超细粉体的制备方法

合集下载

液相法制备超细粉体的原理及特点

液相法制备超细粉体的原理及特点

液相法制备超细粉体的原理及特点一、超细粉体材料任何固态物质都有一定的形状,占有相应空间,即具有一定的大小尺寸。

我们通常所说的粉末或细颗粒,一般是指大小为1毫米以下的固态物质。

当固态颗粒的粒径在0.1μm一10μm之间时称为微细颗粒,或称为亚超细颗粒,空气中漂浮的尘埃,多数属于这个范围。

超细粉通常是指粒径为1 ~100nm的微粒子,其处于微观粒子和宏观物体之间的过渡状态。

由于极细的晶粒大量处于晶界和晶粒内,缺陷的中心原子以及其本身具有的量子体积效应、量子尺寸效应、表面效应,介电限域效应和宏观量子隧道效应,使超细粉体材料在光、电、磁等方面表现出其他材料所不具备的特性,是重要的高科技的结构和功能材料,因而受到极大的关注,目前在冶金、化工、轻工、电子、航天、医学和生物工程等领域有着广泛的应用。

目前,超细粉的研究主要有制备、微观结构、宏观性能和应用等四个方面,其中超细粉的制备技术是关键,因为制备工艺和过程控制对纳米微粒的微观结构和宏观性能具有重要的影响。

二、液相法制备的主要特征(1)可将各种反应的物质溶于液体中,可以精确控制各组分的含量,并实现了原子、分子水平的精确混合。

(2)容易添加微量有效成分,可制成多种成分的均一粉体。

(3)合成的粉体表面活性好。

(4)容易控制颗粒的形状和粒径。

(5)工业化生产成本较低。

(6)液相法可分为物理法和化学法三、超细粉体的液相制备方法制备纳米粉体的液相方法主要有液相沉淀法、溶胶-凝胶法、水热法、微乳液法等。

(一)沉淀法沉淀法是在原料溶液中添加适当的沉淀剂,使得原料液中的阳离子形成各种形式的沉淀物,然后再经过虑、洗涤、干燥,有时还需加热分解等工艺过程制得纳米粉体的方法。

沉淀法具有设备简单、工艺过程易控制、易于商业化等优点,能制取数十纳米的超细粉。

沉淀法可分为共沉淀法、直接沉淀法、均匀沉淀法和水解法等。

1、共沉淀法在混合的金属盐溶液中加入合适的沉淀剂,由于解离的离子是以均一相存在于溶液中,经反应后可以得到各种成分具有均一相的沉淀,再进行热分解得到高纯超细粉体。

超细粉体制备工艺设计与实验研究

超细粉体制备工艺设计与实验研究

高 、 品增 值 大 的 高档 物 料 的超 细 粉 体 的 生产 。 产
2 3振 动 磨 _ 振 动 磨 是 一 种 高 效 节 能 的 粉 磨 设 . 6 J 备 , 用 于各 种 硬 度物 料 的 超 细 粉 碎 , 品粒 度 d 可 产 可达 到 1 以 下 , 具 有 较 强 的机 械 力 化 学 效 应 , m 且 能耗 较 低 , 易于 工 业 化 生 产 , 国 内有 多家 厂家 生 产 现 不 同规 格 、 号 的 振 动磨 应 用 于非 金 属 矿深 加 工 。 型
级 。而 在 湿 法 粉 碎 过 程 中, 过 水 或 添 加 某 些 药 剂 通
2 2 气流 磨 _ . 4
气 流 磨 种 类 繁 多 , 泛 应 用 于 中 广
降低 粒子 的表 面 能 , 防止 或 抑 制 粉料 的 团聚 , 可 同时 也 可使 粒 子 的 破 碎 强 度 降 低 , 利 于 粉 碎 过 程 的 进 有
维普资讯
第2 5卷 第 5期 20 0 2年 9月
非 金 属 矿
Non M e al i s — tli M ne c
VO . NO. 1 25计 与 实验 研 究
方 莹 陈 传 文 张 少明
复杂 、 固定 资 产 投 资及 生产 成 本 较 高 … 。
鉴 于上 述 两 方 面 的 考 虑 , 当对 超 细粉 的粒 度 、 纯 度要 求 不高 ( 品粒 度 在微 米 级 ) 产 量较 大 , 达 到 产 , 需 工 业 化应 用 要 求 时 , 常 采 用 干法 机 械 粉 碎 加 超 细 通 分 级 工 艺制 备 超 细 粉 体 。
高 、 率低 、 得 粉体 不够 细 、 效 所 易混 入 杂 质 等 缺 点 ; 后

