河北省保定市唐县2019-2020学年八年级上学期期末数学试题(word无答案)
2019-2020学年八年级数学第一学期期末考试试题冀教版.docx

总分核分人2019-2020 学年八年级数学第一学期期末考试试题冀教版藁城市 2011---2012学年度第一学期期末考试八年级数学试题三题号一二2122232425得分得分评卷人题号123456789101112答案A. 1个B. 2 个C. 3个D. 4 个2. 在 4 , 2 ,-38 ,3.14,20,中,无理数的个数有32A.2个B.3个C.4个D.5个3.如果 x> y,那么下列结论中错误的是x yA. 3 x> 3yB. x- 3>y- 3C. -3<-3D. -x-3>-y-34.若点 P 在第二象限,且点 P 到 x 轴、 y 轴的距离分别为 4, 3,则点 P 的坐标是A.( 4, 3)B.(3,-4)C.(-3,4)D.(-4,3)5.某不等式组的解集在数轴上表示如图1 所示,则这个不等式组可以是A. B. C. D.6.下列各式中,与 5 是同类二次根式的是A.10B.15C.20D.257.使分式x 2有意义的 x 的值满足x 4A. x≠- 2 B.x≠ 4C.x≠-2且x≠ 4D.x≠-2或x≠ 48.下列事件中,属于必然事件的是A.1 月 23 日春节这天一定是晴天B.明天上学的路上遇到老师C. 打开电视机时,正在播放动画片D.乱扔垃圾会破坏环境卫生9. 在等边三角形 ABC中,∠ B 和∠ C的角平分线相交于点O,则∠ BOC等于A. 100 °B. 110°C. 120 °D.130 °10. 购买一袋m千克的大米和一袋n 千克的大米,共花了 a 元,则平均每千克的大米多少元A.m nB. a + aC.aD.无法确定a m n m n3 米11.如图为某楼梯 , 已知楼梯的长为 5 米 , 高 3 米 , 现计划在楼梯表面 5 米铺地毯 , 则地毯的长度至少需要A. 8.5米B. 8米C. 7.5米D. 7米(第11题图)12 以方程组的解为坐标的点在平面直角坐标系中的位置在A.第一象限 B .第二象限 C .第三象限 D .第四象限得分评卷人二、填空题(本大题共 8个小题,每小题 3 分,共 24 分,将正确答案填在下面对应题号的横线上)131415161718192013.不等式3( x+1)≥ 5x-3的解集是.A14..15.( 4)2M计算的结果是.D 16.如图,△ ABC中, AB=AC, AB的N 垂直平分线 MN交 AC于 D,若∠ A=40°,则∠DBC=.B C16题图17. 已知某三角形的三内角之比1: 2: 3,若其最短的度1,其最的度.18. 一副扑克牌除去大小王牌共52 ,洗匀后从中任意抽取 1 . 抽到 A 牌的概率是.19. 在△ ABC中,如果A( 1, 1) B( -1 , -1 )C( 2, -1 ),△ ABC的面是.20.察下列各式:(x- 1)( x+ 1)= x2- 1;(x- 1)( x2+ x+ 1)= x3-1;(x- 1)( x3+ x2+ x+1)= x4-1;根据律可得:( x- 1)( x n+ x n-1+⋯ x+ 1)=.三、解答(本大共 5 个小,共52 分)得分卷人21. (每小 6 分,共 12 分)( 1)化45 +120 5125( 2)先化,再求:a3a 9,其中 a=1.a3 a 29得分评卷人22.(本题满分 8 分)甲同学口袋里有三张卡片,分别写着数字 1、 1、2,乙同学口袋里也有三张卡片 . 分别写着数字1、 2、 2. 两人各自从自己的口袋里随机摸出一张卡片 . 若两人摸出的卡片上的数字之和为偶数,则甲胜,否则乙胜,求甲胜的概率 . (列表说明)得分评卷人23.(本题满分 10 分)已知△ ABC在直角坐标系中的位置如图所示,请根据图示,解答下列问题:①写出△ ABC的各顶点坐标;②并画出△ ABC关于 Y 轴的对称图形;③写出△ ABC关于 X 轴对称的三角形的各顶点坐标 .得分评卷人24.(本题满分 10 分)如图,已知A、 B 两个村庄在河流CD的同侧,它们到河的距离分别为AC=10千米, BD=30千米,且CD=30千米,现在要在河边建一自来水厂P,向 A、 B 两村供水,已知铺设水管的费用为每千米 2 万元,请你在河流CD上选择水厂的位置P,使铺设水管的费用最节省( 只需正确找出 P 点位置即可,不需证明) ,并求出此时的总费用.BALC D得分评卷人25.(本题满分 12 分)某单位有30 人,准备携带20 件行李,租用甲、乙两种型号的汽车共8 辆组团到外地旅游,经了解,甲种汽车每辆最多能载 4 人和 3 件行李,乙种汽车每辆最多能载 2 人和 8 件行李 .( 1)设租用的甲种汽车x 辆,请你设计所有可能的租车方案( 2)如果甲乙两种汽车的租车费用每辆分别为8000 元和 6000 元,请你选择最省钱的租车方案 .八年级数学参考答案及评分标准(温馨提示:阅卷前,请老师们先仔细研究一下答案)一 . 选择题 : (本大题共12 个小题,每小题 2 分,共 24 分)题23456789101112 1号答A D CBC BD C C D AA案二 . 填空 :(本大 共8 个小 ,每小3 分,共 24 分)13. x ≤ 3s(2v a)14.a)v(v 17. 2118.1315. 4 16. 30 °19. 320.x n 1 1三 . 