专题01 因式分解 易错题之选择题(30题)-2020-2021学年八年级数学下册(北师大版)解析版

合集下载

(易错题精选)初中数学因式分解分类汇编含答案

(易错题精选)初中数学因式分解分类汇编含答案

(易错题精选)初中数学因式分解分类汇编含答案一、选择题1.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)【答案】C【解析】【分析】【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.2.多项式x2y(a-b)-xy(b-a)+y(a-b)提公因式后,另一个因式为()A.21x x--D.21x x+-++C.21x x-+B.21x x【答案】B【解析】解:x2y(a-b)-xy(b-a)+y(a-b)= y(a-b)(x2+x+1).故选B.3.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.5.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.6.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.7.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B10.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.11.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

人教版八年级上册数学 因式分解 单元测试卷(易错题)含答案

人教版八年级上册数学 因式分解 单元测试卷(易错题)含答案

(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的 a,b(a>b)满足 a2+b2=53,ab=14,求:①a+b 的值;②a4-b4 的值.
23.观察下列式子:
ᆼ ᆼ ૜ ᆼ 驨૜
ᆼሺ
;
驨ᆼ ሺ 딈 ;

ᆼ 딈૜ሺ ሺ ;
……
(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过

即 3× 驨 + +m=0,∴2+m=0,∴m=-2

19. 解:∵x2+ax+b′=(x+2)(x+4)=x2+6x+8,∴a=6. ∵x2+a′x+b=(x-1)(x-9) =x2-10x+9, ∴b=9.∴ab=6×9=54 20. 解:剩余部分的面积是(a2-4b2)cm2 . 当 a=10cm,b=1.5cm 时, 剩余部分的面积=a2-4b2=(a+2b)(a-2b)=(9.7+2×0.15)×(9.7-2×0.15)=10×9.4=94 (cm2). 21. 解:设 x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A 为整式), 取 x=1,得 1+m+n﹣16=0①, 取 x=2,得 16+8m+2n﹣16=0②, 由①、②解得 m=﹣5,n=20. 22.(1)解:两个阴影图形的面积和可表示为: a2+b2 或 (a+b)2-2ab
人教版八年级上册数学 因式分解 单元测试卷(易错题)
一、选择题(每小题 3 分,共 30 分)
1.下列各多项式从左到右变形是因式分解,并分解正确的是( )
A.a-b)3-b(b-a)2=(b-a)2(a-2b) B.(x+2)(x+3)=x2+5x+6 C.4a2-9b2=(4a-9b)(4a+9b) D.m2-n2+2=(m+n)(m-n)+2

八年级数学整式的乘法与因式分解易错题(Word版 含答案)

八年级数学整式的乘法与因式分解易错题(Word版 含答案)
2
135;
2
2

5 2
代入原式,可得
5 2 2
5
5 2
25 = 4
25 4
25 2
25 4
0

故选:A.
【点睛】
此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.
5.下列多项式中,能运用公式法进行因式分解的是( )
A.a2+b2
B.x2+9
C.m2﹣n2
【答案】C
B.a 3b 1
C.a 1b 4
【答案】B
【解析】
【分析】
通过平移后,根据长方形的面积计算公式即可求解.
【详解】
平移后,如图,
D.a 4b 1
易得图中阴影部分的面积是(a+3)(b+1). 故选 B. 【点睛】 本题主要考查了列代数式.平移后再求解能简化解题.
二、八年级数学整式的乘法与因式分解填空题压轴题(难)
因式.掌握提公因式法和公式法是解题的关键.
9.如图,矩形的长、宽分别为 a、b,周长为 10,面积为 6,则 a2b+ab2 的值为( )
A.60
B.30
C.15
D.16
【答案】B
【解析】
【分析】
直接利用矩形周长和面积公式得出 a+b,ab,进而利用提取公因式法分解因式得出答案.
【详解】
∵边长分别为 a、b 的长方形的周长为 10,面积 6,
∴2(a+b)=10,ab=6,
则 a+b=5,
故 ab2+a2b=ab(b+a)
=6×5
=30.
故选:B.
【点睛】

初中数学因式分解易错题汇编及答案

初中数学因式分解易错题汇编及答案

D.x2+1=x (x 1 ) x
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、是整式的乘法,故 A 错误;
B、没有把一个多项式转化成几个整式积的形式,故 B 错误;
C、把一个多项式转化成了几个整式积的形式,故 C 正确;
D、没有把一个多项式转化成几个整式积的形式,故 D 错误;
16;④x2+x=x(x+1)
A.1 个
B.2 个
C.3 个
D.4 个
【答案】B
【解析】
【分析】
【详解】
解:①x2-16=(x+4)(x-4),是因式分解;
②x2+3x-16=x(x+3)-16,不是因式分解;
③(x+4)(x-4)=x2-16,是整式乘法;
④x2+x=x(x+1)),是因式分解.
故选 B.
行计算即可.
【详解】
∵ 2x y 1 , xy 2 , 3
∴ 2x4 y3 x3 y4
=x3y3(2x-y) =(xy)3(2x-y)
=23× 1 3
=8, 3
故选 C. 【点睛】 本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌 握和灵活运用相关知识是解题的关键.
11.一次课堂练习,王莉同学做了如下 4 道分解因式题,你认为王莉做得不够完整的一题
是( )
A.x3﹣x=x(x2﹣1)
B.x2﹣2xy+y2=(x﹣y)2
C.x2y﹣xy2=xy(x﹣y)
D.x2﹣y2=(x﹣y)(x+y)
【答案】A
【解析】

八年级数学整式的乘法与因式分解易错题(Word版含答案)

八年级数学整式的乘法与因式分解易错题(Word版含答案)

