MATLAB实践—QPSK系统的误码率和星座图仿真
基于Matlab的QPSK系统设计仿真

[ 2 ]樊昌信. 通信原理 [M ]. 北京 : 国防工业出版社 ,
2000 [ 3 ]黄正. BPSK, QPSK及其解调 [ J ]. 电光系统 , 2003,
103 (1) : 43~47 [ 4 ]王立宁等. M atlab与通信仿真 [M ]. 北京 : 人民邮
电出版社 , 2000
参考文献
S im ula tion of QPSK System D esign ing Ba sed on
M a tlab
by X iao Kuang lin
Abstract The p a s sage s im u la te s the co nc re te ac tua liza2 tio n o f Q PSK com m un ica tio n sys tem ’s em is s io n and re 2 ce iving co u rse by com p iling sc rip t p ro g ram m e w ith M a t2
关键词 数字通信 ; QPSK;仿真 中图分类号 TN911. 7
1 引言
四相相移键控 (QPSK)是一种性能优良 ,应用 十分广泛的数字调制方式 ,它的频带利用率高 ,是 二相相移键控 (B PSK)的 2倍 。且 QPSK调制技术 的抗干扰性能强 ,采用相干检测时其误码率性能与 BPSK相同 。本文用 M atlab软件对 QPSK通信系统 的发射和接收过程的具体实现进行了模拟仿真 ,并 对各模块进行了频谱分析 。系统设计的具体参数 为 :二进制码元的符号速率为 5M sp s,给定的信道 容量为 7MHz, 脉冲成形滤波器采用升余弦滤波 器 ,采样频率为 25MHz。
3 收稿日期 : 2006年 9月 8日 ,修回日期 : 2006年 11月 30日 作者简介 :肖旷林 ,男 ,工程师 。唐唐 ,男 ,硕士研究生 ,研究方向为通信网络仿真 。
QPSK通信系统性能分析与MATLAB仿真讲解

QPSK通信系统性能分析与MATLAB仿真讲解QPSK(Quadrature Phase Shift Keying)是一种调制方式,常用于数字通信中的短波通信和卫星通信等场景。
在QPSK通信系统中,将每个二进制位编码为相位不同的信号,通常使用正交载波来实现。
为了分析和评估QPSK通信系统的性能,可以使用MATLAB进行仿真。
下面将具体讲解如何进行QPSK通信系统性能分析和MATLAB仿真。
首先,我们需要定义一些基本参数。
QPSK调制是基于二进制编码的,因此将要发送的数据转换为二进制比特流。
可以使用MATLAB中的函数来生成二进制比特流,如`randi([0,1],1,N)`,其中N是比特流的长度。
在这里,可以自行选择比特流的长度。
接下来,需要将二进制比特流分组为2比特一组,以便编码为相位信息。
可以使用MATLAB中的函数来进行分组,如`reshape(bit_stream,2,length(bit_stream)/2)'`,其中bit_stream是二进制比特流。
这里的重点是要确保二进制比特流的长度为2的倍数。
然后,将每组2比特编码为相位信息。
QPSK调制使用4个相位点来表示4种可能的组合,通常用0、π/2、π和3π/2来表示这些相位点。
可以使用MATLAB中的函数生成这些相位信息,如`phase_data =[0,pi/2,pi,3*pi/2]`。
接下来,通过幅度和相位信息生成QPSK信号。
可以使用MATLAB中的函数来生成QPSK信号,如`qpsk_signal = cos(2*pi*f*t+phase)`,其中f是载波频率,t是时间,phase是相位信息。
然后,添加噪声到QPSK信号中以模拟实际通信环境。
可以使用MATLAB中的函数来添加噪声,如`noisy_signal =awgn(qpsk_signal,SNR)`,其中SNR是信噪比。
最后,解调接收到的信号以恢复原始数据。
可以使用MATLAB中的函数来解调信号,如`received_bits = reshape(received_signal,[],2) > 0`。
(完整版)QPSK调制原理及matlab程序实现

QPSK已调信号生成一、QPSK介绍QPSK是英文Quadrature Phase Shift Keying 的缩写,意为正交相移键控,是一种数字调制方式。
其有抗干扰性强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。
二、实验平台和实验内容1、实验平台本实验是MATLAB环境中生成基本QPSK已调信号,只需要MATLAB12.0。
2、实验内容1.基带信号为周期127bits伪随机序列,信息比特速率:20kbps,载波频率:20kHz(速率及频率参数现场可调整);2.在MATLAB环境中编写M代码搭建QPSK调制系统模型;3.观测基带时域波形、已调信号时域波形;4.观测基带发射星座图;5.观测已调信号的功率谱(优先)或频谱;三、实现框图及其原理分析1、原理分析及其结构QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。
载波相位取四个等间隔值之一,如л/4, 3л/4,5л/4,和7л/4。
相应的E为发射信号的每个符号的能量,T为符号持续时间,载波频率f等于nc/T,nc为固定整数。