解答 :(本大 共 5 个小 ,共 52 分)21. 解: (1) 原式 =9 5 +14 5 -55 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分25 5=35 + 1× 2 5 -5 ×15⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分25=3 5 5 5=3 5a 3( a 3)(2) 原式 =-a3 (a 3)(a 3)a3=-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分a 3 a 3=a3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分a3当 a=1 ,原式 =-1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分222. 解: 根据 意列表如下:甲 112 乙1 偶 偶 奇 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分2奇奇偶故 P (甲 ) =4⋯⋯⋯⋯⋯⋯⋯⋯ 8 分2奇 奇偶923. 解 :( 1 ) A(-3,2) 、 B(-4,-3)、 C(-1,-1)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 2) 略⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分( 3) A ′ (-3, -2)、 B ′ (-4, 3) 、 C ′(-1, 1)⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依 意 , 只要在直 l 上找一点 P ,使点 P 到 A 、B 两点的距离和最小 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分作点 A 关于直l 的 称点A ′, A ′B , A ′ B 与直 l 的交点 P 到 A 、B 两点的距离和最小,且PA+PB=PA′+PB= A′B.⋯⋯⋯⋯⋯⋯4分点 A′向 BD作垂,交BD的延于点E在直角三角形A′ BE 中, A′E=CD=30,BE =BD+DE=40 ⋯⋯⋯⋯⋯⋯ 6 分根据勾股定理可得:A′ B=50( 千米 )即水管度的最小50 千米 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分所以水管所需用的最小:50×2=100(万元)⋯⋯⋯⋯⋯10 分25.解:( 1)租用甲种汽 x ,租用乙种汽( 8— x),依意得4x+2(8-x)≥ 303x+8(8-x)≥ 20⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分解得 7≤ x≤44⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分5因 x 正整数,所以x 只能取 7, 8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分即共有两种租方案:①租甲种汽 7 ,乙种汽1②全部租用甲种汽8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(2)第一种方案租用 7× 8000+1× 6000=62000第二种方案租用8× 8000=64000⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分所以第一种方案最省.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯。
2019-2020学年度第一学期八年级数学期末质量检测试题

2019-2020学年度第一学期八年级数学期末质量检测试卷一、单选题(共12题;共24分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A. 正五边形B. 平行四边形C. 矩形D. 等边三角形2.如图,已知⊙O的圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P点代表的实数为x,则x的取值范围是( )A. -1≤x≤1B. -≤x≤C. 0≤x≤D. x>3.已知a>b,则下列不等式成立的是()A. a-c >b-cB. a+c<b+cC. ac>bcD. >4.若线段a,b,c组成Rt△,则它们的比为()A. 2∶3∶4B. 3∶4∶6C. 5∶12∶13D. 4∶6∶75.不等式组的最小整数解为()A. -1B. -2C. 1D. 36.如图,将两根钢条AA′ ,BB′的中点O连在一起,使AA′ ,BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB;那么判定△OAB≌△OA′B′的理由是()A. 边角边B. 角边角C. 边边边D. 角角边7.如图,点A、B、C、在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A. 1B. 3C. 3(m﹣1)D. 1.5m﹣38.