动力学分光光度法的基本原理及测定方法
分光光度法 定量限

分光光度法定量限分光光度法是化学分析中常用的一种定量分析方法,利用物质对特定波长的光的吸收特性进行定量测定。
该方法具有高灵敏度、高选择性、无干扰等优点,被广泛应用于药物分析、环境监测、农残检测等领域。
在分光光度法中,测量的主要原理是比较样品和标准溶液对特定波长的光的吸收情况。
光源通过单色仪选择出特定波长的光,光通过被测物质的溶液,被测物质吸收特定波长的光后,透射到光电探测器上,通过探测器测量光的透射率或吸光度,从而确定样品中的物质浓度。
在分光光度法的实验操作中,通常需要准备标准溶液和样品溶液。
标准溶液是已知浓度的溶液,用于校准光谱仪的读数和建立浓度与吸光度的关系。
样品溶液则是待测物质的溶液,需要在测量之前适当稀释以在测量范围内。
在测量过程中,还需要选择合适的波长、调节光谱仪的光谱分辨率,并进行基线校正,以排除背景的干扰。
在分光光度法中,用于定量分析的参考内容主要包括:1. 吸光度测量原理:介绍分光光度法的基本原理和测量过程,包括选择适当波长、建立标准曲线、计算样品浓度等内容。
2. 分光光度计的选择和使用:介绍不同类型的分光光度计的特点和适用范围,以及操作细节和注意事项,如如何正确校准仪器、选择合适的检测模式等。
3. 校准方法和标准溶液的制备:介绍校准的原理和方法,如如何制备标准溶液、准确称量、溶解和稀释等。
4. 方法验证和精密度评价:介绍如何验证分光光度法的准确性和可靠性,如确定方法的线性范围、精密度和准确度等指标。
5. 具体应用案例:以药物分析、环境监测、农残检测等领域为例,展示分光光度法在实际分析中的应用,如利用该法定量测定药物的含量、水中重金属离子的浓度等。
总之,分光光度法作为一种常用的定量分析方法,具有许多优点和广泛的应用领域。
掌握分光光度法的原理和操作要点,熟悉分光光度计的使用方法,具备制备标准溶液和验证方法的能力,将有助于准确和可靠地进行定量分析工作。
分光光度法基本原理简介

1.物质的颜色与吸收光的关系电磁波谱: X射线 0.1~100 nm远紫外光 10~200 nm近紫外光 200~400 nm可见光 400~760 nm近红外光 750~2500 nm中红外光 2500~5000 nm远红外光 5000~10000 nm微波 0.1~100 cm无线电波 1~1000 m2日光:紫蓝青绿黄橙红2014-11-33♥复合光:由各种单色光组成的光。
如白光(太阳光)♥单色光:只具有一种波长的光。
要求:∆λ=±2nm 。
♥互补色光:如果把两种适当颜色的光按一定的强度比例混合也可以得到白光,这两种光就叫互补色光。
♥物质的颜色是由于物质对不同波长的光具有选择性的吸收作用而产生的。
如:CuSO 4呈兰色。
♥物质呈现的颜色和吸收的光颜色之间是互补关系。
光的互补:蓝 黄日光7♥ (1)不同物质吸收曲线的形状和吸收波长不同。
MnO 4-531吸收曲线2014-11-38♥(2)同一物质对不同波长光的吸光度不同;同一物质不同浓度,其吸收曲线形状相似。
♥吸收曲线是特性的,可以提供物质的结构信息,作为物质定性分析的依据之一;吸收曲线是定量分析中选择入射光波长的重要依据。
3.光的吸收定律——朗伯-比耳定律λ吸光度A:物质对光的吸收程度。
定义:A=lg(I0/I t)A越大,表示对光的吸收越大,透过光越弱。
9λ1760年朗伯(Lambert)阐明了光的吸收程度和吸收层厚度的关系:A∝b•1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间也具有类似的关系:A∝c二者的结合称为朗伯—比耳定律,A∝bc1011朗伯—比耳定律数学表达式:A =lg (I 0/I t )= εb c 式中:A ,吸光度,无量刚; b ,液层厚度(光程长度),cm ; c ,溶液的浓度, mol · L -1 ; ε称为摩尔吸光系数,L·mol -1·cm -1,仅与入射光波长、溶液的性质及温度有关,与浓度无关。
分光光度分析法的基本原理

