球化退火过程中的组织转变
锻件常用的热处理方法退火

锻件常用的热处理方法退火
锻件常用的热处理方法之一是退火。
退火是指将金属加热到一定温度,保温一段时间后,以适当速度冷却至室温。
退火可以改善锻件的组织性能,减轻内应力,提高机械性能和加工性能。
常见的退火方法有以下几种:
1. 全退火:将锻件加热到高于临界温度,保温一定时间后冷却。
适用于各种锻件。
2. 球化退火:将锻件加热至高于临界温度,保温一段时间后通过较慢的冷却使组织转变为球状。
适用于合金钢、工具钢等。
3. 精细退火:将锻件加热至高于临界温度,保温后通过较快的冷却获得细小的晶粒尺寸。
适用于提高锻件的强度和韧性。
4. 均匀退火:将锻件加热至高于临界温度,保温后通过较慢的冷却使晶粒尺寸得到均匀分布。
适用于大型锻件或晶粒不均匀的锻件。
5. 线加热退火:采用电阻加热或电子束加热,将锻件加热至退火温度,通过较慢的冷却进行退火。
适用于特殊形状或大型锻件。
这些退火方法的选择要根据锻件的具体材料和要求来决定,以达到锻件组织和性
能的优化。
金属学与热处理原理中的退火与再结晶

金属学与热处理原理中的退火与再结晶在金属学与热处理原理中,退火与再结晶是常见的热处理方法,它们在改善金属材料的性能和微观结构方面起着重要的作用。
本文将对退火与再结晶的定义、过程和影响因素进行探讨。
一、退火的定义与过程退火是指将金属材料加热到一定温度,然后通过恒温保温或缓慢冷却等方法使其达到平衡状态的一种热处理过程。
退火可以消除应力、提高材料的延展性和塑性,同时改善材料的晶体结构和性能。
1.1 固溶退火固溶退火是指将金属材料加热到固溶温度,使溶质原子溶解在基体晶格中,然后经过恒温保温和缓慢冷却使其达到平衡状态。
固溶退火可以改善金属的塑性和韧性,提高其可加工性。
1.2 球化退火球化退火是一种特殊的退火方式,主要用于去除冷加工后金属材料的组织应变能和应力集中。
球化退火通过高温加热和缓慢冷却,使金属材料的晶粒成长、边界迁移,从而使组织更加均匀、细致,并减少晶界的能量。
1.3 软化退火软化退火是为了提高金属材料的延展性、韧性和塑性而进行的一种退火处理。
软化退火通过加热材料到高温,达到材料的再结晶温度,然后缓慢冷却,使材料的晶粒重结晶,从而消除材料的应变硬化效应,使其恢复塑性。
二、再结晶的定义与过程再结晶是指在退火过程中,材料的晶粒由不稳定的形态逐渐转变为稳定的形态的过程。
再结晶可以改变金属材料的晶界结构,提高其延展性和塑性。
2.1 动态再结晶动态再结晶是在金属材料进行塑性变形时发生的再结晶过程。
在塑性变形过程中,晶粒会发生位错堆积形成应变能,当达到一定程度时,再结晶核心在位错云区域形成,随着位错云的扩散和晶粒的重结晶,最终形成新的细小晶粒。
2.2 静态再结晶静态再结晶是在高温下进行的再结晶过程。
当金属材料处于高温下保温一段时间后,原始晶粒逐渐长大,而大晶粒之间的晶界则变得更加清晰。
静态再结晶可以通过调节退火温度、保温时间和形变量等参数来控制。
三、退火与再结晶的影响因素退火与再结晶过程受到多种因素的影响,包括温度、时间、形变量和原始晶粒尺寸等。
热处理原理及工艺-珠光体转变与钢的退火和正火