每一个可能的相位值对应于一个特定的二位组。
例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,11。
Sin(t)=2E/tcos[2]4/+∏i]0<=t<=T)1-ft∏2(其中,i=1,2,3,4。
2、框图四、实验结果与分析图一基带信号为周期为127bits的伪随机序列。
图二:已调信号时域波形带宽为7104 HzB点信号的星座图映射,00、01、10、11组合分别映射成-1-j,-1+j,1-j,1+j。
五、实验源码clc;clear all;Num=127;data=randi([0 1],1,Num);figure(1)plot(data)title('基带时域波形');f=20000; %载波频率20kHzRb=20000; %码元速率20kHzTs=1/f;Ns=8000;sample=1*Ns; %每个码元采点数为8000,采样频率为8000*20kHz N=sample*length(data)/2; %总采样点数data1=2*data-1; %正/负极性变换,产生二进制不归零双极性码元%-------------------------将信息源分成两路,分别对信号进行抽样-------------data_1=zeros(1,N); %定义一个长度为N的空数据data_1for i1=1:Num/2data_1(sample*(i1-1)+1:sample*i1)=data1(2*i1-1); %对奇数码元进行采样enddata_2=zeros(1,N);for i2=1:Num/2data_2(sample*(i2-1)+1:sample*i2)=data1(2*i2); %对偶数码元进行采样enda=zeros(1,N);b=zeros(1,N);for j1=1:Na(j1)=cos(2*pi*f*(j1-1)*Ts/Ns); %对余弦载波抽样每个周期采N个点 b(j1)=-sin(2*pi*f*(j1-1)*Ts/Ns); %对正弦载波抽样每个周期采N个点end%---------------------------调制---------------------------data_a=data_1.*a; %a路用余弦调制data_b=data_2.*b; %b路用正弦调制data_c=data_a+data_b;figure(2)subplot(3,1,1)plot(data_a)title('QPSK已调实部时域信号');subplot(3,1,2)plot(data_b)title('QPSK已调虚部时域信号');subplot(3,1,3)plot(data_c);title('QPSK已调信号时域波形');%---------------------绘制调制后波形的频谱图-------------------data_modul1= data_1(1:502000)+1i*data_2(1:502000);data_modul=data_a+1i*data_b;%调制后总的信号figure(3)plot(data_modul1,'o');axis([-2 2 -2 2]);title('星座图');figure(4)QPSK=10*log10(abs(fftshift(fft(data_modul,2048))).^2); %信号的频率值SFreq=linspace(-Rb*sample/2,Rb*sample/2,length(QPSK)); %信号的频率谱范围plot(SFreq,QPSK);title('QPSK已调信号频谱图');xlabel('Frequency');ylabel('Amplitude');hold on;。
MATLAB对QPSK通信系统的仿真

QPSK通信系统的性能分析与matlab仿真1 绪论在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。
Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
同时有大量的第三方软件和硬件应用于Simulink。
本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次课程设计,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。
1.1 研究背景与研究意义1.1.1 研究背景在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。
信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。
信息的数字转换处理技术走向成熟,为大规模、多领域的信息产品制造和信息服务创造了条件。
高新技术层出不穷。
随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。
Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中只要通过简单的鼠标操作,就可以构造出复杂的系统。
Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。
