石英晶体基础

合集下载

《结晶学基础》

《结晶学基础》
在离子晶体结构中,每个正离子周围都形成 一个负离子配位多面体;正负离子间距离取决 于离子半径之和,正离子配位数取决于正负离 子半径之比,与离子电价无关。
.
2.鲍林第二规则---静电价规则
在一个稳定的晶体结构中,从所有相邻接的阳离 子到达一个阴离子的静电键的总强度,等于阴离子 的电荷数。
静电键强度
S= Z+ CN+
• 在离子晶体中,配位数指的是最紧邻的异号离子数,所以正、 负离子的配位数不一定是相等的。阳离子一般处于阴离子紧密堆 积阳的离空子隙还中可,能其出配现位其数 它一 的般 配为 位数4或。6. 。如果阴离子不作紧密堆积,
配位数
阴离子作正八 面体堆积,正、 负离子彼此都能 相互接触的必要
条件为r+/r=0.414。
凸几何多面体倾向。
❖ 4.对称性--晶体的物理化学性质能够在不同方
向或位置上有规律地出现,也称周期性 .
晶体的性质
❖ 5.均匀性(均一性)--一个晶体的各个部分性
质都是一样的。 这里注意:均匀性与各向异性不同,前者是指晶
体的位置,后者是指观察晶体的方向。
❖ 6. 固定熔点 ❖ 7.晶面角守恒定律--晶面(或晶棱)间的夹角
宏观晶体中对称性只有32种,根据对称型中是否存在 高次轴及数目对晶体分类
❖ 存在高次轴(n>2)且多于一个―――高级晶族 ――包括:等轴(立方)晶系
❖ 存在高次轴(n>2)且只有一个―――中级晶族 ――包括:三方、四方、六方晶系
❖ 不存在高次轴(n>2)―――低级晶族――包括: 三斜、单斜、正交晶系
第一章 结晶学基础
.
1-1 晶体的基本概念与性质
一、晶体的基本概念
➢ 人们对晶体的认识,是从石英开始的。 ➢ 人们把外形上具有规则的几何多面体形态的

石英晶体基础知识

石英晶体基础知识

深圳市锐晶星电子科技有限公司石英晶體諧振器基礎知識培训教材(共8页)2007年7月1日第一章石英晶体的基本特性第一节石英晶体的压电特性图1-1示出了石英晶体具有压电效应的两种现象。

图1-1a当沿Y 轴加压缩力时,则在X轴正端垂直面上,出现正电荷(晶体的伸缩弯曲振动就是按此激起的)。

图1-1b中当对晶体施加正切应力时,则在垂直Y上述现象表明石英晶体是一种各向异性的结晶体,它具有压电效应。

当沿某一机械轴或电轴施以压力或拉力,则在垂直于这些轴的两个表面上产生异号电荷±q。

其值与机械压力所产生的机械形变(位移)X成正比。

即:q=k 1x ﹎﹍(1-1)式(1-1)所表征的效应称为正压电效应,正压电效应是以机械能为因,电能为果的效应。

石英晶体还具有逆压电效应。

如果在石英晶体片两面之间加一电场E,则视电场的方向不同,晶体将沿电轴或机械轴延伸或压缩,延伸或压缩量X与电场强度E成正比,即:X=K2E ﹍(1-2)式(1-2)所表征的效应称压电逆效应。

是以电能为因,机械能为果的效应。

由上面的讨论可以看出,正、逆压电效应互因果关系。

如果将石英晶体片置于交变电场中,则在电场的作用下,晶体片的体积将起压缩和伸张的变化,由此形成机械振动,晶体的振动属体波振动,当晶体片振动时,逆压电效应使得晶体片具有导电性,这种压电性叫做压电导电性。

石英片固有的振动频率取决于晶体片的几何尺寸、密度、弹性和泛音次数。

当晶体片的固有振动频率与加于其上的电场频率相同时,则晶体片将发生谐振。

此时振动的幅度最大,压电效应在晶体片表面产生的电数值和压电导电性也达最大。

因此,外电路中的交变电流也就最大。

这是用以稳定频率的理论基础。

第二节石英晶体在不同温度下的各种变体在正常的压力下,石英晶体随着温度的不同共有五种不同性质的变体,即:(1)α石英,其温度低于573℃时为稳态,就是我们通常用的压电石英晶体。