70%等的时间。多组试样在不同等温温度下进行试验,将Байду номын сангаас温度下的转变
开始点和终了点都绘在温度—时间坐标系中,并将不同温度下的转变开始 点和转变终了点分别连接成曲线,就可以得到共析钢的过冷奥氏体等温转
变曲线 。
最上面一条水平虚线表示钢的临界点A1(723℃),即奥氏体与珠光体的 平衡温度。图中下方的一条水平线Ms(230℃)为马氏转变开始温度,Ms 以 下还有一条水平线Mf(–50℃)为马氏体转变终了温度。A1与Ms线之间有两 条C 曲线,左侧一条为过冷奥氏体转变开始线,右侧一条为过冷奥氏体转变 终了线。A1 线以上是奥氏体稳定区。Ms 线至Mf线之间的区域为马氏体转变 区,过冷奥氏体冷却至Ms线以下将发生马氏体转变。过冷奥氏体转变开始线 与转变终了线之间的区域为过冷奥氏体转变区,在该区域过冷奥氏体向珠光 体或贝氏体转变。在转变终了线右侧的区域为过冷奥氏体转变产物区。A1线 以下,Ms线以上以及纵坐标与过冷奥氏体转变开始线之间的区域为过冷奥氏
以共析钢为例,用若干组共析钢的小圆片试样,经 同样奥氏体化以后,每组试样各以一个恒定速度连 续冷却,每隔一段时间取出一个试样淬入水中,将 高温分解的状态保留到室温,然后进行金相测定, 求出每种转变的开始温度、开始时间和转变量。将 各个冷速下的数据综合绘在“温度—时间对数”的 坐标中,便得到共析钢的连续冷却C曲线 。
体区,过冷奥氏体在该区域内不发生转变,处于亚稳定状态。
在A1温度以下某一确定温度,过冷奥氏体转变开始线 与纵坐标之间的水平距离为过冷奥氏体在该温度下的孕育 期,孕育期的长短表示过冷奥氏体稳定性的高低。在A1以 下,随等温温度降低,孕育期缩短,过冷奥氏体转变速度
增大,在550℃左右共析钢的孕育期最短,转变速度最快。
怎样判断钢铁热处理前后的组织

钢铁中常见的金相组织区别简析一.钢铁中常见的金相组织1.奥氏体—碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。
晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处。
2.铁素体—碳与合金元素溶解在a-fe中的固溶体。
亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体—碳与铁形成的一种化合物。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。
过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。
铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
4.珠光体—铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。
珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。
5.上贝氏体—过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。
过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8o铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片.典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。
若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。
钢的热处理及组织转变

二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
一、钢的热处理
钢的退火:
⑴ 退火的定义 将钢加热到一定温度,保温一定时间,然后缓慢冷却下 来,获得接近平衡状态的组织的热处理工艺,称为退火。 ⑵ 退火的目的
① 降低硬度,提高塑性和韧性;
② 消除残余内应力,减轻变形和防止开裂; ③ 均匀成分,细化晶粒,为最终热处理作准备; ④ 改善或消除铸造、轧制、焊接等加工中的组织缺陷。
降低钢的硬度和耐磨性。
温度过低,在淬火组织中出现铁素体,使淬火组织出现软 点,降低钢的强度和硬度。
一、钢的热处理
钢的淬火:
理想的淬火冷却曲线 应该是:在650~550 0 C范围要快冷,其它 温度区间不需快冷, 尤其在Ms点以下更不 需快冷,以免引起工 作变形或开裂。
一、钢的热处理
钢的淬火:
保持适当时间,缓慢冷却,重新形成均匀的晶粒,以消除
形变强化效应和残余应力的退火工艺。
目的:
温度 再结晶温度
消除加工硬化
提高塑性
改善切削加工性能
时间
一、钢的热处理
钢的正火:
⑴ 定义:将钢加热到 AC3 或 Accm 以上 30~50℃,保温一定
时间,出炉后在空气中冷却的热处理工艺,称为钢的正火。
上贝氏体 (羽毛状)
500
下贝氏体 (针叶状)
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
性能上看上贝氏体的脆性较大,无实用价值;而下贝 氏体则是韧性较好的组织,是热处理时(如采用等温淬火) 常要求获得的组织。
原因:上贝氏体中的碳 化物呈较粗的片状,分
布在铁素体板条间,且
不均匀,使板条容易发 生脆废;
获得的球化效果较好,在大件和大批量生产中难以实现,
铸钢件常见热处理工艺

按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。
1.退火:退火是将铸钢件加热到Ac3以上20~30℃,保温一定时间,冷却的热处理工艺。
退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。
碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。
适用于所有牌号的铸钢件。
2.正火:正火是将铸钢件加热到Ac3温度以上30~50℃保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。
正火的目的是细化钢的组织,使其具有所需的力学性能,也是作为以后热处理的预备处理。
正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。
经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。
一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。
正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。
3.淬火:淬火是将铸钢件加热到奥氏体化后(Ac。
或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。
常见的有水冷淬火、油冷淬火和空冷淬火等。
铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能铸钢件淬火工艺的主要参数:(1)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。
原则上,亚共析铸钢淬火温度为Ac。
以上20~30℃,常称之为完全淬火。
共析及过共析铸钢在Ac。
以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。
这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。
(2)淬火介质:淬火的目的是得到完全的马氏体组织。
为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。
退火、正火和回火时的组织转变、性能变化及实际应用