6种常见的超细粉碎工艺流程,你的粉体适合哪一种

6种常见的超细粉碎工艺流程,你的粉体适合哪一种

6种常见的超细粉碎工艺流程,你的粉体适合哪一种机械法超细粉碎工艺一般是指制备粒度分布d9710m的粉体的粉碎和分级工艺,分为干法和湿法。

目前工业上采纳的超细粉碎单元作业(即一段超细粉碎)有以下几种工艺流程:1、开路流程一般扁平或盘式、循环管式等气流磨因具有自行分级功能,常采纳这种开路工艺流程。

另外,间歇式超细粉碎也常采纳这种流程:这种工艺流程的优点是工艺简单。

但是,对于不具备自行分级功能的超细粉碎机,由于这种工艺流程中没有设置分级机,不能适时地分出合格的超细粉体产品,因此,一般产品的粒度分布范围较宽。

2、闭路流程其特点是分级机与超细粉碎机构成超细粉碎—精细分级闭路系统。

一般球磨机、搅拌磨、高速机械冲击式磨机、振动磨等的连续粉碎作业常采纳这种工艺流程。

其优点是能适时地分出合格的超细粉体产品,因此,可以减细小细颗粒的团聚和提超群细粉碎作业效率。

3、带预先分级的开路流程其特点是物料在进入超细粉碎机之前先经分级,细粒级物料直接作为超细粉体产品。

粗粒级物料再进入超细粉碎机粉碎。

当给料中含有较多的合格粒级超细粉体时,采纳这种工艺流程可以减轻粉碎机的负荷,降低单位超细粉产品的能耗。

提高作业效率。

4、带预先分级的闭路流程这种组合作业不仅有助于提高粉碎效率和降低单位产品能耗,还可以掌控产品的粒度分布。

这种工艺流程还可简化为只设l台分级机,即将预先分级和检查分级合片用同一台分级机。

5、带最后分级的开路流程这种粉碎上艺流程的特点是可以在粉碎机后设置1台或多台分级机,从而得到两种以上不同细度及粒度分布的产品。

6、带预先分级和最后分级的开路流程这种工艺流程实质不仅可以预光分别出合格细粒级产品以减轻粉碎机的负荷,而且后设的最后分级设备可以得到两种以上不同细度及粒度分布的产品。

7、超细粉碎段数的确定在粉碎方式上,超细粉碎工艺可分为干式(一段或多段)粉碎、湿式(一段或多段)粉碎、干湿组合式多段粉碎等3种。

粉碎的段数重要取决于原材料的粒度和要求的产品细度。

超细粉体制备技术研究的内容及发展现状

超细粉体制备技术研究的内容及发展现状

超细粉体制备技术研究的内容及发展现状引言:超细粉体制备技术是一门研究如何制备具有纳米级颗粒尺寸的粉体材料的学科。

该技术在各个领域都具有重要的应用价值,例如材料科学、化学工程和环境科学等。

本文将探讨超细粉体制备技术的研究内容及其发展现状。

一、超细粉体制备技术的研究内容1. 材料选择:超细粉体制备技术要求选择适合的原料,如金属、陶瓷或聚合物等,并考虑其物理化学性质以及制备过程中的相互作用。

2. 制备方法:超细粉体的制备方法包括物理法、化学法和物化法等。

物理法主要有磨碎法、气雾法和凝胶法等;化学法主要有溶胶凝胶法、水热法和溶剂热法等;物化法则是将物理法和化学法相结合,如高能球磨法和溶胶冻胶法等。

3. 控制参数:超细粉体的制备过程中,需要控制一系列参数,如反应温度、反应时间、溶液浓度和溶剂选择等。

这些参数的调节将直接影响到粉体颗粒的尺寸和形貌。

4. 表征分析:制备好的超细粉体需要进行表征分析,如粒径分布、比表面积、晶体结构和形貌等。

常用的表征方法包括扫描电镜、透射电镜、X射线衍射和比表面积测定等。

二、超细粉体制备技术的发展现状1. 研究热点:超细粉体制备技术的研究热点主要集中在以下几个方面:- 纳米材料的制备方法优化:研究人员不断改进传统的制备方法,提高制备效率和控制颗粒尺寸的精度。

- 纳米材料的表征手段研究:随着纳米材料的制备技术的发展,对其表征手段的研究也日益重要,以满足对纳米材料粒径和形貌等更准确的表征需求。

- 新型超细粉体的应用研究:超细粉体在材料科学、医学和环境保护等领域具有广泛的应用前景,研究人员正积极探索新型超细粉体的应用潜力。

2. 发展趋势:- 多学科交叉:超细粉体制备技术的研究已经从单一的材料学领域扩展到了化学、物理、生物等多个学科领域的交叉研究,这将进一步推动超细粉体制备技术的发展。