分光光度分析法的基本原理
分光光度分析法是一种常用于化学分析的技术,其基本原理是利用物质在特定波长的光照射下发生吸收或发射现象,通过测量被测物质对光的吸收或发射程度来确定其含量或性质。
在分光光度分析法中,首先使用光源发出连续光谱的光线,然后使用单色器将光线按波长进行选择。
选择的波长应为被测物质在该波长具有最大吸收或发射峰值的波长,以提高分析的准确性。
接下来,被测物质与光发生相互作用,其中一部分光被吸收,并转化为其他形式的能量,如化学反应产物的激发状态或电化学反应的电位变化。
另一部分光则不被吸收,保持原来的能量状态。
测量被测物质对光的吸收或发射程度时,一种常用的方式是使用光电二极管或光电倍增管来测量光的强度变化。
被测物质浓度或性质的变化将导致吸收或发射程度的变化,从而可通过测量光的强度来间接确定被测物质的含量或性质。
通过对标准溶液的测量,可以建立标准曲线,从而将测定的光强度值转化为被测物质的浓度或性质值。
分光光度分析法具有灵敏度高、精度高、选择性好等特点,广泛应用于环境监测、食品检测、药物分析等领域。
分光光度计与分光光度法

2.2.1 分光光度计的 光谱范围
包括波长范围为400~760 nm的可见光区和波长范围 为200~400 nm的紫外光区。不同的光源都有其特有的 发射光谱,因此可采用不同的发光体作为仪器的光源。
钨灯的发射光谱:钨灯光源所发出的400~760nm 波长的光谱,光连续色谱;该色谱可作为可 见光分光光度计的光源。
3. 以7200可见光分光度计为例,讲解可见光分光度 计的正确使用方法
4. 以UV-754型紫外-可见分光光度计为例,讲解紫 外光光度计的正确使用方法
1. 分光光度法定义 与应用
1.1 定义: 分光光度法是利用物质所特有的吸收光谱来鉴 别物质或测定其含量的分析检测技术。
1.2 特点: 灵敏、精确、快速和简便,在复杂组分系统 中,不需要分离,即能检测出其中所含的极少量物质。
氢灯的发射光谱:氢灯能发出185~400 nm波长的 光谱,可作为紫外光光度计的光源。
谱(1)
如果在光源和棱镜之间放上某种物质的溶液,此 时在屏上所显示的光谱已不再是光源的光谱,它出现 了几条暗线,即光源发射光谱中某些波长的光因溶液 吸收而消失,这种被溶液吸收后的光谱称为该溶液的 吸收光谱。
不同物质的吸收光谱是不同的。因此根据吸收光 谱,可以鉴别溶液中所含的物质。
4、有色物稳定性高 其它离子干扰才小。如三
磺基水杨 酸铁的Kf =1042 , F- 、H3PO4 对它无干 扰。
5、显色过程易于控制 而且有色化合物与显
色剂之间的颜色差别应尽可能大。
| m MaRx m Rax | 60nm
回本节目录
二、 显色反应条件的选择
1、显色剂用量 ,适当过量。
2、溶液酸度 既要防止被测离子生成沉淀,又需
化学反应动力学的实验测定方法

化学反应动力学的实验测定方法化学反应动力学是研究反应速率和反应机理的重要学科。
在化工和制药等工业中,了解反应机理和反应速率对于合理设计反应工艺和催化剂起着关键作用。
而实验测定化学反应动力学常常是开展相关工作的第一步。
下面将介绍几种测定化学反应动力学的实验方法。
一、消解法(时限法)消解法是通过确定化学反应的程度来测定反应速率。
该方法的原理是在反应过程中样品中的某一物质逐渐消失或产生,通过测定该物质的消失或产生速率来确定反应速率。
消解法测定反应速率的优点是不需要特殊设备和复杂的化学分析方法,可以快速得出反应速率和反应级数。
但其缺点是需要对反应过程有一定的了解,确定适当的反应程度往往比较困难。
二、滴定法(容量法)滴定法是测定反应物浓度变化的实验方法。
该方法的原理是反应物消耗后所剩余的量与初始量之比等于反应程度的比例。
通过紫外分光光度法等方法测定反应物浓度的变化,从而求出反应的速率常数和反应级数。
滴定法可测定一些较复杂的反应,能较容易地确定反应程度,但也需要较为精确的试剂,且操作会受到样品的色性、浊度等影响。
三、色法利用比色和分光光度法测定反应物质浓度的变化,以求出反应速率和反应级数的方法,被称为色法。
常用的比色剂有吸收峰位、镁铵酞菁等物质,可以根据反应物质的吸收峰位或光散射强度的变化来推算出反应速率常数和反应级数。
色法应用广泛,但比色反应常常会受到线性范围的限制,以及色散度大、较容易受到外界干扰等问题。
四、放射性示踪法放射性示踪法是一种直接或间接观测反应进程的方法。
常用的放射性示踪法包括isotopic exchange、tracer exchange等。
直接放射性示踪可直接测量反应速率,间接放射性示踪则可以测定反应中间体的生成速率或反应延伸速率等。
放射性示踪法测定反应的精度较好,但放射性元素对操作人员和环境有一定的危害,且需要较为精确的仪器和设备。
综上所述,化学反应动力学的实验测定方法有多种。
根据不同的反应物、反应条件和实验要求,选择合适的方法进行测定是十分重要的。
分光光度法测定混合液中的钴和铬