(2)β石英,对α石英加温超过573℃时,即转变为β石英,它在573℃~870℃之间为稳态,但此时没有压电效应,也不能用作压电元器件了。

晶振基础知识介绍

晶振基础知识介绍

晶振基础知识介绍晶振:即所谓石英晶体谐振器(无源)和石英晶体振荡器(有源)的统称。

无源和有源的区别:无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。

无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。

石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。

石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC共同作用来工作的。

振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。

振荡器比谐振器多了一个重要技术参数:谐振电阻(RR),谐振器没有电阻要求。

RR的大小直接影响电路的性能,因此这是各商家竞争的一个重要参数。

晶振的原理:压电效应(物理特性):在水晶片上施以机械应力时,,会产生电荷的偏移,即为压电效应。

逆压电效应:相对在水晶片上印加电场会造成水晶片的变形即产生逆压电效应,利用这种特性产生机械振荡,变换成电气信号。

晶振的作用:一、为频率合成电路提供基准时钟,产生原始的时钟频率。

二、为电路产生震荡电流,发出时钟信号晶振的分类:一、按材质封装(1).金属封装-SEAMTYPE (2).陶瓷封装-GLASSTYPE二、贴装方式(1).直插封装-DIP (2).贴片封装-SMD三、按产品类型(1).crystal resonator—晶体谐振器(无源晶体)(2).crystal oscillator—晶体振荡器(有源晶振)---SPXO 普通有源晶体振荡器---VCXO电压控制晶体振荡器---TCXO 温度补偿晶体振荡器---VC-TCXO压控温补晶体振荡器(3).crystal filter—晶体滤波器(4).tuning fork x’tal (khz)-水晶振动子部分 KDS晶振图例:DT-14/DT-26/DT-38 DMX-26S DSX220G DSO321SR/221SR HC-49S/AT-49DSX321G/221 G SM-14J DSV531SV DSX530G/840GDSA/B321SDA晶振的名词术语:SMT :Surface Mount Technology 表面贴装技术SMD :Surface Mount Device 表面贴装元件OSC :Oscillator Crystal 晶体振荡器TCXO :Temperature Compensate X‘tal Oscillator 温度补偿晶体振荡器VC-TCXO :Voltage Controlled, Temperature Compensated Crystal Oscillator 压控温度补偿晶体振动器 VCXO :Voltage Control Oscillator 压控晶体振动器 DST410S/310S/210A DSX320G DSA/B321SCL HC-49SMD/SMD-49晶振的重要参数:1、标称频率F:晶体元件规范(或合同)指定的频率。

晶体学基础知识导论X衍射 (2)

晶体学基础知识导论X衍射 (2)
晶体学是研究晶体的自然科学。主要研究包括5个 部分:晶体生长、晶体的几何结构、晶体结构分 析、晶体化学及晶体物理。
◆ 晶体生长是研究人工培育晶体的方法和规律 ◆ 晶体的几何结构是研究晶体外形的几何理论及内部质
点的排列规律
◆ 晶体结构分析是收集大量与晶体结构有关的衍射数据 ◆ 晶体化学主要研究化学成分与晶体结构及性质之间的
晶胞(unit cell)是晶体中能代 表晶格一切特征的最小部分, 必为平行六面体。用a, b, c和
a, b, g 表示晶胞特征,称为
晶胞参数。
平移矢量
Tm,n,p=ma+nb+pc (m,n,p=0,±1,…±∞)
晶 胞
晶胞的大小与形状:由晶胞参数 a, b, c, a, b, g 表示, a, b, c为六面体
方解石
石盐
Quartz
Rock-crystal
显然,这种认识还并不全面。例如,同样是一种 物质石英,它既可以呈多面体形态的水晶而存在, 也可以呈外形不规则的颗粒而生成于岩石之中。 这两种形态的石英,从本质上来说是一样的。由 此可见,自发形成几何多面体形态,只是晶体在 一定条件下的一种外在表现。晶体的本质必须从 它的内部去寻找。
(1) 初基(简单)点阵 P 一个阵点
(2) 底心点阵 C,A或B 两个阵点
(3) 体心 点阵
I 两个 阵点
(4)面心 点阵
F 四个 阵点
晶系 三斜
14种Bravais格子
原始格子 底心格子 体心格子 面心格子
(P)
(C)
(I) (F)
C=I
I=F
F=P
单斜
I=F
F=P
正交
四方
C=I
F=P