- 绿色制备:随着环境问题的日益突出,研究人员正致力于开发绿色制备方法,以减少对环境的影响。

- 自组装技术:自组装技术是一种通过物体自身的相互作用实现组装的方法,近年来在超细粉体制备中得到了广泛应用。

超细粉体及超细粉碎技术简述

超细粉体及超细粉碎技术简述
到 目前 为止 , 最 容易 工业化 的实 用技术 就是 机械 的机型在我国均能找到 。但是我 国对此类设 备研制晚 ,
基础差 ,引进消化进 口 设备后所产设备的质量 良 莠不
齐, 有的只是低水平 的仿制 , 并 没有改进和提 高。 5 . 2 超 细粉碎 设备发 展 的趋势
4 超细粉碎设备 的分类
精 细陶瓷 原料细化处理、 梯度材料 、 金属与陶瓷复合材料 、 颗粒表面改性 环保 脱硫 超细碳 酸钙 、 固体废物再生利用 、 各种粉状污水 处理剂 化工 印刷 原料处理 、 涂料 、 油漆 、 催 化剂 油 墨生产 、 铜金粉 、 喷墨打印墨盒 、 激光打印和复印碳粉
3 超细粉碎技术
仪器仪表分析和测试技术等学科。 超细粉碎技术不但 粒的晶体结构和物理化学性质的变化规律。
超 细粉 碎技术 。
我 国超细粉碎设 备发展 主要是 在 2 O世纪 7 0 年 代 种类 型已与世界上生产厂商品种不相上下 , 国际上成熟
要研究颗粒粒径减小过程 , 而且要研究粉体过程中颗 末 开始 , 经过 8 0年代 、 9 0 年代 的大力发展 , 目前定 型机
致 认 同和较合 理 的划分 为 细粉体 : 粒径为 l 0 ~ 4 5 m;
超细粉体工业是多学科的组合 , 超细粉体几乎应 微米粉体 :粒径 为 1 ~ 1 0 m;亚微米粉体 :粒径为 用于国民经济的所有部门 , 表2 列 出了超细粉体涉及
0 . 1 ~ 1 m; 纳米粉体 : 粒径 为 O . 0 0 1 ~ 0 . 1 1 X l 。对 于 金 的行 业及 应用 范 围。
粒度砂 、 铸造型砂 、 微 粉磨料 、 超硬材料 、 固体润滑 粮食加工 、 化肥生产 、 添加剂生产 、 催凝剂生产 固体填料 、 补强材料 、 功能性填料及废 旧橡胶制品的再生 原料 制备 、 塑料喷涂 、 增强填料 、 粉末塑料制品

一种超细鳞片石墨粉体及其制备方法与流程

一种超细鳞片石墨粉体及其制备方法与流程

一种超细鳞片石墨粉体及其制备方法与流程
超细鳞片石墨粉体是一种具有较小颗粒尺寸和优良石墨片层结构的粉体材料。

其制备方法与流程如下:
1. 原料准备:选择高纯度的天然石墨矿石作为原料,并进行破碎、磨粉等预处理工序。

2. 氧化处理:将石墨粉末进行氧化处理,常用的方法包括酸处理(如硫酸、硝酸)或氧化剂处理(如高温氧化、漂白剂处理)等,以去除杂质和表面污染物,并增加石墨表面的活性官能团。

3. 助剂添加:在氧化处理后,向石墨粉末中添加适量的助剂,常用的助剂包括分散剂、表面活性剂等,可增加粉末的分散性和稳定性。

4. 碾磨处理:将经氧化处理和助剂添加的石墨粉末进行碾磨处理,常用的碾磨设备包括球磨机、超声波破碎机等,以进一步破碎粉末颗粒并使其分散均匀。

5. 分级处理:经碾磨处理后的石墨粉末进行粒度分级处理,常用的分级设备包括筛分机、空气分级机等,以得到所需颗粒大小的超细鳞片石墨粉末。

6. 干燥:将分级后的石墨粉末进行干燥处理,通常采用加热干燥或真空干燥等方法,以去除水分和其他溶剂。

7. 粉末调整:根据实际需要,对石墨粉末的表面性质进行调整,
常用的方法包括化学改性、物理修饰等,以提高其分散性和增加其应用范围。

以上为一种常见的超细鳞片石墨粉体的制备方法和流程。

实际操作中,根据具体需求和材料特性,可以进行相应的改进和调整。

液相法制备超细粉体

液相法制备超细粉体

液相法制备超细粉体摘要:本文介绍了液相法制备超细粉体的原理及特点,简介超细粉体的液相制备方法,并举实例-使用涂布方法在PET上涂消影层。

关键词:超细粉体;液相法;涂布引言超细粉体,是指粒径在微米级到纳米级的一系列超细材料。

按照我国矿物加工行业的共识,将超细粉体定义为粒径100%小于30um的粉体。

按照粒度的不同,超细粉体通常分为:微米级(粒径1~30um)、亚微米级(粒径1~0.1μm)和纳米级(0.001~0.1um)。

由于粒径的大幅减小,超细粉体表现出了块状材料所不具有的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧穿效应,因而在热、光、磁、化、力等性能上有较大差异。