⼋年级数学整式的乘法与因式分解易错题(Word版含答案)⼋年级数学整式的乘法与因式分解易错题(Word 版含答案)⼀、⼋年级数学整式的乘法与因式分解选择题压轴题(难)1.下列能⽤平⽅差公式分解因式的是()A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平⽅差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能⽤平⽅差公式进⾏因式分解.故选:A.2.已知243m -m-10m -m -m 2=+,则计算:的结果为().A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为⼀个整体代⼊,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应⽤,解决本题的关键是将m 2-m 作为⼀个整体出现,逐次降低m 的次数.3.在2014,2015,2016,2017这四个数中,不能表⽰为两个整数平⽅差的数是().A .2014B .2015C .2016D .2017 【答案】A由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007?⼀奇⼀偶,故2014不能表⽰为两个整数的平⽅差.故选A.4.已知x -y =3,12x z -=,则()()22554y z y z -+-+的值等于()A .0B .52C .52-D .25【答案】A【解析】【分析】此题应先把已知条件化简,然后求出y-z 的值,代⼊所求代数式求值即可.【详解】由x-y=3,12x z -=得:()()x z x y y z ---=- 15322=-=-;把52-代⼊原式,可得255252525255=0224424-+-+-+= ? ?.故选:A .【点睛】此题考查的是学⽣对代数式变形⽅法的理解,这⼀⽅法在求代数式值时是常⽤办法.5.下列多项式中,能运⽤公式法进⾏因式分解的是()A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利⽤公式法分解因式进⽽判断得出答案.解:A 、a 2+b 2,⽆法分解因式,故此选项错误;B 、x 2+9,⽆法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,⽆法分解因式,故此选项错误;故选C .6.下列各式不能⽤公式法分解因式的是()A .92-xB .2269a ab b -+-D .21x -【答案】C【解析】【分析】根据公式法有平⽅差公式、完全平⽅公式,可得答案.【详解】A 、x 2-9,可⽤平⽅差公式,故A 能⽤公式法分解因式;B 、-a 2+6ab-9 b 2能⽤完全平⽅公式,故B 能⽤公式法分解因式;C、-x2-y2不能⽤平⽅差公式分解因式,故C正确;D、x2-1可⽤平⽅差公式,故D能⽤公式法分解因式;故选C.【点睛】本题考查了因式分解,熟记平⽅差公式、完全平⽅公式是解题关键.7.边长为a,b的长⽅形周长为12,⾯积为10,则a2b+ab2的值为()A.120 B.60 C.80 D.40【答案】B 【解析】【分析】直接利⽤提取公因式法分解因式,进⽽求出答案.【详解】解:∵边长为a,b的长⽅形周长为12,⾯积为10,∴a+b=6,ab=10,则a2b+ab2=ab(a+b)=10×6=60.故选:B.【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.8.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1)C.x-1=x(1-1x)D.(x-1)2=x2-2x+1【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利⽤排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;x),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把⼀个多项式写成⼏个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.9.如图,矩形的长、宽分别为a、b,周长为10,⾯积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利⽤矩形周长和⾯积公式得出a+b,ab,进⽽利⽤提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长⽅形的周长为10,⾯积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应⽤,正确分解因式是解题关键.10.⼩淇⽤⼤⼩不同的 9 个长⽅形拼成⼀个⼤的长⽅形ABCD ,则图中阴影部分的⾯积是()A.(a + 1)(b + 3)B.(a + 3)(b + 1)C.(a + 1)(b + 4)D.(a + 4)(b + 1) 【答案】B【解析】【分析】通过平移后,根据长⽅形的⾯积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的⾯积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.⼆、⼋年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代⼊多项式,得到的式⼦进⾏移项整理,得22(3)a k +=-,根据平⽅的⾮负性把a 和k 求出,再代⼊求多项式的值.【详解】解:将x a =代⼊2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+?=故答案为:27【点睛】本题考查了代数式求值,平⽅的⾮负性.把a 代⼊多项式后进⾏移项整理是解题关键.12.因式分解:225101a a -+=______________【答案】()251a -【解析】根据完全平⽅公式()2222a ab b a b ±+=±进⾏因式分解为:225101a a -+=()251a -. 故答案为:()251a -.13.如果关于x 的⼆次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的⼀个值)【答案】5【解析】【分析】根据前两项,此多项式如⽤⼗字相乘⽅法分解,m 应是3或-5;若⽤完全平⽅公式分解,m 应是4,若⽤提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解⽅法,熟记每种分解的因式的特点及所⽤因式分解的⽅法,掌握技巧才能熟练运⽤解题.14.将4个数a ,b ,c ,d 排列成2⾏、2列,两边各加⼀条竖直线记成a b c d ,定义a bad bc c d =-,上述记号就叫做2阶⾏列式.若11611x x x x --=-+,则x=_________.【答案】4【解析】【分析】根据题⽬中所给的新定义运算⽅法可得⽅程 (x-1)(x+1)- (x-1)2=6,解⽅程求得x 即可.【详解】由题意可得,(x-1)(x+1)- (x-1)2=6,解得x=4.故答案为:4.【点睛】本题考查了新定义运算,根据新定义运算的运算⽅法列出⽅程是解本题的关键.15.计算: =_____.【答案】1【解析】【分析】根据平⽅差公式可以使本题解答⽐较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运⽤运算定律会或运算技巧,灵活简算.16.-3x 2+2x -1=____________=-3x 2+_________.【答案】-(3x 2-2x +1) (2x -1)【解析】根据提公因式的要求,先提取负号,可得-(3x 2-2x +1),再把2x-1看做⼀个整体去括号即可得(2x-1).故答案为:-(3x 2-2x +1) ,(2x -1).17.若x ﹣1x=2,则x 2+21x 的值是______.【答案】6【解析】根据完全平⽅公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利⽤完全平⽅公式进⾏变形,然后化简整理即可求解,注意整体思想的应⽤,⽐较简单,是常考题.18.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).19.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利⽤完全平⽅公式继续分解.【详解】 ()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【点睛】考查了⽤提公因式法和公式法进⾏因式分解,⼀个多项式有公因式⾸先提取公因式,然后再⽤其他⽅法进⾏因式分解,同时因式分解要彻底,直到不能分解为⽌.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利⽤完全平⽅公式进⾏分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运⽤,提取公因式后利⽤完全平⽅公式进⾏⼆次分解,注意分解要彻底.。