晶振基础知识

晶振基础知识

4.晶振的应用 并联电路:
(a)串联共振振荡器 (b)并联共振振荡器 1):如何选择晶体? 对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒(往往用低电压以求低功 耗)的系统。这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振 。这一现象在上电复位时并不特别明显,原因时上电时电路有足够的扰动,很容易建立振荡。在睡眠 唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。在振荡回路中,晶体既不能过激励(容易 振到高次谐波上)也不能欠激励(不容易起振)。晶体的选择至少必须考虑:谐振频点,负载电容,激励 功率,温度特性,长期稳定性。 2):晶振驱动 电阻RS常用来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的 上升。可用一台示波器检测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值 都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波 形成为方形,则晶振被过分驱动。这时就需要用电阻RS来防止晶振被过分驱动。判断电阻RS值大小的 最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。 通过此办法就可以找到最接近的电阻RS值。
3).如何选择电容C1,C2? (1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。 (2): 在许可范围内,C1,C2值越低越好。应该试用电容将他的振荡频率调到IC所需要的频率,越准确越好, C值偏大虽有利于振荡器的稳定,但将会增加起振时间。 (3):应使C2值大于C1值,这样可使上电时,加快晶振起振。
2.晶振的基本原理
2.1. 晶振的原理
石英晶体之所以可以作为谐振器,是由于它具有正(机械能→电能)、反(电能→机械能)压电效应。沿 石英晶片的电轴或机械轴施加压力,则在晶片的电轴两面三刀个表面产生正、负电荷,呈现出电压,其 大小与所加力产生的形变成正比;若施加张力,则产生反向电压,这种现象称为正电效应。当沿石英晶 片的电轴方向加电场,则晶片在电轴和机械轴方向将延伸或压缩,发生形变,这种现象称为反压电效应。 因此,在晶体两面三刀端加上交流电压时,晶片会随电压的变化产生机械振动,机械振动又会在晶片内 表面产生交变电荷。由于晶体是有弹性的固体,对于某一振动方式,有一个固有的机械谐振频率。当外 加交流电压等于晶片的固有机械谐振频率时,晶片的机械振动幅度最大,流过晶片的电流最大,产生了 共振现象。石英晶片的共振具有多谐性,即除可以基频共振外,还可以谐频共振,通常把利用晶片的基 频共振的谐振器,利用晶片谐频共振的谐振器称为泛音谐振器,一般能利用的是3、5、7之类的奇次泛音。 晶片的振动频率与厚度成反比,工作频率越高,要求晶片越薄(尺寸越大,频率越低),,这样的晶片 其机械强度就越差,加工越困难,而且容易振碎,因此在工作频率较高时常采用泛音晶体。一般地,在 工作频率小于20MHZ时采用基频晶体,在工作频率大于20MHZ时采用泛音晶体。

晶体学基础知识

晶体学基础知识

第3讲教学要求:1. 复习明确晶体和非晶体的概念2. 明确格子构造的概念以及与实际晶体构造之间的关系3. 大致了解晶体的分类知识4. 详细讲解并要求学生掌握记熟空间格子构造,熟练掌握14种布拉维格子的构造特点及晶格参数的特点5.熟练掌握晶面指数的标定步骤教学重点:晶体的概念、布拉维格子构造、晶面指数的标定教学难点:晶体学基础比较抽象,备课中需多准备形象立体感强的图形,讲解速度控制较慢,尽量引导学生课堂中记忆布拉维格子构造,通过例子联系晶面指数标定过程教学拓展:介绍《物相分析》、《材料研究方法》、《材料结构表征及应用》书中相应的部分以便学生课后参看讨论:课堂上提问学生所掌握的晶体学基础知识的内容,比较选修有关结晶学课程的学生和未选修结晶学课程学生掌握晶体学知识的范围差异,抽10分钟左右的时间讨论,以便掌握讲课难度和速度。

作业:1. 晶体和非晶体的概念?2. 熟练写出布7种拉维格子的名称和相应的晶格参数?晶体学基础知识一.晶体的定义与特征晶体的概念:人类对晶体的认识,是从石英开始的。

古代人们把外形上具有规则的几何多面体形态的石英(水晶)称为晶体。

后来,人们把凡是天然的具有几何多面体的固体,例如:石盐、方解石、磁石等都成为晶体。

本世纪初(1912),X射线衍射分析方法的应用研究了晶体内部结构后,发现:一切晶体不论其外形如何,它的内部质点(原子、离子、、分子)都是有规则排列的,即:晶体内部相同质点在三维空间均呈周期性重复,构成了格子构造。