1.1.2研究意义通过完成实验的设计内容,加深对通信原理理论的理解,熟悉通信系统的基本概念,复习正交相位偏移键控(QPSK)调制解调的基本原理和误比特率的计算方法,了解调制解调方式中最基础的方法。
(完整)QPSK系统的误码率和星座图仿真

(完整)QPSK系统的误码率和星座图仿真编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)QPSK系统的误码率和星座图仿真)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)QPSK系统的误码率和星座图仿真的全部内容。
目录一、课题内容………………………………………..…。
……。
..1二、设计目的……………………………………….。
…。
…。
…。
1三、设计要求…………………………………………………。
.1四、实验条件................................................。
....。
(1)五、系统设计....................................................。
.。
.. (2)六、详细设计与编码……………………………。
……………。
.41. 设计方案………………………………。
…….…..……。
42。
编程工具的选择……………………………………。
…。
43。
程序代码…………………………………….。
.………。
54. 运行结果及分析 (8)七、设计心得………………………………………。
……….。
9八、参考文献……………………………….………。
………。
10一、课题内容基于MATLAB或C语言模拟仿真OFDM通信系统。
主要功能:1、搭建基带OFDM系统仿真平台,实现OFDM信号体制与解调;2、能够画出输入数据与输出数据的星座图;3、能在不同信噪比信道的情况下,对信号进行误码分析。
3、能够和理论误码率公式比较二、设计目的1、综合应用《Matlab原理及应用》、《信号与系统》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念;2、培养学生系统设计与系统开发的思想;3、培养学生利用软件进行通信仿真的能力。
课程设计OQPSK通信系统的matlab仿真分析

说明1.课程设计任务书由指导教师填写,并经专业学科组审定,下达到学生。
2.学生根据指导教师下达的任务书独立完成课程设计。
3.本任务书在课程设计完成后,与论文一起交指导教师,作为论文评阅和课程设计答辩的主要档案资料。
一、课程设计的主要内容和基本要求⑴产生等概率且相互独立的二进制序列,画出时域和频域的波形;⑵产生均值为0,方差为1的加性高斯随机噪声;⑶进行OQPSK调制,画出波形;⑷进行误码率分析,并与理论值比较;⑸解调OQPSK,画出眼图。
⑹画出星座图二、课程设计图纸内容及张数本实验没有规定的图纸内容,在实验结果中附有本次实验的结果图三、课程设计应完成的软硬件的名称、内容及主要技术指标MATLAB四、主要参考资料通信原理基础(北京邮电大学出版社)通信原理(国防工业出版社)樊昌信曹丽娜编著信号与系统——MATLAB综合实验(高等教育出版社)MATLAB7辅助信号处理技术与应用(电子工业出版社)飞思科技产品研发中心编著OQPSK通信系统的matlab仿真分析㈠设计目的和意义1.对oqpsk进行调制和解调,通过MATLAB编程,掌握MATLAB的使用,熟练掌握OQPSK的调制原理,解调原理。
2.对OQPSK通信系统进行matlab仿真分析,分析起信噪比和差错率。
为现实中通信系统的调制,解调,及信道传输进行理论指导。
㈡设计原理1.OPSK的调制它和有着同样的相位关系,也是把输入码流分成两路,然后进行正交调制。
随着数字通信技术的发展和广泛应用,人们对系统的带宽、频谱利用率和抗干扰性能要求越来高。
而与普通的比较,交错正交相移键控的同相与正交两支路的数据流在时问上相互错开了半个码元周期,而不像那样I、Q两个数据流在时间上是一致的(即码元的沿是对齐的)。
由于O信号中的I(同相)和Q(正交)两个数据流,每次只有其中一个可能发生极性转换,所以,每当一个新的输入比特进入调制器的I或Q信道时,其输出的O信号中只有0°、+90°三个相位跳变值,而根本不可能出现180°相位跳变。
QPSK通信系统性能分析与MATLAB仿真

QPSK通信系统性能分析与MATLAB仿真QPSK是一种常见的调制方式,广泛应用于数字通信系统中。
在QPSK通信系统中,传输的数据被分为两个相互正交的子载波进行调制,每个子载波可以携带2位二进制数据。
本文将对QPSK通信系统的性能进行分析,并使用MATLAB进行仿真。
首先,我们需要了解QPSK调制的基本原理。
在QPSK中,发送端的数据被分为两个二进制数据流,分别称为I路和Q路。
通过调制器对I路和Q路进行调制生成正交的载波信号,然后进行并行传输。
接收端接收到信号后,通过对两路信号进行解调,并将解调后的数据进行重新组合,得到原始数据。
为了分析QPSK通信系统的性能,我们需要考虑到噪声的影响。
在传输过程中,信号会受到各种噪声的干扰,如加性高斯白噪声。
这些噪声会使得接收信号误码率增加。
我们可以使用误码率(Bit Error Rate)来评估系统的性能,误码率是指发送的比特和接收到的比特不一致的比率。
为了进行性能分析,我们可以进行理论分析和仿真两个步骤。