因式分解易错题汇编附答案解析

因式分解易错题汇编附答案解析

因式分解易错题汇编附答案解析一、选择题1.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B2.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .3.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.4.设a,b,c是ABC的三条边,且332222a b a b ab ac bc-=-+-,则这个三角形是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a3-b3=a2b-ab2+ac2-bc2,∴a3-b3-a2b+ab2-ac2+bc2=0,(a3-a2b)+(ab2-b3)-(ac2-bc2)=0,a2(a-b)+b2(a-b)-c2(a-b)=0,(a-b)(a2+b2-c2)=0,所以a-b=0或a2+b2-c2=0.所以a=b或a2+b2=c2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.下列各式中不能用平方差公式进行计算的是( )A.(m-n)(m+n) B.(-x-y)(-x-y)C.(x4-y4)(x4+y4) D.(a3-b3)(b3+a3)【答案】B【解析】A.(m-n)(m+n),能用平方差公式计算;B.(-x-y)(-x-y),不能用平方差公式计算;C.(x4-y4)(x4+y4),能用平方差公式计算;D. (a3-b3)(b3+a3),能用平方差公式计算.故选B.6.下列等式从左边到右边的变形,属于因式分解的是( )A.2ab(a-b)=2a2b-2ab2B.x2+1=x(x+1 x )C.x2-4x+3=(x-2)2-1 D.a2-b2=(a+b)(a-b)【答案】D【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.7.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;8.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+;【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.9.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.10.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.11.下列各式中不能用平方差公式分解的是( )A .22a b -+B .22249x y m -C .22x y --D .421625m n -【答案】C【解析】A 选项-a 2+b 2=b 2-a 2=(b+a )(b-a );B 选项49x 2y 2-m 2=(7xy+m )(7xy-m );C 选项-x 2-y 2是两数的平方和,不能进行分解因式;D 选项16m 4-25n 2=(4m)2-(5n)2=(4m+5n )(4m-5n ),故选C .【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.12.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).13.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.14.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-【答案】C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】 ()321a a a a -=-=a (a+1)(a-1),故A 错误; 2(1)b ab b b b a ++=++,故B 错误;2212(1)x x x -+=-,故C 正确;22x y +不能分解因式,故D 错误,故选:C .【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.15.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M NC .M N >D .不能确定【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.16.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.17.下列由左到右边的变形中,是因式分解的是( )A .(x +2)(x ﹣2)=x 2﹣4B .x 2﹣1=1()x x x-C .x 2﹣4+3x =(x +2)(x ﹣2)+3xD .x 2﹣4=(x +2)(x ﹣2)【答案】D【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误;B 、x 2-1=(x+1)(x-1),故此选项错误;C 、x 2-4+3x=(x+4)(x-1),故此选项错误;D 、x 2-4=(x+2)(x-2),正确.故选D .【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.18.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+-C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】 A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。

因式分解、分式和分式方程(易错必刷44题18种题型)—八年级数学下学期期末(北师大版)(解析版)

因式分解、分式和分式方程(易错必刷44题18种题型)—八年级数学下学期期末(北师大版)(解析版)