因此,对晶体做出如下定义:晶体是内部质点在三维空间成周期性重复排列的固体。

或者:晶体是具有格子构造的固体。

∙晶体是原子或者分子规则排列的固体;∙晶体是微观结构具有周期性和一定对称性的固体;∙晶体是可以抽象出点阵结构的固体;∙在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。

”非晶质体:晶体内部质点在三维空间不做规律排列,不具格子构造,称为非晶质体或非晶质。

石英晶体基础知识

石英晶体基础知识

石英,学名二氧化硅。

是自然界分布最广的物质之一。

它有五种变体(β石英、α石英、α磷石英、方石英、溶炼石英),其中只有β石英才具有压电效应,当施加压力在晶片表面时 , 它就会产生电气电位 , 相对的当一电位加在芯片表面时 , 它就会产生变形或振动现象 , 掌握这种振动现象 , 控制其发生频率的快慢 , 以及精确程度 , 就是水晶震荡器的设计与应用。

石英晶体的化学性质极为稳定,常温下不溶于盐酸、硝酸、硫酸等水和酸,只溶于氢氟酸。

在加热时石英晶体能溶于碱溶液,这个特点成为人造水晶的基础。

因此现在一般采用氟化氢氨对石英晶体进行腐蚀。

石英晶体的理想外型见图 1-1 ,从图中可以看出,石英晶体存在左旋与右旋之分,左、右旋晶体为镜像对称。

石英晶体的理想外型总共有三十个晶面,共分五组,每组六个,即:六个 M 面(柱面),六个 R 面(大棱面),六个 r (小棱面),六个 S 面和六个 X 面,这些晶面间的夹角见表 1-1 。

实际上理想的外型是很难见到的,尤其是人工培育的水晶,由于籽晶的切割方位及外型不同使我们看到的形状与上图大不相同,甚至面目全非,各种结晶面不易辨认。

水晶常见的缺陷有:双晶、包裹体、裂隙、炸裂、贝裂等如果把交变电压施加于石英晶片两个电极之间,当交变电压的频率与石英晶片固有振动频率一致时,通过逆压电效应,晶片便产生机械振动。

同时又通过正压电效应而输出电信号。

一般石英晶体谐振器的频率范围可以从数百赫兹到几百兆赫兹。

•等效电路如图 1-2 :•工作原理:晶体振荡器电路有反馈型和负阻性两种,通常用反馈型振荡电路,其工作原理如图 1-3 :•主要技术要求主要内容包括:工作频率、输出电平和输出阻抗、频率准确度、频率稳定度、老化率、频率微调范围、压控特性、开机特性、功率消耗。

1 )谐振特性通过晶片的电流 I 随外加讯号频率 f 而改变,当 F=fm 时,电流有最大值 Im ,这时谐振器阻抗最小。

当 f=fa 时,电流最小值为 In ,这时谐振器阻抗最大。

晶振重要基础知识点

晶振重要基础知识点

晶振重要基础知识点晶振(Crystal Oscillator)是一种电子元件,作为电路中的重要组成部分,主要用于产生稳定的电信号。

在电子技术领域中,晶振是一项重要的基础知识点,对于电路的设计和工作原理具有关键性的影响。

以下是有关晶振的几个重要基础知识点。

1. 晶体的特性:晶振的核心部件是晶体,通常采用石英晶体。

晶体具有特殊的物理特性,能够产生稳定的振荡频率。

这是由于晶体的晶格结构和内部电荷特性决定的。

因此,晶体的选择对于晶振的性能和稳定性至关重要。

2. 振荡电路的构成:晶振一般包含振荡电路,该电路由晶体振荡器、放大电路和输出电路组成。

晶体振荡器是整个晶振的核心部件,用于产生基准频率信号。

放大电路用于放大振荡器输出的信号,以便提供足够的幅度和驱动能力。

输出电路则将放大后的信号输出给其他电路或系统。

3. 振荡频率和精度:晶振的一个关键参数是振荡频率,即晶体的振荡周期。

该频率取决于晶体的物理特性和电路参数。

晶振的精度取决于晶体的制作工艺和电路设计。

通常情况下,晶振的频率精度可以达到百万分之一甚至更高的水平。

4. 温度特性:晶振的频率通常会随着温度的变化而发生微小的变化,这是由晶体的温度特性决定的。

为了确保晶振在不同温度下的稳定性,通常会采取一些温度补偿措施,例如使用温度补偿电路或选择温度稳定性较好的晶体材料。

5. 应用领域:晶振在电子领域有广泛的应用。

最常见的应用是在时钟电路中,用于提供计时信号。

此外,晶振还用于无线通信设备、计算机系统、自动化控制系统等领域,为这些系统提供稳定的基准时钟信号。

综上所述,晶振作为电子领域的重要基础知识点,涉及晶体的特性、振荡电路的构成、振荡频率和精度、温度特性以及应用领域等方面。

深入理解和熟悉晶振的相关知识,对于电子工程师和电路设计师来说至关重要,能够帮助他们设计出稳定性高、性能优越的电子系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石英晶体基础
石英,学名二氧化硅。