在理论分析中,我们可以通过理论计算得到系统的误码率曲线。
而在仿真过程中,我们可以通过编写一段MATLAB代码来模拟整个通信系统,然后进行模拟传输并统计误码率。
在仿真过程中,我们首先需要生成发送端的数据流。
这可以通过随机生成0和1的序列来实现。
然后,我们将数据流分为I路和Q路,并对每一路进行调制生成载波信号。
接下来,我们引入噪声,在信号上添加高斯白噪声。
然后,我们将接收到的信号进行解调,并将解调后的数据重新组合。
最后,我们统计误码率和信噪比(Signal-to-Noise Ratio)之间的关系,并绘制性能曲线。
通过MATLAB进行仿真,我们可以调整信噪比,并观察误码率的变化。
通过仿真实验,我们可以得到系统在不同信噪比下的性能表现。
通过比较理论结果和仿真结果,我们可以验证我们的分析是否准确。
总结起来,QPSK通信系统的性能分析是一个重要的研究课题。
通过理论分析和MATLAB仿真,我们可以得到系统在不同信噪比下的性能表现,并且验证我们的分析是否准确。
QPSK误码率仿真分析

[键入文字]通信工程专业《通信原理》课程设计题目 QPSK的误码率仿真分析学生姓名谭夕林学号 **********所在院(系)陕西理工学院物理与电信工程学院专业班级通信工程专业 1102 班指导教师魏瑞完成地点陕西理工学院物理与电信工程学院实验室2014年 3 月 12 日通信工程专业课程设计任务书院(系) 物理与电信工程学院专业班级通信工程专业1102班学生姓名谭夕林一、课程设计题目 QPSK的误码率仿真分析二、课程设计工作自 2014 年 2 月 24 日起至 2014 年 3 月 16 日止三、课程设计进行地点: 物理与电信工程学院实验室四、课程设计的内容要求:利用仿真软件等工具,结合所学知识和各渠道资料,对QPSK在高斯通道下的误码率进行研究分析指导教师魏瑞系(教研室)通信工程系接受任务开始执行日期2014年2月24日学生签名谭夕林QPSK的误码率仿真分析谭夕林陕西理工学院物理与电信工程学院通信1102班,陕西汉中723003)指导教师:魏瑞【摘要】为实现QPSK应用到无线通信中,该文对QPSK系统性能进行了理论研究。
介绍了QPSK调制解调原理,对高斯白噪声信道的系统性能进行了研究,分析对比了在高斯白噪声信道下的系统误码性能。
为基于副载波QPSK无线激光通信系统的研究奠定了理论基础。
使用MATLAB中M语言完成QPSK的蒙特卡罗仿真,得出在加性高斯白噪声的信道下,传输比特错误率以及符号错误率。
并将比特错误率与理论值相比较,并得出关系曲线。
使用simulink搭建在加性高斯白噪声信道下的QPSK调制解调系统,其中解调器使用相关器接收机。
并计算传输序列的比特错误率。
通过多次运行仿真得到比特错误率与信噪比之间的关系。
【关键词】: QPSK,误码率,仿真,星座图【中图分类号】 TN702 [文献标志码] AQPSK BER simulation analysisTan Xilin(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong 723003,China)Tutor:Wei Rui[Abstract]For the application of the QPSK (Phase-Shift-Keying) to the wireless laser communication, this paper emphasizes the system of QPSK's performance, theoretically. In the paper, the principle of the QPSK's modulation and demodulation were introduced in brief and the performance of the system at white Gaussian noise (AWGN) channel was also analyzed carefully. The above results provide the theoretical foundation for the wireless laser communication system based on the QPSK with e the MATLAB language to complete Monte Carlo simulation of QPSK, and to obtain the transmission sequence bit error rate and symbol error rate in the additive white Gaussian noise channel, comparing it with the theoretical value, then get curve. The second aspect is to learn how to use Simulink and the functions and principles of various modules. Then we use Simulink to create the model of QPSK through additive white Gaussian noise channel. And take the advantage of the