ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC ,点D 为BC 的中点.(1)求二面角A —PD —B 的余弦值;(2)在直线AB 上是否存在点M ,使得PM 与平面P AD 所成角的正弦值为16,若存在,求出点M 的位置;若不存在,说明理由.真题感悟(2014·北京)如图,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥P -ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H .(1)求证:AB ∥FG ;(2)若P A ⊥底面ABCDE ,且P A =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长. 押题精练如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF=1.(1)求直线DF 与平面ACEF 所成角的正弦值;(2)在线段AC 上找一点P ,使PF →与DA →所成的角为60°,试确定点P 的位置.(推荐时间:60分钟)一、选择题1.已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM ( ) A .与平面ABC 平行B .是平面ABC 的斜线C .是平面ABC 的垂线D .在平面ABC 内2.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P ,Q 是正方体内部或面上的两个动点,则AM →·PQ →的最大值是( )A.12B .1 C.32 D.543.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值为( ) A.32 B.1010C.35D.254.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于( ) A.64 B.104 C.22 D.325.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.226.如图,三棱锥A -BCD 的棱长全相等,E 为AD 的中点,则直线CE 与BD 所成角的余弦值为( )A.36 B.32 C.336 D.12二、填空题7.在一直角坐标系中已知A (-1,6),B (3,-8),现沿x 轴将坐标平面折成60°的二面角,则折叠后A 、B 两点间的距离为________.8.正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E 的距离为______________.9.已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为________.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确命题的序号是________.三、解答题11.如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD⊥平面PDC.12.(2014·课标全国Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.13.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC的中点.(1)证明:A1O⊥平面ABC;(2)求直线A1C与平面A1AB所成角的正弦值;(3)在BC1上是否存在一点E,使得OE∥平面A1AB?若存在,确定点E的位置;若不存在,请说明理由.。

人教A版选修1-1教案:立体几何中的向量方法第1课时(含答案)

§3.2.1直線的方向向量與平面的法向量【學情分析】:教學對象是高二的學生,學生已經具備空間向量與立方體幾何的相關知識,所以本節課是通過這些知識理解空間的幾個元素點、直線、平面的位置的向量表示,並且用向量及其運算表示線線、線面、面面間的平行與垂直的位置關係,可以比較順利地進行教學.【教學目標】:(1)知識與技能:理解直線的方向向量和平面的法向量;會用向量及其運算表示線線、線面、面面間的位置關係.(2)過程與方法:在解決問題中,通過數形結合的思想方法,加深對相關知識的理解。

(3)情感態度與價值觀:開始體會把立方體幾何幾何轉化為向量問題優勢.【教學重點】:平面的法向量.【教學難點】:用向量及其運算表示線線、線面、面面間的平行與垂直關係.(2,AB =-(4,2,0)AD =(1,AP =-(1)求證:AP 是平面的法向量;(2)求平行四邊形ABCD 的面積. (1)證明:∵(1,2,1)(2,AP AB ⋅=--⋅-(1,2,1)(4,2,0)AP AD ⋅=--⋅∴AP AB ⊥,AP AD ⊥,又AD A =∴AP 是平面ABCD 的法向量.(2)||(2)AB =,2||4AD =∴(2,6AB AD ⋅==,∴105cos(,)10521AB AD =, sin 1105BAD ∠=-||||sin ABCDAB AD =⋅∠點、直線、平面的位置的向量表示線線、線面、面面間的平行與垂直關係的向量表示六、作業A ,預習課本105~110的例題。