是自然界分布最广的物质之一。

它有五种变体(β石英、α石英、α磷石英、方石英、溶炼石英),其中α石英和β石英具有压电效应,当施加压力在晶片表面时, 它就会产生电气电位, 相对的当一电位加在芯片表面时, 它就会产生变形或振动现象, 掌握这种振动现象, 控制其发生频率的快慢, 以及精确程度, 就是水晶振荡器的设计与应用。

石英是由硅原子和氧原子组合而成的二氧化硅(Silicon Dioxide, SiO2), 以32点群的六方晶系形成的单结晶结构﹝图一﹞.单结晶的石英晶体结构具有压电效应特性, 当施加压力在晶体某些方向时, 垂直施力的方向就会产生电气电位. 相对的当以一个电场施加在石英晶体某些轴向时, 在另一些方向就会产生变形或振动现象. 掌握单结晶石英材料的这种压电效应, 利用其发生共振频率的特性, 发挥其精确程度作为各类型频率信号的参考基准, 就是水晶震荡器的设计与应用. 因为石英晶体具有很高的材料Q值,所以绝大部份的频率控制组件,如共振子及振荡器,都以石英材料为基础. 以石英为基础的频率控制组件可以依其压电振动的属性, 可以分为体波(bulk wave)振动组件及表面声波(surface acoustic wave)振动组件. 体波振动组件如石英晶体共振子, 石英晶体滤波器及石英晶体振荡器, 表面波振动组件如表面波滤波器及表面波共振子. 当石英晶体以特定的切割方式, 以机械加工方式予以表面研磨, 完成特定的外型尺寸就是通称的石英芯片(quartz wafer 或quartz blank ). 将这个石英芯片放置在真空还境中, 于表面镀上电极后,再以导电材料固定在金属或是陶瓷基座上, 并加以封装, 就成为一般所谓的石英晶体共振子( quartz crystal resonator ). 利用石英共振子在共振时的低阻抗特性及波的重迭特性, 用邻近的双电极, 可以做出石英晶体滤波器. 将石英振荡子加上不同的电子振荡线路, 可以做成不同特性的石英振荡器. 例如: 石英频率振荡器(CXO), 电压控制石英晶体振荡器(Voltage Controlled Crystal Oscillator, VCXO), 温度补偿石英晶体振荡器(Temperature Compensated Crystal Oscillator, TCXO), 恒温槽控制石英晶体振荡器(Oven Controlled Crystal Oscillator, OCXO)…等. 相对于体波谐振的是表面声波的谐振. 将石英晶体表面镀以叉状电极(inter-digital-transducer, IDT)方式所产生的表面振荡波, 可以制造出短波长(高频率)谐振的表面声波共振子(SAW Resonator)或表面声波滤波器(SAW Filter).
石英晶体的化学性质极为稳定,常温下不溶于盐酸、硝酸、硫酸等水和酸,只溶于氢氟酸。

在加热时石英晶体能溶于碱溶液,这个特点成为人造水晶的基础。

因此现在一般采用氟化氢氨对石英晶体进行腐蚀。

2.石英晶体的结构
石英晶体的理想外型见图1-1 ,从图中可以看出,石英晶体存在左旋与右旋之分,左、右旋晶体为镜像对称。

石英晶体的理想外型总共有三十个晶面,共分五组,每组六个,即:六个M 面(柱面),六个R 面(大棱面),六个r (小棱面),六个S 面和六个X 面,这些晶面间的夹角见表1-1 。

实际上理想的外型是很难见到的,尤其是人工培育的水晶,由于籽晶的切割方位及外型不同使我们看到的形状与上图大不相同,甚至面目全非,各种结晶面不易辨认。

表石英晶体各晶面法线之间的夹角计算值和测量值(《压电石英晶体》秦自楷1980,p3) 夹角计算值测量值夹角计算值测量值
mm 60°0’60°0’Rx 54°51’—
mR 38°13’38°13’Rr 46°16’46°18’
mr 38°13’38°13’sR 28°54’28°58’
ms 37°58’37°55’Sr 28°54’28°58’mx 12°1’12°1’sx 25°57’25°54’
采用布拉维-米勒指数和三角轴系,Z轴与三根X轴构成坐标系。