Correlator receiver to complete the operation of demodulation. Then calculate the transmission sequence bit error rate. By running the simulation repeatedly, we can get the relationship between the bit error rate and SNR.Keywords: QPSK, BER, simulation, constellation目录摘要 (3)Abstract (4)一绪论 (6)1.1 课题背景及仿真 (6)1.1.1QPSK系统的应用背景简介 (6)1.1.2QPSK实验仿真的意义 (6)1.1.3仿真平台和仿真内容 (6)二系统实现框图和分析 (7)2.1QPSK调制部分 (7)2.2QPSK解调部分 (8)三QPSK特点及应用领域 (9)3.1QPSK特点 (9)3.2误码率 (10)3.3QPSK时域信号 (10)3.4扩充认知QPSK-OQPSK (10)3.5QPSK的应用领域 (11)四使用simulink搭建QPSK调制解调系统 (12)4.1信源产生 (12)4.2QPSK系统理论搭建 (13)五仿真模型参数设置及结果 (15)5.1仿真附图及参数设置 (15)5.2仿真结果 (16)5.3误码率曲线程序及其仿真结果 (17)六仿真结果分析 (19)七总结与展望 (20)致谢 (21)参考文献 (21)一.绪论1.1课题背景及仿真:1.1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《MATLAB实践》报告——QPSK系统的误码率和星座图仿真一、引言数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
基本的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控(PSK)、相对(差分)相移键控(DPSK)。
在接收端可以采用想干解调或非相干解调还原数字基带信号。
数字信号的传输方式分为基带传输和带通传输.然而,实际中的大多数信道(如)无线信道具有丰富的低频分量。
为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
通信系统的抗噪声性能是指系统克服加性噪声影响的能力。
在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量.因此,与分析数字基带系统的抗噪声性能一样,分析数字调制系统的抗噪声性能,也就是求系统在信道噪声干扰下的总误码率。
误码率(BER:bit error ratio)是衡量数据在规定时间内数据传输精确性的指标。
误码率是指错误接收的码元数在传输总码元数中所占的比例,更确切地说,误码率是码元在传输系统中被传错的概率,即误码率=错误码元数/传输总码元数。
如果有误码就有误码率。
误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码.噪音、交流电或闪电造成的脉冲、传输设备故障及其他因素都会导致误码(比如传送的信号是1,而接收到的是0;反之亦然)。
误码率是最常用的数据通信传输质量指标.它表示数字系统传输质量的式是“在多少位数据中出现一位差错”。
误信率,又称误比特率,是指错误接收的比特数在传输总比特数中所占的比例,即误比特率=错误比特数/传输总比特数。
在数字通信系统中,可靠性用误码率和误比特率表示。
数字调制用“星座图"来描述,星座图中定义了一种调制技术的两个基本参数:(1)信号分布;(2)与调制数字比特之间的映射关系。
星座图中规定了星座点与传输比特间的对应关系,这种关系称为“映射”,一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义.二、QPSK系统的原理四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。
QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。
每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。
QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。
解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特.在QPSK体制中,由其矢量图(图1)可以看出,错误判决是由于信号矢量的相位因噪声而发生偏离造成的。
例如,设发送矢量的相位为45°,它代表基带信号码元“11”,若因噪声的影响使接收矢量的相位变成135°,则将错判为“01”。
当不同发送矢量以等概率出现时,合理的判决门限应该设定在和相邻矢量等距离的位置.在图中对于矢量“11”来说,判决门限应该设在0°和90°。
当发送“11”时,接收信号矢量的相位若超出这一范围(图中阴影区),则将发生错判。