超细粉体所具有的这些特异性能使之在汽车、化工、复合材料、生物工程和医学等领域获得广泛应用。

目前,超细粉的研究主要有制备、微观结构、宏观性能和应用等四个方面,其中超细粉的制备技术是关键,因为制备工艺和过程控制对纳米微粒的微观结构和宏观性能具有重要的影响。

1超细粉体的制备方法超细粉体的制备通常有物理和化学两种方法,物理方法中又划分为干法和湿法两种,化学方法中又分为固相法、液相法和气相法。

其中固相法分为机械粉碎法、超声波粉碎法、热分解法、爆炸法等,气相法分为真空蒸发法、气相化学反应法、等离子体法、激光法等,液相法分为沉淀法、溶胶-凝胶法、水热合成法、喷雾热分解法、乳化液法、高分子聚合法等。

本文主要介绍液相法相关内容。

2超细粉体的制备方法2.1沉淀法沉淀法是在原料溶液中添加适当的沉淀剂,使得原料液中的阳离子形成各种形式的沉淀物,然后再经过虑、洗涤、干燥,有时还需加热分解等工艺过程制得纳米粉体的方法。

沉淀法具有设备简单、工艺过程易控制、易于商业化等优点,能制取数十纳米的超细粉。

沉淀法可分为共沉淀法、直接沉淀法、均匀沉淀法和水解法等。

2.1.1共沉淀法在混合的金属盐溶液中加入合适的沉淀剂,由于解离的离子是以均一相存在于溶液中,经反应后可以得到各种成分具有均一相的沉淀,再进行热分解得到高纯超细粉体。

氧化锆超细粉体的制备方法

氧化锆超细粉体的制备方法

氧化锆超细粉体的制备方法
氧化锆超细粉体的制备方法可以有以下几种:
1. 氢氧化锆热分解法:将氢氧化锆在高温条件下进行热分解,生成氧化锆超细粉体。

该方法可以通过调控热处理的温度、时间和气氛来控制粉体的粒径和形貌。

2. 氧化锆溶胶凝胶法:将氧化锆前驱物(如氯化锆、硝酸锆等)溶解在适量的溶剂中,并加入适当的表面活性剂和稳定剂,通过控制pH值、温度和反应时间,使溶液形成稳定的胶体溶胶。

接着将胶体溶胶进行热处理,去除溶剂,得到氧化锆超细粉体。

3. 水热法:将氧化锆前驱物溶解在水或有机溶剂中,加入适当的表面活性剂和稳定剂,并在高温高压条件下进行水热反应。

通过控制反应温度、时间和溶液成分,可以制备出具有较小粒径和均匀分布的氧化锆超细粉体。

4. 气相沉积法:将氧化锆前驱物溶解在适量的溶剂中,并通过气相沉积技术,在高温下将气相中的氧化锆蒸汽转变为固相,从而得到氧化锆超细粉体。

这种方法可以获得较小的粒径和较高的纯度。

总之,制备氧化锆超细粉体的方法有很多种,具体选择哪种方法需要根据实际需求和条件来决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超细粉体的制备方法
超细粉体的制备方法有很多种,常见的包括以下几种:
1. 气相法:将化学反应产生的气体混合等离子体中,通过物理和化学反应使气态物质转变为粉末。

2. 溶剂法:将所需材料溶于有机溶剂或水中,在适当条件下,将溶液慢慢蒸发干燥,得到超细粉末。

3. 机械法:通过机械剪切、碾磨和冲击等机械力量作用,将粗粉末不断细化。

4. 化学沉淀法:将水溶性物质溶解于水中,在控制pH值的情况下加入化学试剂,产生沉淀物,然后进行干燥和烘烤,得到超细粉末。

5. 等离子体法:将所需材料在大气压下暴露于等离子体中,利用等离子体的热、光、化学反应以及激波力等效应制备超细粉末。

6. 真空喷雾法:将所需材料通过喷雾喷入真空环境中,利用强大的气相冷却作用,使溶液迅速凝固成超细粉末。

7. 物理气相法:通过高功率激光或电弧等方式将金属材料蒸发,形成高温高压等离子体,利用等离子体的力和能量将其制备成超细粉末。

相关文档
最新文档