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )A. B. 3 C. D. 59.如图,正方形ABCD中,AB=8 ,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以的速度沿BC,CD运动,到点C,D时停止运动.设运动时间为,△OEF的面积为S( ),则S( )与的函数关系可用图象表示为()A. B. C. D.10.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x ﹣100)<1000,则下列何者可能是小美告诉小明的内容?()A. 买两件等值的商品可减100元,再打3折,最后不到1000元耶!B. 买两件等值的商品可减100元,再打7折,最后不到1000元耶!C. 买两件等值的商品可打3折,再减100元,最后不到1000元耶!D. 买两件等值的商品可打7折,再减100元,最后不到1000元耶!11.如图,在▱ABCD中,点E在边AD上,射线CE,BA交于点F,下列等式成立的是()A. B. C. D.12.作一个角等于已知角用到下面选项的哪个基本事实()A. SSSB. SASC. ASAD. AAS二、填空题(共6题;共6分)13.将“等角的余角相等”改写成“如果……,那么……”的形式________14.定理“直角三角形中,30°角所对直角边是斜边的一半”的其中一个逆定理是:三角形中,如果________,那么这个三角形是直角三角形.15.如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y= (x<0)的图象上,则k的值为________16.等腰三角形的周长为20cm,一边长为6cm,则底边长为________ cm.17.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为________(17题)(18题)18.甲、乙两人分别从两地同时出发登山,甲、乙两人距山脚的竖直高度y(米)与登山时间x(分)之间的图象如图所示,若甲的速度一直保持不变,乙出发2分钟后加速登山,且速度是甲速度的4倍,那么他们出发________分钟时,乙追上了甲.三、解答题(共8题;共80分)19.解不等式组3≤2x﹣1≤5.20.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.Ⅰ.如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;Ⅱ.如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,∠EAB=90°.求证:AB=AE.22.如图:在平面直角坐标系中,网格中每一个小正方形的边长为一个单位长度,已知△ABC:①将△ABC向x轴正方向平移5个单位长度得△A1B1C1.. 。
河北省保定市2019届数学八上期末试卷

河北省保定市2019届数学八上期末试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.已知关于x 的方程22x mx +-=3的解是正数,那么m 的取值范围为( ) A .m >-6且m≠-2B .m <6C .m >-6且m≠-4D .m <6且m≠-22.若关于x 的分式方程6155x kx x-+=--有增根,则k 的值是( ) A .1-B .2-C .2D .13.当x 分别取-2019、-2018、-2017、…、-2、-1、0、1、12、13、…、12017、12018、12019时,分别计算分式2211x x -+的值,再将所得结果相加,其和等于( )A .-1B .1C .0D .2019 4.在下列各式中,运算结果为x 2的是( )A .x 4-x 2B .x 6÷x 3C .x 4⋅x -2D .(x -1)25.下列因式分解正确的是( ) A .a 2+8ab+16b 2=(a+4b )2 B .a 4﹣16=(a 2+4)(a 2﹣4) C .4a 2+2ab+b 2=(2a+b )2D .a 2+2ab ﹣b 2=(a ﹣b )26.38181-不能被( )整除. A .80B .81C .82D .837.等腰三角形是轴对称图形,它的对称轴是( ) A .底边上的垂直平分线 B .底边上的高 C .腰上的高所在的直线 D .过顶点的直线8.已知的坐标为,直线轴,且,则点的坐标为( )A. B.或C.D.或9.如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A.15B.12.5C.14.5D.1710.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,D 、E 分别为AB 、AC 边上的中点,则DE 的长为( )A.2B.3D.411.如图,已知∠CAB=∠DBA ,添加下列某条件,未必..能判定△ABC ≌BAD 的是( )A .AC=BDB .AD=BC C .∠l=∠2D .∠C=∠D12.