图1 QPSK 的噪声容限QPSK 信号的误码率: QPSK 信号的误比特率:图2 QPSK 系统原理方框图三、仿真实验0111001090︒︒22/2111⎥⎦⎤⎢⎣⎡--=r erfc P e 2/21r erfc P e =图3 仿真实验框图实验结果(即误码率曲线和星座图)图4 B 点信号的星座图产生二进制数据星座图映射加法运算判决根据信噪比产生高斯噪声数据星座图逆映射误码率统计误比特率统计ABCDEF图5 C点信号的星座图图6 误码率和误比特率的理论和仿真曲线对实验结果的简单分析和说明 图4是B 点信号的星座图映射,00、01、10、11组合分别映射成—1-j ,—1+j ,1-j ,1+j 。
图5是C 点信号的星座图映射,它是加入噪声后的映射结果,由图中可以看出加入噪声后大致以—1-j ,-1+j,1-j,1+j 为中心形成了近似圆的图像,少部分点偏离比较严重,产生了误差。
由图6,可见QPSK 仿真误码率曲线和理论误码率曲线重合在一起,QPSK 仿真误比特率曲线和理论误比特率曲线也重合在一起,误码率约是误比特率的两倍,说明实验方法是正确可行的. 四、结论本次实验研究了数字调制方式QPSK ,对其误码率进行了考察.通过理论误码率和仿真误码的比较,了解了误码率的性能。
本次实验还通过运用星座图来对实验结果进行仿真.本次实验得出结论如下:QPSK 信号的误码率:QPSK 信号的误比特率:误码率是误比特率的两倍。
附录:1、 心得体会:本次实验我收获很多,学会了应用MA TLAB 来处理问题,加深了对通信原理中部分公式和概念的理解。
实验过程中也遇到了不少问题,在星座图映射上,一开始将00,01,10,11看成一个整体,这样对整体编程存在很大困难,因此后来尝试将其分开看,并成功映射;在计算噪声的过程中,由于通信原理的知识未能牢固掌握,在分析和计算的过程中花了很多时间;实验过程中,学会了使用find 函数来代替for 循环的功能,从而使程序运行更加快,大大加快了实验的进度。
通过本次MA TLAB 的实践,应该加强MATLAB 在各个学科的应用,学会用MA TLAB 来处理实际问题. 2、 程序: close all clcclear allSNR_DB=[0:1:12]; sum=1000000;data= randsrc(sum,2,[0 1]); [a1,b1]=find(data(:,1)==0&data (:,2)==0); message(a1)=—1—j ;[a2,b2]=find(data(:,1)==0&data (:,2)==1); message (a2)=-1+j ;[a3,b3]=find(data (:,1)==1&data (:,2)==0); message (a3)=1—j ;[a4,b4]=find (data(:,1)==1&data (:,2)==1); message (a4)=1+j ; scatterplot(message)22/2111⎥⎦⎤⎢⎣⎡--=r erfc P e 2/21r erfc P e =title(’B点信号的星座图')A=1;Tb=1;Eb=A*A*Tb;P_signal=Eb/Tb;NO=Eb./(10.^(SNR_DB/10));P_noise=P_signal*NO;sigma=sqrt(P_noise);for Eb_NO_id=1:length(sigma)noise1=sigma(Eb_NO_id)*randn(1,sum);noise2=sigma(Eb_NO_id)*randn(1,sum);receive=message+noise1+noise2*j;resum=0;total=0;m1=find(angle(receive)<=pi/2&angle(receive)>0);remessage(1,m1)=1+j;redata(m1,1)=1;redata(m1,2)=1;m2= find( angle(receive)〉pi/2&angle(receive)〈=pi);remessage(1,m2)=—1+j;redata(m2,1)=0;redata(m2,2)=1;m3=find(angle(receive)〉—pi&angle(receive)<=-pi/2);remessage(1,m3)=—1-j;redata(m3,1)=0;redata(m3,2)=0;m4=find(angle(receive)〉-pi/2&angle(receive)〈=0);remessage(1,m4)=1-j;redata(m4,1)=1;redata(m4,2)=0;[resum,ratio1]=symerr(data,redata);pbit(Eb_NO_id)=resum/(sum*2);[total,ratio2]=symerr(message,remessage);pe(Eb_NO_id)=total/sum;endscatterplot(receive)title(’C点信号的星座图')Pe=1—(1-1/2*erfc(sqrt(10。
^(SNR_DB/10)/2))).^2;Pbit=1/2*erfc(sqrt(10.^(SNR_DB/10)/2));figure(3)semilogy(SNR_DB,pe,':s’,SNR_DB,Pe,'—*’,SNR_DB,pbit,’-o’,SNR_DB,Pbit,’:+’)legend('QPSK仿真误码率',’QPSK理论误码率','QPSK仿真误比特率’,’QPSK理论误比特率',1)xlabel(’信噪比/dB’)ylabel(’概率P’) gird on。