因式分解和分式方程(易错必刷44题18种题型专项训练)➢因式分解的意义 ➢因式分解-运用公式法 ➢提公因式法与公式法的综合运用 ➢因式分解-十字相乘法等 ➢分式有意义的条件 ➢分式有意义的条件 ➢分式的值➢因式分解-提公因式法➢因式分解-运用公式法➢因式分解-分组分解法➢因式分解的应用➢分式的值为零的条件➢分式的值为零的条件➢ 分式的基本性质 ➢分式的加减法 ➢分式的化简求值➢分式方程的解 ➢解分式方程➢分式方程的增根 ➢分式方程的应用一.因式分解的意义(共5小题)1.若多项式x 2﹣ax ﹣1可分解为(x ﹣2)(x +b ),则a +b 的值为( )A .2B .1C .﹣2D .﹣1【答案】A【解答】解:∵(x ﹣2)(x +b )=x 2+bx ﹣2x ﹣2b =x 2+(b ﹣2)x ﹣2b =x 2﹣ax ﹣1,∴b ﹣2=﹣a ,﹣2b =﹣1,∴b =0.5,a =1.5,∴a+b=2.故选:A.2.下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)【答案】D【解答】解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;B2x2+2x=2x2(1+)中不是整式,故B错误;C(x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;D x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【答案】C【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m=,n=.【答案】见试题解答内容【解答】解:根据题意得:x2﹣8x+m=(x﹣10)(x+n)=x2+(n﹣10)x﹣10n∴n﹣10=﹣8,﹣10n=m解得m=﹣20,n=2;故应填﹣20,2.5.仔细阅读下面的例题,并解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解法一:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n,∴解得n=﹣7,m=﹣21.∴另一个因式为x﹣7,m的值为﹣21.解法二:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)∴当x=﹣3时,x2﹣4x+m=(x+3)(x+n)=0即(﹣3)2﹣4×(﹣3)+m=0,解得m=﹣21∴x2﹣4x+m=x2﹣4x﹣21=(x+3)(x﹣7)∴另一个因式为x﹣7,m的值为﹣21.问题:仿照以上一种方法解答下面问题.(1)若多项式x2﹣px﹣6分解因式的结果中有因式x﹣3,则实数p=.(2)已知二次三项式2x2+3x﹣k有一个因式是2x+5,求另一个因式及k的值.【答案】见试题解答内容【解答】解:(1x+a,得x2﹣px﹣6=(x﹣3)(x+a)则x2﹣px﹣6=x2+(a﹣3)x﹣3a,∴,解得a=2,p=1.故答案为:1.(2)设另一个因式为(x+n),得2x2+3x﹣k=(2x+5)(x+n)则2x2+3x﹣k=2x2+(2n+5)x+5n∴,解得n=﹣1,k=5,∴另一个因式为(x﹣1),k的值为5.二.公因式(共1小题)6.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【答案】D【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.三.因式分解-提公因式法(共2小题)7.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.40【答案】C【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是()A.(x﹣y)(﹣a﹣b+c)B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c)D.﹣(y﹣x)(a+b﹣c)【答案】B【解答】解:﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y),=a(y﹣x)﹣b(y﹣x)﹣c(x),=(y﹣x)(a﹣b﹣c).故选:B.四.因式分解-运用公式法(共2小题)9.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.【答案】见试题解答内容【解答】解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.10.分解因式:(4a+b)2﹣4(a+b)2.【答案】3(2a+b)(2a﹣b).【解答】解:(4a+b)2﹣4(a+b)2=(4a+b)2﹣(2a+2b)2=(4a+b+2a+2b)(4a+b﹣2a﹣2b)=(6a+3b)(2a﹣b)=3(2a+b)(2a﹣b).五.提公因式法与公式法的综合运用(共3小题)11.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2 C.ab(a+1)(a﹣1)D.ab(a2﹣1)【答案】C【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.12.因式分解:(1)4m2n﹣8mn2﹣2mn(2)m2(m+1)﹣(m+1)(3)4x2y+12xy+9y(4)(x2﹣6)2+2(x2﹣6)﹣15.【答案】见试题解答内容【解答】解:(1)4m2n﹣8mn2﹣2mn=2mn(2m﹣4n﹣1);(2)m2(m+1)﹣(m+1)=(m+1)(m2﹣1)=(m+1)2(m﹣1);(3)4x2y+12xy+9y=y(4x2+12x+9)=y(2x+3)2;(4)(x2﹣6)2+2(x2﹣6)﹣15=(x2﹣6﹣3)(x2﹣6+5)=(x2﹣9)(x2﹣1)=(x+3)(x﹣3)(x+1)(x﹣1).13.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解下列问题:(1)因式分解:9+6(x﹣y)+(x﹣y)2=.(2)因式分解:(a+b)(a+b﹣8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.【答案】见试题解答内容【解答】解:(1)将“x﹣y”看成整体,令x﹣y=A,则原式=A2+6A+9=(A+3)2再将“A”还原,得:原式=(x﹣y+3)2故答案为:(x﹣y+3)2;(2)因式分解:(a+b)(a+b﹣8)+16.