分光光度法测定混合液中的钴和铬分光光度法是一种常用的化学分析方法,可以用于测定混合液中的钴和铬。
下面是分光光度法测定混合液中钴和铬的实验步骤:一、实验目的本实验旨在通过分光光度法测定混合液中的钴和铬,掌握分光光度法的基本原理和操作方法,了解钴和铬的测定原理和实验流程。
二、实验原理分光光度法是一种基于光的吸收原理进行物质分析的方法。
当光通过溶液时,溶液中的物质会吸收一定波长的光,导致光的强度减弱。
溶液浓度越高,对光的吸收越强,因此可以根据光的吸收程度推断溶液中物质的浓度。
对于钴和铬的测定,通常采用邻二氮菲法进行分光光度测定。
邻二氮菲是一种常用的螯合剂,可以与钴、铬等金属离子形成稳定的螯合物,从而降低金属离子的水解常数,增加其在溶液中的溶解度。
在pH值为4~5的溶液中,邻二氮菲与钴、铬等金属离子形成的螯合物分别具有特征吸收峰,因此可以通过分光光度法测定混合液中的钴和铬。
三、实验步骤1.仪器准备准备分光光度计、容量瓶、吸管、移液管等实验器材。
2.样品制备取一定量的混合液,用去离子水稀释至适当浓度,备用。
3.标准溶液制备分别制备不同浓度的钴和铬标准溶液,用于绘制标准曲线。
4.显色反应取适量样品溶液和邻二氮菲溶液,加入适量的缓冲液,摇匀。
在室温下静置一定时间,使显色反应完全。
5.分光光度测定将显色后的样品溶液放入分光光度计中,分别测定样品溶液在钴和铬的特征吸收峰处的吸光度。
根据标准曲线计算样品中的钴和铬浓度。
四、实验结果与分析1.结果记录记录实验数据,包括样品溶液的吸光度、标准溶液的浓度等。
根据吸光度和浓度之间的关系,计算样品中的钴和铬浓度。
2.结果分析对比已知量和未知量之间的关系,得出结论。
例如,通过比较样品溶液吸光度和标准曲线上的吸光度,可以推断样品中钴和铬的浓度。
同时还可以比较不同样品之间的浓度差异,进一步了解样品的性质和特征。
五、结论通过本实验,我们掌握了分光光度法测定混合液中钴和铬的基本原理和操作方法。
分光光度法及分光光度计使用方法

I0 I
值大,表示溶液吸收光线较多;
当I 0时,lg I0 值无穷大,表示光线几乎被溶液完全吸收,即溶液不透光。 I
由此可见, lg I0 表示溶液对光吸收的程度,称作吸光度(absorbance), I
用A表示,即A lg I0 I
2012春季学期
生物化学与分子生物学实验教学中心
如何求被测组分的含量
分光光度法
南方医科大学 生物化学与分子生物学实验教学中心
2012春季学期
内容
1 分光光度法的原理 2 如何求被测组分的含量
3
3 分光光度计的基本结构 4 分光光度计的使用与注意事项
2012春季学期
生物化学与分子生物学实验教学中心
分光光度法
• 概念:是利用物质所特有的吸收光谱来 鉴别物质或测定其含量的一项技术。
lg Io k l + lg Io k c = lg Io k c l
I
I
I
2012春季学期
A k cl
生物化学与分子生物学实验教学中心
分光光度法的原理
lg Io k c l IΒιβλιοθήκη 公式的意义:当I
I
时,
0
lg
I0 I
0,表示溶液完全不吸收光线;
当I<I0时,lg
若被测物质对光的吸收符合光的吸收定律,则必然 得到一条通过原点的直线,即标准曲线,亦称工作曲线 。以后对末知浓度物质测定时,无需再作标准管,据测 定管吸光度从标准曲线上即可求得测定物的浓度。
2012春季学期
生物化学与分子生物学实验教学中心
根据测定管吸光度从标准曲线上即可求得测定物的浓度
。
A
0.8 0.6 0.4
分光光度法实验报告