B ,書面作業:1,2,練習與測試:(基礎題)1,與兩點和所成向量同方向的單位向量是 。

解:向量,它的模則所求單位向量為 。

2,從點沿向量 的方向取長為6的線段 ,求點座標。

解:設點座標為,由題設有 ;由 可得。

則,於是所求座標為。

3,設直線l ,m 的方向向量分別為)1,0,3(),3,2,1(-==b a ,判斷l ,m 的位置關係。

解:因為(1,2,3)(-3,0,1)=0,所以兩直線垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(四十二) [第42讲 立体几何中的向量方法(一)——位置关系的证明][时间:45分钟 分值:100分]基础热身1.直线l 1,l 2相互平行,则下列向量可能是这两条直线的方向向量的是( ) A .s 1=(0,1,2),s 2=(2,1,0) B .s 1=(0,1,1),s 2=(1,1,0) C .s 1=(1,1,2),s 2=(2,2,4)D .s 1=(1,1,1),s 2=(-1,2,-1)2.直线l 1,l 2相互垂直,则下列向量可能是这两条直线的方向向量的是( ) A .s 1=(1,1,2),s 2=(2,-1,0) B .s 1=(0,1,-1),s 2=(2,0,0) C .s 1=(1,1,1),s 2=(2,2,-2)D .s 1=(1,-1,1),s 2=(-2,2,-2)3.若直线l ∥平面α,直线l 的方向向量为s ,平面α的法向量为n ,则下列结论正确的是( )A .s =(-1,0,2),n =(1,0,-1)B .s =(-1,0,1),n =(1,2,-1)C .s =(-1,1,1),n =(1,2,-1)D .s =(-1,1,1),n =(-2,2,2)4.若直线l ⊥平面α,直线l 的方向向量为s ,平面α的法向量为n ,则下列结论正确的是( )A .s =(1,0,1),n =(1,0,-1)B .s =(1,1,1),n =(1,1,-2)C .s =(2,1,1),n =(-4,-2,-2)D .s =(1,3,1),n =(2,0,-1) 能力提升5.若平面α,β平行,则下面可以是这两个平面的法向量的是( ) A .n 1=(1,2,3),n 2=(-3,2,1) B .n 1=(1,2,2),n 2=(-2,2,1) C .n 1=(1,1,1),n 2=(-2,2,1)D .n 1=(1,1,1),n 2=(-2,-2,-2)6.若平面α,β垂直,则下面可以是这两个平面的法向量的是( ) A .n 1=(1,2,1),n 2=(-3,1,1) B .n 1=(1,1,2),n 2=(-2,1,1) C .n 1=(1,1,1),n 2=(-1,2,1)D .n 1=(1,2,1),n 2=(0,-2,-2)7.直线l 的方向向量为s =(-1,1,1),平面π的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面π,则x 的值为( )A .-2B .- 2 C. 2 D .±28. 已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的单位法向量是( ) A .s =±(1,1,1)B .s =±⎝⎛⎭⎫22,22,22 C .s =±⎝⎛⎭⎫33,33,33D .s =±⎝⎛⎭⎫33,-33,33 9. 已知非零向量a ,b 及平面α,若向量a 是平面α的法向量,则a ·b =0是向量b 所在直线平行于平面α或在平面α内的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.平面α的一个法向量n =(0,1,-1),如果直线l ⊥平面α,则直线l 的单位方向向量是s =________.11.空间中两个有一条公共边AD 的正方形ABCD 与ADEF ,设M ,N 分别是BD ,AE 的中点,给出如下命题:①AD ⊥MN ;②MN ∥平面CDE ;③MN ∥CE ;④MN ,CE 异面.则所有正确命题的序号为________.12.平面α经过点A (0,0,2)且一个法向量n =(1,-1,-1),则x 轴与该平面的交点坐标是________.13.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为________.14.(10分)如图K42-1,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥BP 交BP 于点F .(1)证明:P A ∥平面EDB ; (2)证明:PB ⊥平面EFD .15.(13分)已知三棱柱ABC -A 1B 1C 1的侧棱垂直于底面,∠BAC =90°,AB =AA 1=2,AC =1,M ,N 分别是A 1B 1,BC 的中点.(1)求证:AB ⊥AC 1;(2)求证:MN ∥平面ACC 1A 1.难点突破16.(12分)如图K42-3,已知棱长都为1的三棱锥O -ABC ,棱OA 的中点为M ,自O 作平面ABC 的垂线,垂足为H ,OH 与平面MBC 交于点I .(1)将OI →用OA →,OB →,OC →表示;(2)P 点分线段MB 的比为t1-t(0<t <1),①将OP →用t ,OA →,OB →表示;②若三点P ,I ,C 在同一直线上,求t 的值; ③若PO ⊥P A ,求t 的值.图-3课时作业(四十二)【基础热身】1.C [解析] 两直线平行则其方向向量平行,根据两向量平行的条件检验知正确选项为C.2.B [解析] 两直线垂直,其方向向量垂直,只有选项B 中的两个向量垂直.3.C [解析] 直线与平面平行,直线的方向向量和平面的法向量垂直,检验知正确选项为C.4.C [解析] 线面垂直时,直线的方向向量平行于平面的法向量,只有选项C 中的两向量平行.