将“a+b”看成整体,令a+b=A,则原式=A(A﹣8)+16=A2﹣8A+16=(A﹣4)2再将“A”还原,得:原式=(a+b﹣4)2;(3)证明:(n+1)(n+2)(n+3)(n+4)+1=(n+1)(n+4)•(n+3)(n+2)+1=(n2+5n+4)(n2+5n+6)+1令n2+5n=A,则原式=(A+4)(A+6)+1=A2+10A+25=(A+5)2=(n2+5n+5)2∵n为正整数,∴n2+5n+5是整数,∴式子(n+1)(n+2)(n+3)(n+4)+1的值是某一个整数的平方.六.因式分解-分组分解法(共1小题)14.已知整数a,b满足2ab+4a=b+3,则a+b的值是()A.0或﹣3B.1C.2或3D.﹣2【答案】A【解答】解:由2ab+4a=b+3,得:2ab+4a﹣b﹣2=1∴(2a﹣1)(b+2)=1,∵2a﹣1,b+2都为整数,∴或,解得或,∴a+b=0或﹣3.故选:A.七.因式分解-十字相乘法等(共2小题)15.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为()A.1B.5C.﹣1D.﹣5【答案】A【解答】解:∵多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,﹣6=﹣3×2.∴2x2+ax﹣6=(2x﹣3)(x+2)=2x2+x﹣6.∴a=1.故选A.16.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.7【答案】A【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.八.因式分解的应用(共8小题)17.已知x2+2x﹣1=0,则x4﹣5x2+2x的值为()A.0B.﹣1C.2D.1【答案】A【解答】解:∵x2+2x﹣1=0,∴x2=1﹣2x,x4﹣5x2+2x=(x2)2﹣5x2+2x=(1﹣2x)2﹣5(1﹣2x)+2x=1﹣4x+4x2﹣5+10x+2x=4x2+8x﹣4=4(1﹣2x)+8x﹣4=4﹣8x+8x﹣4=0,故选:A.18.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=()A.1B.3C.5D.不能确定【答案】B【解答】解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,⇒ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,⇒ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,⇒ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选:B.19.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是()A.61,63B.63,65C.65,67D.63,64【答案】B【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.20.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.2022【答案】A【解答】解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.21.已知x2+x+1=0,则x2019+x2018+x2017+…+x+1的值是()A.0B.1C.﹣1D.2【答案】B【解答】解:原式=(x2019+x2018+x2017)+(x2016+x2015+x2014)+•+(x3+x2+x)+1=x2017(x2+x+1)+x2014(x2+x+1)+•+x(x2+x+1)+1=0+0+0+•+0+1=1.故选:B.22.已知a+b=2,则a2﹣b2+4b的值为.【答案】见试题解答内容【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.23.a,b,c是△ABC的三边,若(a2+b2)(a﹣b)=c2(a﹣b),则△ABC的形状是三角形.【答案】见试题解答内容【解答】解:∵(a2+b2)(a﹣b)=c2(a﹣b)∴(a﹣b)(a2+b2﹣c2)=0∴a﹣b=0或a2+b2﹣c2=0,①当a﹣b=0时,解得:a=b,此时△ABC是等腰三角形;②直角三角形,理由如下,如图所示:在△ABC中,设AB=c,AC=b,BC=a,∠ACB=90°,四个全等直角三角拼接成边长为c的大正方形,边长为a﹣b的小正方形,由面积的和差得:S正方形ABMN=S正方形CDEF+4•S△ABC,∴=a2﹣2ab+b2+2ab=a2+b2∴a2+b2﹣c2=0即△ABC是直角三角形;故答案为等腰或直角.24.阅读材料:若m2﹣2mn+2n2﹣4n+4=0,求m,n的值.解:∵m2﹣2mn+2n2﹣4n+4=0,∴(m2﹣2mn+n2)+(n2﹣4n+4)=0,∴(m﹣n)2+(n﹣2)2=0,∴(m﹣n)2=0,(n﹣2)2=0,∴n=2,m=2.(1)a2+b2+6a﹣2b+10=0,则a=,b=.(2)已知x2+2y2﹣2xy+8y+16=0,求xy的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣8b+18=0,求△ABC的周长.【答案】见试题解答内容【解答】(1)解:由:a2+b2+6a﹣2b+10=0,得:(a+3)2+(b﹣1)2=0,∵(a+3)2≥0,(b﹣1)2≥0,∴a+3=0,b﹣1=0,∴a=﹣3,b=1.故答案为:﹣3;1.(2)由x2+2y2﹣2xy+8y+16=0得:(x﹣y)2+(y+4)2=0∴x﹣y=0,y+4=0,∴x=y=﹣4∴xy=16.答:xy的值为16.(3)由2a2+b2﹣4a﹣8b+18=0得:2(a﹣1)2+(b﹣4)2=0,∴a﹣1=0,b﹣4=0,∴a=1,b=4;已知△ABC的三边长a、b、c都是正整数,由三角形三边关系知c=4,∴△ABC的周长为9.九.分式有意义的条件(共1小题)25.当x=时,分式无意义.【答案】见试题解答内容【解答】解:根据题意得:x(x﹣1)=0,解得x1=0,x2=1.故答案为:0或1.十.分式的值为零的条件(共1小题)26.如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或0【答案】B【解答】解:根据题意,得:|x|﹣1=0且x+1≠0,解得,x=1.故选:B.十一.分式的值(共1小题)27.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1【答案】D【解答】解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.十二.分式的基本性质(共3小题)28.