如图1,已知AB=AC ,D 为∠BAC 的角平分线上面一点,连接BD ,CD ;如图2,已知AB=AC ,D 、E 为∠BAC 的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB=AC ,D 、E 、F 为∠BAC 的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第12个图形中有全等三角形的对数是( )A .80对B .78对C .76对D .以上都不对 13.△ABC 的三条边分别为5、x 、7,则x 的取值范围为( ) A .5<x <7B .2<x <12C .5≤x≤7D .2≤x≤1214.如图,直线l 1//l 2,∠1=55°,∠2=65°,则∠3为( )A .60°B .65°C .55°D .50°15.下列选项中,有稳定件的图形是( )A .B .C .D .二、填空题16.某校为了准备“迎新活动”,用700元购买了甲、乙两种小礼品260个,其中购买甲种礼品比乙种礼品少用了100元.(1)购买乙种礼品花了______元;(2)如果甲种礼品的单价比乙种礼品的单价高20%,求乙种礼品的单价.(列分式方程解应用题) 17.因式分解24100x -=________________. 【答案】()()455x x -+.18.如图,在3×3的正方形网格中,∠1+∠2+∠3+∠4+∠5=_____.19.一个多边形的内角和是它的外角和的4倍,这个多边形是______边形.20.如图,在ABC △中,AB AC =,108BAC ︒∠=,AB 的垂直平分线DE 分别交AB 、BC 于点D ,E ,则BAE ∠=________.三、解答题21.先化简22x 8x 16121x 2x 2x x 2x 4-+⎛⎫÷--- ⎪+++⎝⎭,然后从-2≤x≤2范围内选取一个合适的整数作为x 的值代入求值. 22.因式分解: (1)(x+3)2-16; (2)x 4-18x 2+81.23.在如图所示的方格纸中,(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1.(2)说明△A 2B 2C 2可以由△A 1B 1C 1经过怎样的平移变换得到?(3)以MN 所在直线为x 轴,AA 1的中点为坐标原点,建立直角坐标系xOy ,试在x 轴上找一点P ,使得PA 1+PB 2最小,直接写出点P 的坐标.24.如图,已知点D ,E 分别是△ABC 的边BA 和BC 延长线上的点,作∠DAC 的平分线AF ,若AF ∥BC .(1)求证:△ABC 是等腰三角形;(2)作∠ACE 的平分线交AF 于点G ,若∠B =40°,求∠AGC 的度数. 25.在中,,点,分别是边,上的点,点是一动点.记为,为,为.(1)若点在线段上,且,如图1,则_____________;(2)若点在边上运动,如图2所示,请猜想,,之间的关系,并说明理由;(3)若点运动到边的延长线上,如图3所示,则,,之间又有何关系?请直接写出结论,不用说明理由.【参考答案】一、选择题二、填空题16.(1)400;(2)2.5元/个.17.无18.225°19.十20.36°三、解答题21.4(4)x x-+;当x=1时,原式=-45.22.(1)(x+7)(x-1)(2)(x-3)2(x+3)223.(1)见解析;(2)△A2B2C2可以由△A1B1C1向右平移6个单位,向下平移2个单位得到;(3)作图见解析,点P的坐标为(1,0).【解析】【分析】(1)依据轴对称的性质,即可得到△ABC关于MN对称的图形△A1B1C1;(2)依据△A2B2C2与△A1B1C1的位置,即可得到平移的方向和距离;(3)连接AB2,交x轴于P,连接A1P,依据两点之间,线段最短,即可得到PA1+PB2最小,进而得到点P 的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)△A2B2C2可以由△A1B1C1向右平移6个单位,向下平移2个单位得到;(3)如图,连接AB2,交x轴于P,连接A1P,则PA1+PB2最小,此时,点P的坐标为(1,0).【点睛】本题考查了轴对称﹣最短距离问题以及利用轴对称变换作图,熟练运用两点之间线段最短的性质定理和轴对称的性质作出图形是解题的关键.24.(1)证明见解析;(2)70°【解析】【分析】(1)根据AF平分∠DAC得出∠DAF=∠CAF,再根据AF∥BC求得∠DAF=∠B,∠CAF=∠ACB则可证明△ABC是等腰三角形;(2)根据AB=AC,∠B=40°,可求出∠ACE的角度,再根据CG平分∠ACE求出,则利用AF∥BC求出∠AGC的度数.【详解】(1)证明:∵AF平分∠DAC,∴∠DAF=∠CAF,∵AF∥BC,∴∠DAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴△ABC是等腰三角形;(2)解:∵AB=AC,∠B=40°,∴∠ACB=∠B=40°,∴∠BAC=100°,∴∠ACE=∠BAC+∠B=140°,∵CG平分∠ACE,∴ACE=70°,∵AF∥BC,∴∠AGC=180°﹣∠BCG=70°.【点睛】本题主要考查了角平分线及平行线的性质,熟练掌握角平分线、平行线的性质及等腰三角形的判定定理是解题的关键.25.(1);(2);(3)。
河北省保定市唐县2020-2021学年八年级上学期期末数学试题(1)

二、填空题
17.若A(2,b),B(a,﹣3)两点关于y轴对称,则a=_____,b=_____.