退火、正火和回火时的组织转变、性能变化及实际应用一、退火时的组织转变、性能变化及实际应用1、扩散退火是为了消除化学成分的不均匀,改善组织。
扩散退火是一种加热温度高、保温时间长的热处理方法。
其生产效率低,热能消耗大,工件氧化及脱碳也很严重,以致金属损失大。
故只有在必要时才使用,一般只用于高合金钢铸锭和大型铸件。
2、完全退火在加热过程中,使钢的组织全部转变的奥氏体,在冷却过程中,奥氏体转变为细小而均匀的平衡组织,从而降低钢的强度,细化晶粒,充分消除内应力。
完全退火主要用于亚共析钢,过共析钢不宜采用完全退火。
由于完全退火工艺往往需要很长时间,生产中多采用等温退火来代替完全退火。
3、球化退火是使钢获得球状组织的工艺方法。
所谓球状组织是指呈球状小颗粒的渗碳体,均匀地分布在铁素体基体中的混合物。
在球化退火前,若钢的原始组织中有明显网状渗碳体时,应先进行正火处理。
球化退火后的性能和应用范围见初级部分。
4、去应力退火详见初级部分。
二、正火时的组织转变、性能变化及实际应用详见初级部分。
三、回火时的组织转变、性能变化及实际应用1、低温回火(<250℃)低温回火得到的组织是回火马氏体,其性能是:具有高的硬度(HRC58~64)和高的耐磨性,和一定的韧性。
主要用于刀具、量具、拉丝模以及其它要求硬而耐磨的零件。
2、中温回火(250℃~500℃)中温回火得到的组织是回火托氏体,其性能是:具有高的弹性极限、屈服点和适当的韧性,硬度可达HRC40~50。
主要用于弹性零件及热锻模等。
3、高温回火(>500℃)高温回火得到的组织是回火索氏体,具有良好的综合力学性能(足够的强度与高韧性相配合),硬度达HRC25~40。
生产中常把淬火及高温回火的复合热处理工艺称为“调质”。
调质处理广泛用于受力构件,如螺栓、连杆、齿轮、曲轴等零件。
调质与正火相比较,不仅强度较高,而且塑性和韧性远高于正火钢,这是由于调质钢的组织是回火索氏体。
因此,重要零件应采用调质。
钢管钢材的球化退火工艺简介

钢管钢材的球化退火工艺简介球化退火又叫Spheroidiz ing annealing,是使钢中碳化物球化而进行的退火,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。
球化退火(Spheroidiz ing annealing):球化退火是使钢中碳化物球化而进行的退火工艺。
将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却到略低于Ac1的温度,并停留一段时间,使组织转变完成,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。
球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。
这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。
而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。
另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。
球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。
在球化退火时奥氏化是"不完全"的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。
因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。
球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。
普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。
等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。
等温后随炉冷至500℃左右出炉空冷。
和普通球化退火相比,等温球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球化退火过程中的组织转变
球化退火是一种热处理技术,其主要目的是将钢中珠光体转变为球状组织,以便改善钢的塑性和切削性。
这个过程中发生的主要组织转变是由珠光体向球状体的转变,通常由三个阶段组成:
1. 奥氏体转变:将钢材加热到适当的温度,使其处于奥氏体状态。
这通常需要一个特定的温度范围,根据不同钢材和应用,通常在725℃至1050℃之间。
2. 等温球化:将钢材置于特定温度下进行处理,以促进球状体的形核和生长。
这个过程的时间通常是根据钢材的种类和规格而定的,从数分钟到数小时不等。
3. 退火:将钢材从等温球化处理的温度冷却到室温,这通常需要数小时到数天的时间,以便使钢材内部的组织转变充分完成。
在整个球化退火过程中,还会发生其他一些组织转变,如高温下的马氏体转变、低温下的马氏体和贝氏体转变等。
然而,球化退火过程中的主要组织转变是由珠光体向球状体的转变,这种转变可以提高钢材的塑性和切削性,从而使其更加适合各种应用。