若=2,则=.【答案】见试题解答内容【解答】解:由=2,得x+y=2xy则===.故答案为.29.若把分式中的x和y都变为原来的3倍,那么分式的值()A.变为原来的3倍B.变为原来的C.变为原来的D.不变【答案】B【解答】解:用3x和3y代替式子中的x和y得:,则分式的值变为原来的.故选:B.30.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.十三.分式的加减法(共2小题)31.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【答案】B【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.32.分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和;(2)若分式的值为整数,求x的整数值.【答案】见试题解答内容【解答】解:(1)由题可得,==2﹣;(2)===x﹣1+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或0.十四.分式的化简求值(共1小题)33.先化简,再求值:,然后从0,1,2,3四个数中选择一个恰当的数代入求值.【答案】,﹣.【解答】解:原式=(﹣)•=•=,∵x≠3,0,2,∴当x=1时,原式==﹣.十五.分式方程的解(共4小题)34.若关于x的分式方程﹣1=无解,则m的值.【答案】见试题解答内容【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.35.若方程的根为正数,则k的取值范围是()A.k<2B.﹣3<k<2C.k≠﹣3D.k<2且k≠﹣3【答案】A【解答】解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),3x+3k=2x+6,3x﹣2x=6﹣3k,x=6﹣3k,∵方程的根为正数,∴6﹣3k>0,解得:k<2,∵分式方程的解为正数,x+3≠0,x+k≠0,x≠﹣3,k≠3,即k的范围是k<2,故选:A.36.已知关于x的分式方程=1的解是非负数,则m的取值范围是.【答案】见试题解答内容【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.37.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为.【答案】﹣4.【解答】解:方程的解为x=,根据题意,得,解得a<1,a为奇数且a≠﹣5.∵不等式的解集为﹣5≤x<,且只有3个整数解,∴﹣3<≤﹣2,解得﹣7<a≤1.综上:﹣7<a<1,a为奇数且a≠﹣5,∴a=﹣3,﹣1.∵﹣3﹣1=﹣4,∴符合条件的所有整数a的和为﹣4故答案为:﹣4.十六.解分式方程(共2小题)38.解方程:(1);(2).【答案】(1)无解;(2)x=﹣2.【解答】解:(1),原分式方程可化为:+2=,﹣3+2(x﹣4)=1﹣x,﹣3+2x﹣8=1﹣x,2x+x=1+8+3,3x=12,x=4,检验:把x=4代入(x﹣4)=0,∴原分式方程无解;(2),原分式方程可化为:﹣1=,1+4x﹣(x﹣2)=﹣3,1+4x﹣x+2=﹣3,4x﹣x=﹣3﹣1﹣2,3x=﹣6,x=﹣2,检验:把x=﹣2代入(x﹣2)≠0,∴原分式方程解为x=﹣2.39.代数式的值比代数式的值大4,则x=.【答案】见试题解答内容【解答】解:由题意得:﹣=4,x+2=4(2x﹣3),解得:x=2,检验:当x=2时,2x﹣3≠0,∴x=2是原方程的根,故答案为:2.十七.分式方程的增根(共1小题)40.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣1【答案】B【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.十八.由实际问题抽象出分式方程(共1小题)41.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.【答案】见试题解答内容【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.十九.分式方程的应用(共3小题)42.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【答案】见试题解答内容【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了a天,乙加工了b天,则由题意得,由①得b=75﹣1.5a③将③代入②得150a+120(75﹣1.5a)≤7800解得a≥40,当a=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.43.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【答案】见试题解答内容【解答】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件由题意得:5000≤100y+90(55﹣y)≤5050解得5≤y≤10∴共有6种选购方案.44.某项工程,乙队单独完成所需天数是甲队单独完成所需天数的1.5倍;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天刚好如期完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为2.5万元,乙队每天的施工费用为2万元,工程预算的施工费用为160万元.①若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?②若要求施工总费用不超预算又要如期完工,问甲工程队至少需要施工几天?【答案】见试题解答内容【解答】解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要1.5x天.根据题意,得:(10+30)+×30=1,解得x=60.经检验,x=60是原方程的根.∴1.5x=60×1.5=90.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)①设甲、乙两队合作完成这项工程需要y天,(+)y=1,解得:y=36,36×(2.5+2)=162(万元),∵162>160,∴不够,需追加162﹣160=2(万元),答:不够用,需追加预算2万元;②甲工程队需要施工a天,乙工程队需要施工b天,根据题意得:,由①得:2b=180﹣3a③,把③代入②得:2.5a+180﹣3a≤160,a≥40,∴甲工程队至少需要施工40天.。