18.若a+b=﹣3,ab=2,则 _____.
19.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:
A.SSSB.SASC.ASAD.HL
9.下列运算正确的是( )
A.3a2•2a3=6a5B.a3+4a=
C.(a2)3=a5D.﹣2(a+b)=﹣2a+2b
10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为
A. B. C. D.
3.若等腰三角形的周长为26cm,底边为11cm,则腰长为( )
A.11cmB.11cm或7.5cmC.7.5cmD.以上都不对
4.已知x2+kxy+16y2是一个完全平方式,则k的值是( )
A.8B.±8C.16D.±16
5.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为()
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点 为 的中点时,如图1,确定线段 与 的大小关系,请你直接写出结论: (填“>”,“<”或“=”).
(2)特例启发,解答题目
解:题目中, 与 的大小关系是: (填“>”,“<”或“=”).理由如下:如图2,过点 作 ,交 于点 .
(请你完成以下解答过程)
河北省2019-2020学年八年级上学期数学期末考试试卷D卷

河北省2019-2020学年八年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·乌鲁木齐模拟) 下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .2. (2分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A . 增加B . 不变C . 减少D . 不能确定3. (2分) 1纳米=0.000 000 001米,则2.5纳米应表示为()米.A . 2.5×10﹣8B . 2.5×10﹣9C . 2.5×10﹣10D . 2.5×1094. (2分)下列计算中,正确的是()A . (a3b)2=a6b2B . a•a4=a4C . a6÷a2=a3D . 3a+2b=5a5. (2分)(2015·湖州) 如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A . 10B . 7C . 5D . 46. (2分)如果分式中的x和y都扩大3倍,那么分式的值()A . 扩大3倍B . 不变C . 缩小3倍D . 缩小6倍7. (2分)把a3-4ab2分解因式,结果正确的是()A . a(a+4b)(a-4b)B . a(a2-4b2)C . a(a+2b)(a-2b)D . a(a-2b)28. (2分)已知ΔABC中,∠A∶∠B∶∠C=3∶7∶8,则ΔABC的形状是()A . 钝角三角形B . 直角三角形C . 锐角三角形D . 都有可能9. (2分)如图,将等腰直角三角形按图示方式翻折,若DE=2,下列说法正确的个数有()①△BC′D是等腰三角形;②△CED的周长等于BC的长;③DC′平分∠BDE;④BE长为。
2019-2020冀教版八年级数学上册期末考试测试卷附答案

(2) 求出铺设水管最少的总费用是多少?
参考答案
一、选择题:(每小题2分,共24分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
D
C
B
D
B
C
C
A
D
C
二、填空题:(每小题3分,共18分)
13
14
15
16
17
18
(1,-2)
7
( +1)
三、解答题:(本大题共58分)
(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.
得分
评卷人
26.(本小题满分10分)【根据八年级数学学习点津上册第64页能力测评第1题改编】
如图13,两个村庄在河的同侧,两村到河的的距离分别是AB=1千米,BD=3千米,CD=3千米。现要在河边CD建一水厂,向A,B两村输送自来水,铺设水管的工程费为每千米2万元。请你CD在上选择水厂的位置,使铺设水管的总费用最省。
A.30°B.30°或150°C.60°或120°D.150°
8.已知直角三角形的两边长为3、4则第三边长为()【根据八年级数学学习点津上册第63页选择题第4题改编】
A.5B. C.5或 D.