【能力提升】5.D [解析] 两个平面平行时其法向量也平行,检验知正确选项为D.6.A [解析] 两个平面垂直时其法向量垂直,只有选项A 中的两个向量垂直.7.D [解析] 线面平行时,直线的方向向量垂直于平面的法向量,故x 2-2=0,解得x =±2.8.C [解析] 先求出平面ABC 的一个法向量,再把其单位化.不难求出其一个法向量是n =(1,1,1),单位化得s =±⎝⎛⎭⎫33,33,33. 9.C [解析] 根据向量与平面平行、以及平面的法向量与直线的方向向量之间的关系进行判断.a ·b =0说明向量b 垂直于平面α的法向量,故向量b 与平面α共面,此时向量b 所在的直线平行于平面α或在平面α之内;反之a ·b =0.10.±⎝⎛⎭⎫0,22,-22 [解析] 直线l 的方向向量平行于平面α的法向量,故直线l 的单位方向向量是s =±⎝⎛⎭⎫0,22,-22. 11.①②③ [解析] 如图,设AB →=a ,AD →=b ,AF →=c ,则|a |=|c |且a ·b =c ·b =0.MN →=AN →-AM →=12(b +c )-12(a +b )=12(c -a ),MN →·AD →=12(c -a )·b=12(c ·b -a ·b )=0,故AD ⊥MN ;CE →=c -a =2MN →,故MN ∥CE ,故MN ∥平面CDE ,故①②③正确;④一定不正确.12.(-2,0,0) [解析] 设交点M (x,0,0),AM =(x,0,-2),平面的一个法向量是n =(1,-1,-1),故n ⊥AM →,故x +2=0,得x =-2,故x 轴与该平面的交点坐标是(-2,0,0).13.407,-157,4 [解析] 由题知:BP →⊥AB →,BP →⊥BC →. 所以⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+(-2)×z =0,x -1+5y +(-2)×(-3)=0,3(x -1)+y -3z =0.解得x =407,y =-157,z =4.14.[解答] 证明:以D 为坐标原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正方向建立空间直角坐标系.设DC =a .(1)连接AC ,AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0, 且P A →=(a,0,-a ),EG →=⎝⎛⎭⎫a 2,0,-a 2.所以P A →=2EG →,这表明P A ∥EG .而EG ⊂平面EDB 且P A ⊄平面EDB ,所以P A ∥平面EDB . (2)依题意得B (a ,a,0),PB →=(a ,a ,-a ).DE →=⎝⎛⎭⎫0,a 2,a 2,故PB →·DE →=0+a 22-a 22=0,所以PB ⊥DE ,由已知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .15.[解答] 依条件可知AB ,AC ,AA 1两两垂直.如图,以点A 为原点建立空间直角坐标系A -xyz .A (0,0,0),B (0,2,0),C (-1,0,0),A 1(0,0,2),B 1(0,2,2),C 1(-1,0,2),M (0,1,2),N ⎝⎛⎭⎫-12,1,0. (1)证明:因为AB →=(0,2,0),AC 1→=(-1,0,2),所以AB →·AC 1→=0×(-1)+2×0+0×2=0.所以AB →⊥AC 1→,即AB ⊥AC 1.(2)证明:因为MN →=⎝⎛⎭⎫-12,0,-2,AB →=(0,2,0)是平面ACC 1A 1的一个法向量, 且MN →·AB →=-12×0+0×2-2×0=0,所以MN →⊥AB →.又MN ⊄平面ACC 1A 1, 所以MN ∥平面ACC 1A 1. 【难点突破】16.[解答] (1)据已知,H 是正△ABC 的中心,∴OH →=13(OA →+OB →+OC →),又I 在OH →上,故存在实数λ,使OI →=λOH →=λ3(OA →+OB →+OC →)=λ3(2OM →+OB →+OC →),∵I 在平面MBC 内,故2λ3+λ3+λ3=1,即λ=34,于是OI →=14(OA →+OB →+OC →).(2)①MP →=tMB →,PB →=(1-t )MB →,OP →=OM →+MP →=OM →+tMB →=OM →+t (OB →-OM →)=12OA →+t ⎝⎛⎭⎫OB →-12OA →=1-t 2OA →+tOB →;②P 在直线IC 上,故存在实数m ,使 OP →=(1-m )OC →+mOI →=(1-m )OC →+m 4·OA →+m 4·OB →+m 4·OC →=4-3m 4·OC →+m 4·OA →+m 4·OB →,比较①②中两式可得⎩⎪⎨⎪⎧4-3m4=0,m 4=1-t 2,m 4=t ,解得⎩⎨⎧m =43,t =13,故t 的值为13.③OP →·AP →=⎝⎛⎭⎫1-t 2OA →+tOB →·(OP →-OA →)=⎝⎛⎭⎫1-t 2OA →+tOB →·⎝⎛⎭⎫-1+t 2OA →+tOB →=t 2-14OA →2+t 2OB →2-t 2OA →·OB →=t 2-14·12+t 2·12-t 2·1·1·cos60°=3t 2-14,∵OP →⊥P A →,∴OP →·P A →=0,∴3t 2-14=0,即t =±33,又∵0<t <1,∴t =33即为所求.。

相关文档
最新文档