(易错题精选)初中数学因式分解难题汇编含答案解析

(易错题精选)初中数学因式分解难题汇编含答案解析
d点睛本题考查了因式分解提公因式法平方差公式法在实际问题中的运用注意掌握因式分解的步骤分解要彻底6设abc是vabc的三条边且a3b3a2bab2ac2bc2则这个三角形是a等腰三角形b直角三角形c等腰直角三角形d等腰三角形或直角三角形答案d解析分析把所给的等式能进行因式分解的要因式分解整理为整理成多项式的乘
∵ ,
∴ ,
∴ ,
即 ,
∴ 或 或 (舍去),
∴ 或 ,
∴△ABC是等腰三角形.
故选:D.
【点睛】
本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.
6.设a,b,c是 的三条边,且 ,则这个三角形是
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形
C.6ab=2a⋅3bD.x2﹣8x+16=(x﹣4)2
【答案】D
【解析】
【分析】
根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.
【详解】
A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;
B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;
C、等式左边是单项式,不是因式分解,故本选项错误;
本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.
5.若三角形的三边长分别为 、 、 ,满足 ,则这个三角形是()
A.直角三角形B.等边三角形C.锐角三角形D.等腰三角形
【答案】D
【解析】
【分析】
首先将原式变形为 ,可以得到 或 或 ,进而得到 或 .从而得出△ABC的形状.
【详解】
10.下列各式中不能用平方差公式分解的是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题01 因式分解 易错题之选择题(30题)Part1 与 因式分解 有关的易错题1.(2020·雅安市八年级月考)下列各式变形中,是因式分解的是( )A .12a 2b = 3a ⋅ 4abB .2x 2+2x =2x 2(1+1x )C .(x+2)(x ﹣2)=x 2﹣4D .4x 2 + 4x +1 =(2x +1)2【答案】D【提示】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A 、是一个单项式转化为乘积的形式,不是因式分解,故A 不符合;B 、没把一个多项式转化成几个整式乘积的形式,故B 不符合;C 、是整式的乘法,故C 不符合;D 、把一个多项式转化成几个整式乘积的形式,故D 符合;故选:D .【名师点拨】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式.2.(2020·四川省自贡市八年级月考)下列四个等式从左到右的变形是因式分解的是( )A .()am bm c m a b c ++=++B .()211(1)x x x -=+-C .221(1)x x x x +=+ D .()2221441x x x +=++【答案】B【提示】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.【详解】解:A 、()am bm c m a b c ++=++,没把一个多项式化为几个整式的积的形式,故此选项不符合题意;B 、()211(1)x x x -=+-,把一个多项式化为几个整式的积的形式,故此选项符合题意;C 、()21x x x x +=+,故错误,此选项不符合题意;D 、()2221441x x x +=++,没把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:B .【名师点拨】本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.3.(2020·河南周口市·八年级期末)把多项式2x ax b ++分解因式,得(1)(3)x x +-,则+a b 的值是( ) A .1B .-1C .5D .-5【答案】D【提示】利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a 与b 的值,即可求出a +b 的值.【详解】根据题意得:x 2+ax+b=(x+1)(x−3)=x 2−2x−3,可得a=−2,b=−3,则a+b=−5,故选D.【名师点拨】本题考查因式分解,解决本题的关键是要理解两个多项式相等的条件,两个多项式分别经过合并同类项后,如果他们的对应项系数都相等,那么称这两个多项式相等.4.(2020·安徽淮南市·八年级期末)若2(32)()2x x p mx nx ++=+-,则下列结论正确的是( ) A .6m =B .1n =C .2p =-D .3mnp =【答案】B【提示】 直接利用多项式乘法运算法则得出p 的值,进而得出n 的值.【详解】解:∵2(32)()2x x p mx nx ++=+-,∵(3x+2)(x+p )=3x 2+(3p+2)x+2p=mx 2-nx -2,∵m=3,p=-1,3p+2=-n ,∵n=1,故选B.【名师点拨】此题考查了因式分解的意义;关键是根据因式分解的意义求出p 的值,是一道基础题.5.(2020·湖北黄石市·八年级期末)下列各多项式从左到右变形是因式分解,并分解正确的是( )A .(a ﹣b )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b )B .(x+2)(x+3)=x 2+5x+6C .4a 2﹣9b 2=(4a ﹣9b )(4a+9b )D .m 2﹣n 2+2=(m+n )(m ﹣n )+2【答案】A【提示】 直接利用因式分解的定义进而提示得出答案.【详解】A 、(a ﹣b )3﹣b (b ﹣a )2=﹣(b ﹣a )3﹣b (b ﹣a )2=(b ﹣a )2(a ﹣2b ),是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2﹣9b 2=(2a ﹣3b )(2a+3b ),故此选项错误;D 、m 2﹣n 2+2=(m+n )(m ﹣n )+2,不符合因式分解的定义,故此选项错误.故选A .【名师点拨】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.6.(2020·四川省射洪县八年级月考)下列因式分解中,正确的个数为( )①x 3+2xy+x=x (x 2+2y );②x 2+4x+4=(x+2)2;③﹣x 2+y 2=(x+y )(x ﹣y )A .3个B .2个C .1个D .0个 【答案】C【详解】试题提示:接根据提取公因式法以及公式法分别分解因式作出判断:∵x 3+2xy+x=x (x 2+2y+1),故原题错误;②x 2+4x+4=(x+2)2,故原题正确;③﹣x 2+y 2=(x+y )(y ﹣x ),故原题错误.故正确的有1个.故选C .7.(2020·河北唐山市·八年级期末)下列因式分解中:①()3222x xy x x x y ++=+;②22()()x y x y x y -+=+-;③2244(2)x x x ++=+;④221(1)x x x ++=+;正确的个数为( )A .3个B .2个C .1个D .0个【答案】C【提示】根据因式分解的方法逐个判断即可.【详解】解:①()32221x xy x x x y ++=++,故①错误;②22()()x y x y x y -+=-+-,故②错误;③2244(2)x x x ++=+,正确,④221(1)x x x ++≠+,故④错误,所以正确的只有③,故答案为:C .【名师点拨】本题考查了判断因式分解是否正确,掌握因式分解的方法是解题的关键.8.(2020·河北唐山市·八年级月考)一次课堂练习,一位同学做了4道因式分解题,你认为这位同学做得不够完整的题是( )A .2222()x xy y x y -+=-B .22()x y xy xy x y -=-C .22()()x y x y x y -=+-D .32(1)x x x x -=- 【答案】D【提示】利用完全平方公式和平方差公式可对A 、C 两项进行判断;利用提公因式法可对B 进行判断,利用提公因式法和平方差公式可对D 项进行判断.【详解】因为x 2-2xy+y 2=(x -y)2,所以选项A 分解正确;因为x 2y -xy 2=xy(x -y),所以选项B 分解正确;因为x 2-y 2=(x -y)(x+y),所以选项C 分解正确;因为x 3-x=x(x 2-1)=x(x+1)(x -1),所以选项D 分解不彻底.故选:D.【名师点拨】本题是一道关于因式分解的题目,关键是掌握因式分解的常用方法;9.(2020·山东泰安市·东平县八年级月考)如果多项式x 2﹣mx +6分解因式的结果是(x ﹣3)(x +n ),那么m ,n 的值分别是( )A .m =﹣2,n =5B .m =2,n =5C .m =5,n =﹣2D .m =﹣5,n =2【答案】C【提示】因式分解的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m 与n 的值即可.【详解】x 2-mx +6=(x -3)(x +n )=x 2+(n -3)x -3n ,可得-m =n -3,-3n =6,解得:m =5,n =-2.故选:C .【名师点拨】此题考查了因式分解与多项式乘法的关系,熟练掌握多项式乘多项式的法则是解本题的关键.10.(2020·重庆市八年级月考)已知25x x m -+有一个因式为2x -,则另一个因式为( )A .3x +B . 6 x ﹣C . 3 x ﹣D .6x +【答案】C【提示】所求的式子25x x m -+的二次项系数是1,因式(x−2)的一次项系数是1,则另一个因式的一次项系数一定是1,然后根据25x x m -+中一次项系数为-5,列方程求出另一个因式.【详解】解:设另一个因式为(x +a ),则x 2−5x +m =(x−2)(x +a ),即x 2−5x +m =x 2+(a−2)x−2a ,∵a−2=−5,解得:a =−3,∵另一个因式为(x−3).故选:C .【名师点拨】本题主要考查因式分解的实际运用,根据二次项系数假设出另一个因式是解本题的关键. Part2 与 提公因式法 有关的易错题11.