晶体中任一平面与四
根坐标轴的每一根相交,若平面同一根轴平行,则交点中包含无限远点。

因此布拉维-米勒(B-M)指数就是一组四个数字,它们依次正比于平面同X1、X2、X3和Z轴相交点倒数
的最小整数。

在B-M系中,前三个指数的代数和必为零。

因此第三个数字通常不写出而用
一个点代替。

若B-M指数中出现负号,则通常将负号置于数字之上。

由于石英具有对映性
的特点,所以在建立坐标系的时候,必须考虑石英的左、右旋,若右旋晶体用右旋坐标系,
左旋晶体用左旋坐标系,则所有物理特性的系数值及它们之间的数学关系就是一样的。

IEEE
标准委员会建议下述规范可用于石英晶体:1右旋坐标系用于描述右旋石英晶体的物理特性,左旋坐标系用于左旋石英;2在右旋坐标系中,从旋转轴的正端观察,正旋转是逆时针
方向的。

由于石英结构的独特螺旋形特征,因此把Z轴的那一端定为正方向均是一样的,即:Z轴正方向交换的话,右螺旋还是右螺旋。

(《石英晶体元件设计导论》维吉尔E. 波
托姆著潘景程译,北京:宇航出版社1987年p18-19)
表:2.2 石英自然面的B-M指数
m(Y) R r X Z s(没搞清) x(没搞清)
1 (1010)
(1010)
(0111) (1011) (2110)
(0001)
(11.1) (5161)
2 (1100)
(1100)
(1011) (1101) (1210) (12.1) (65.1)
3 (0110)
(0110)
(1101) (0111) (1100) (2111) (16.1)
各晶面面网密度(原子密度)大小次序是:(《结晶化学导论》第三版钱逸泰合肥:中国科学技术大学出版社2005,p69)
{1010}(m), {1011}(r), {1120}, (1012), {1121}(s), {001}(Z)
2.石英的原子结构
石英的原子结构是以硅氧原子链组成双螺旋为单元向周围空间扩张。

3.石英的切型
依据不同的应用领域及工作温度需求, 因应了许多不同的石英切割角度种类. 例如AT-, BT-, CT-, DT-, NT, GT…..等不同的切割板片. 不同的切割方向的板片具有不同的弹性常数
张量(elastic constant tensor), 不同的压电常数张量(piezoelectric constant tensor)及不同的介电常数张量(dielectric constant tensor). 这些张量在石英组件的设计及应用上展现了不同的振荡及温度特性. (图三)表现了在Z-plat石英结构上,几种不同方向的石英板片切割方式.
石英切割的种类和角度, 会影响到所制作芯片的频率稳定性, 及重要特性参数. 通常客户所要求的规格, 如芯片频率偏移量与温度变化的关系, 以及芯片电气特性参数, 就是决定石英切割种类与角度的主要因素, 其切割的种类与角度如图所示
IRE标准规定的切型符号包括一组字母(x、y、z、t、l、w)和角度。

用x、y、z中任意二个字母的先后排列来表示石英晶片厚度和长度的原始方向;用字母t(厚度)、l(长度)、w(宽度)来表示旋转轴的位置。

当角度为正时则表示逆时针旋转;当角度为负时则表示顺时针旋转。

晶片的主平面可以是由XZ平面绕X轴旋转φ角而成,称为一次旋转;也可以是由XZ平面绕X轴旋转φ角再绕Z轴旋转φ’角而成,称为二次旋转。

根据谐振器振子从石英晶体上取材方位的不同,石英谐振器被划分为很多种切型。

若按图2-3所示的方式旋转,根据旋转角度的不同,可以分为两大类切型,即单次旋转切型(又称旋转Y切型)和双次旋转切型。

在旋转Y切型中,常用的有AT切型(φ=35.25°),BT切型(φ= -49.2°)等;在双次旋转切型中有FC切型(φ=34.33°,φ’=15°)、IT切型(φ=34.08°, φ’=19.1°)和SC切型(φ= 33.08°,φ’=22.4°)等。

4.石英晶体的缺陷
水晶常见的缺陷有:双晶、包裹体、裂隙、炸裂、贝裂等。

相关文档
最新文档