一、实验目的1. 理解分光光度法的基本原理及其在定量分析中的应用。
2. 掌握分光光度计的使用方法,包括光源的选择、波长调节、比色皿的清洗和校准等。
3. 通过实验,学会如何根据样品的吸光度与浓度之间的关系绘制标准曲线,并利用标准曲线测定未知样品的浓度。
二、实验原理分光光度法是一种基于物质对特定波长光的吸收特性进行定量分析的方法。
根据朗伯-比尔定律,当一束单色光通过均匀的溶液时,溶液的吸光度与溶液中溶质的浓度和光程成正比。
公式表示为:A = εlc,其中A为吸光度,ε为摩尔吸光系数,l为光程(通常为比色皿的厚度),c为溶液的浓度。
三、实验仪器与试剂仪器:1. 分光光度计2. 比色皿3. 移液管4. 容量瓶5. 烧杯试剂:1. 标准溶液:已知浓度的待测物质溶液2. 未知溶液:待测浓度的溶液3. 水为GB/T 6682规定的二级水或去离子水四、实验步骤1. 仪器准备:- 开启分光光度计,预热30分钟。
- 调节光源,选择合适的波长。
- 清洗比色皿,并用待测溶液润洗3次。
2. 标准曲线绘制:- 取若干个比色皿,分别加入不同浓度的标准溶液。
- 用移液管准确移取一定体积的标准溶液于比色皿中,加入适量的溶剂,摇匀。
- 将比色皿放入分光光度计中,记录吸光度值。
- 以标准溶液的浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
3. 未知溶液浓度测定:- 取若干个比色皿,分别加入一定体积的未知溶液。
- 用移液管准确移取一定体积的未知溶液于比色皿中,加入适量的溶剂,摇匀。
- 将比色皿放入分光光度计中,记录吸光度值。
- 在标准曲线上找到对应的吸光度值,即可得到未知溶液的浓度。
五、实验结果与分析1. 标准曲线绘制:通过实验,成功绘制了标准曲线,证明了朗伯-比尔定律在分光光度法中的应用。
2. 未知溶液浓度测定:根据标准曲线,准确测定了未知溶液的浓度。
六、实验总结本次实验通过分光光度法测定了未知溶液的浓度,成功实现了定量分析。
实验过程中,掌握了分光光度计的使用方法,学会了如何绘制标准曲线和测定未知溶液的浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学分光光度法的基本原理及测定方法
动力学分光光度法是利用反应速率与反应物,产物,催化剂浓度间的定量关系,通过测量吸光度对被测组分定量的一种方法。
下面测定反应体系中催化浓度为例,介绍动力学分光光度法的基本原理及测定方法。
设一个在催化剂(F)的作用下进行的显色反应:
若D为有色化合物,则D的生成速率(显色反应速率)可表示为:
在反应进行的初期,A,B的浓度较大,反应小号的A和B可忽略不计,则可视为常数:
由CF变化也很小,可视为常数,上式积分得:
将上式代入朗伯比尔定率,有:
此式即为动力学分光光度法的基本关系式。
测定催化剂(F)的方法通常有固定时间法,固定浓度法和斜率法三种,固定时间发是让反应进行一固定时间后终止,然后测量反应体系的吸光度(A):
不同的催化剂浓度(cF)测得相应反应体系的A值,做出校准曲线,然后由加入试样的反应体系的A值求出试样中F的浓度。
固定浓度法是测量产物(D)达到一定浓度所需的时间,此时式中的CD为常数,则:
同样地可以作出校准曲线,由试样体系的t值求出催化剂(F)的含量。
斜率法是根据吸收光度(A)随反应时间的变化速率来测定CFO根据关系在不同的CD下测得A-t曲线,分别求出其斜率值。
作出KCF-CF校准曲线。
斜率法的校准曲线由更多的实验数据获得,因而其准确度较高。
动力学分光度法具有灵敏度高,选择性好,应用范围较广等等特点,主要缺点是影响因素多,不宜严格控制,测定的误差较大。