(2020·四川泸州市·八年级月考)多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【详解】试题提示:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x -1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x -1).故选A考点:因式分解12.(2020·山东临沂市·八年级期末)将3-a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【提示】多项式3-a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】 ()()()32111a b ab ab a ab a a -=-=+-,故选C .【名师点拨】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;13.(2020·广西防城港市·八年级月考)下列分解因式正确的是( )A .-ma -m=-m(a -1)B .a 2-1=(a -1)2C .a 2-6a+9=(a -3)2D .a 2+3a+9=(a+3)2【答案】C【提示】利用提取公因式或者公式法即可求出答案.【详解】A.原式=−m (a +1),故A 错误;B.原式=(a +1)(a −1),故B 错误;C.原式=(a −3)2,故C 正确;D.该多项式不能因式分解,故D 错误,故选:C【名师点拨】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.14.(2020·毕节市八年级月考)多项式8x m y n -1-12x 3m y n 的公因式是( )A .x m y nB .x m y n -1C .4x m y nD .4x m y n -1【答案】D【详解】由题意可得,这个多项式的公因式为4x m y n -1,注意数字的最大公约数也是公因式,容易出错,故选D15.(2020·辽宁大连市·八年级期末)如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .16C .30D .11【答案】C【提示】 先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∵a+b=5,∵矩形的面积为6,∵ab=6,∵a 2b+ab 2=ab (a+b )=30.故选:C .【名师点拨】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.16.(2020·渝中区八年级期末)若mn 2=-,3m n +=,则代数式22m n mn +的值是( ).A .-6B .-5C .1D .6【答案】A【提示】由提公因式进行化简,然后把mn 2=-,3m n +=代入计算,即可得到答案.解:∵mn 2=-,3m n +=,∵22()236m n mn mn m n +=+=-⨯=-;故选:A .【名师点拨】本题考查了提公因式法,以及求代数式的值,解题的关键是正确的把代数式进行化简.17.(2020·河北邢台市·八年级期末)将多项式222a a --因式分解提取公因式后,另一个因式是( ) A .a B .1a + C .1a - D .1a -+【答案】B【提示】直径提取公因式即可.【详解】()22221a a a a --=-+故选:B【名师点拨】此题主要考查了提公因式法分解因式,关键是正确找出公因式.18.(2020·河南南阳市期末)如果多项式221155abc ab a bc -+-的一个因式是15ab -,那么另一个因式是() A .5c b ac -+ B .5c b ab +- C .15c b ab -+ D .15c b ab +-【答案】A【提示】 多项式先提取公因式15ab -,提取公因式后剩下的因式即为所求.【详解】 解:22111(5)555abc ab a bc ab c b ac -+-=--+,故另一个因式为(5)c b ac -+,故选:A .【名师点拨】此题考查了因式分解-提取因式法,找出多项式的公因式是解本题的关键.也是解本题的难点,要注意符号.19.(2020·大冶市八年级月考)(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【提示】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【名师点拨】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.20.(2020·平山县八年级期末)若2220x y -=,且5x y +=-,则x y -的值是 ( )A .﹣4B .4C .5D .以上都不对【答案】A【提示】 对原式进行因式分解,代入值即可.【详解】x 2-y 2=(x+y )(x -y )=-5(x -y )=20,解得,x -y=-4.故选A .【名师点拨】考查了应用平方差公式因式分解,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.Part3 与 公式法 有关的易错题21.(2020·德州市八年级月考)已知a ,b ,c 是三角形的三边,那么代数式a 2-2ab +b 2-c 2的值( ) A .大于零B .等于零C .小于零D .不能确定【答案】C【详解】a 2-2ab+b 2-c 2=(a -b )2-c 2=(a+c -b )[a -(b+c )].∵a ,b ,c 是三角形的三边.∵a+c -b >0,a -(b+c )<0.∵a 2-2ab+b 2-c 2<0.故选C .22.(2020·北京海淀区八年级月考)若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .12【答案】C【详解】∵a+b=3, ∵a 2-b 2+6b=(a+b)(a -b)+6b=3(a -b)+6b=3a -3b+6b=3a+3b=3(a+b)=9,故选C.23.(2020·陕西西安市八年级月考)多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( ) A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1 【答案】C【提示】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【名师点拨】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x -2y ),将其当成整体提出,进而得到答案.24.(2020·山东济宁市·八年级期末)下列各式中,计算结果是2718x x +-的是( )A .(1)(18)x x -+B .(2)(9)x x ++C .(3)(6)x x -+D .(2)(9)x x -+ 【答案】D【解析】试题提示:利用十字相乘法进行计算即可.原式=(x -2)(x +9)故选D.考点:十字相乘法因式分解.25.(2020·辽宁沈阳市·八年级期末)下列各选项中因式分解正确的是( )A .()2211x x -=-B .()32222a a a a a -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-【答案】D【提示】直接利用公式法以及提取公因式法分解因式进而判断即可.【详解】解:A.()()2111x x x -=+-,故此选项错误;B.()23221a a a a a -+=-,故此选项错误;C.()22422y y y y -+=--,故此选项错误;D.()2221m n mn n n m -+=-,正确.故选D .【名师点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.26.(2020·枣庄市八年级月考)把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题提示:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.27.(2020·广东揭阳市·八年级期末)若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题提示:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.28.(2020·张掖市八年级月考)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D 、x 2﹣6x+9=(x ﹣3)2,故选项正确.故选D .29.(2020·雅安市八年级月考)若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( )A .50B .100C .98D .97【答案】D【提示】对题目中的式子分解因式即可解答本题.【详解】∵993-99=99×(992-1)=99×(99+1)×(99-1)=99×100×98,∵k 可能是99、100、98或50,故选D .【名师点拨】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.30.(2020·南通市八年级月考)如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x y >).则①x y n -=;②224m n xy -=;③22x y mn -=;④22222m n x y -+=,中正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】A【提示】 根据长方形的长和宽,结合图形进行判断,即可得出选项.①x−y 等于小正方形的边长,即x−y=n ,正确;②∵xy 为小长方形的面积, ∵224m n xy -=, 故本项正确;③()()22x y x y x y mn -=+-=,故本项正确;④()222222222242m n m nx y x y xy m -++=+-=-⨯=故本项错误.则正确的有3个①②③.故选A.【名师点拨】此题考查因式分解的应用,整式的混合运算,解题关键在于掌握运算法则.。

相关文档
最新文档