9.如图1,已知AB=AC,AB的垂直平分线MN交AC于点D,并且△BCD的周长为5,BC=2。则AB=()【根据八年级数学上册第74页第7题改编】
(x,y)
(2x,y)
A()
A′()
B(0,0)
B′()
2019-2020学年河北省唐山市八年级上册期末数学试卷

2019-2020学年河北省唐山市八年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共20.0分)1.8的立方根等于()A. −2B. 2C. −4D. 42.下列图案是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个3.ab22cd ÷−3ax4cd等于()A. 2b23x B. 32b2x C. −2b23xD. −3a2b2x8c2d24.如图,已知∠B=∠DEF,AB=DE,添加下列条件,不一定能使△ABC≌△DEF的是()A. BC=EFB. ∠A=∠DC. ∠ACB=∠DFED. AC=DF5.把分式方程2x −1=1x+1化为整式方程,正确的是()A. 2(x+1)−1=xB. 2(x+1)−x(x+1)=1C. 2(x+1)−x(x+1)=xD. 2x−x(x+1)=x6.下列运算正确的是()A. 3+√2=3√2B. (2x2)3=2x5C. 2a⋅5b=10abD. √6÷√3=27.如图,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是()A. a=0B. a=0.5C. a=1D. a=28.直径为1个单位长度的圆从原点沿数轴以每分钟1圈的速度向右滚动(不滑动),1分钟后,圆上的一点由原点到达点O1,点O1的横坐标为()A. 0.25πB. 0.5πC. πD. 2π9.到直角三角形的三个顶点距离相等的点()A. 是该三角形三个内角平分线的交点B. 是斜边上的中点C. 在直角三角形的外部D. 在直角三角形的内部10.如图,在△ABC中,AB=AC,D为BC边上的中点,若∠BAD=35°,则∠C的度数为()A. 35°B. 55°C. 60°D. 70°第II卷(非选择题)二、填空题(本大题共10小题,共30.0分)11.1−√3的相反数是________;12.若分式√3−x有意义,则x的取值范围是.3−|x|13.如图,要测量河岸相对的两点A、B之间的距离,先从B处出发与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,使A、C与E在同一直线上,那么测得AB=________米.14.若x=3,则√2x−5的值是______.15. 如图所示,在△ABE 中,∠A =105°,AE 的垂直平分线MN 交BE 于点C ,且AB +BC =BE ,则∠B 的度数是______.16. 若最简二次根式√x +1与√10可以合并,则x 的值为______. 17. 如图,在△ABC 中,∠ACB =90°,AC =4,BC =3,点M在AB 上,且∠ACM =∠BAC ,则CM 的长为______.18. 已知√18−n 是正整数,则n 的最大值为______ .19. △ABC 中,AB =AC ,一腰上的中线BD 把三角形的周长分为9cm 和12cm 两部分,则此三角形的腰长是______.20. 如图,已知点M 是∠ABC 内一点,分别作出点M 关于直线AB ,BC 的对称点M 1,M 2,连接M 1M 2分别交AB 于点D ,交BC 于点E ,若M 1M 2=3cm ,则△MDE 的周长为_________cm .三、解答题(本大题共6小题,共48.0分) 21. 计算题:(1)√8+2√3−(√27−√2) (2)√23÷√223×√25(3)(3√2+2√3)(3√2−2√3)(4)3√48−4√27÷2√3.22.如图,在△ABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF、EG、DG.求证:(1)EG=DG;(2)GF⊥DE.23.为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.24.如图所示,已知:△ABC和△DCE都是等边三角形,求证:AD=BE.25.先阅读,再解答,由(√5+√3)⋅(√5−√3)=(√5)2−(√3)2=2可以看出,两个含有二次根式的代数式相乘,积可能不含有二次根式.在进行二次根式计算时,可以利用这种运算规律化去分母中的根号,例如:√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,根据以上运算请完成下列问题:(1)√2019−√2018________√2018−√2017(填>或<);(2)利用你发现的规律计算下列式子的值:(√2+1√3+√2√4+√3⋯+√2019+√2018)(√2019+1).26.在△ABC中,∠C=90°,点D、E分别是边BC、AC上的点,点P是一动点,连接PD、PE,∠PDB=∠1,∠PEA=∠2,∠DPE=∠α.(1)如图1所示,若点P在线段AB上,且∠α=60°,则∠1+∠2=______°(答案直接填在题中横线上);(2)如图2所示,若点P在边AB上运动,则∠α、∠1、∠2之间的关系为有何数量关系;猜想结论并说明理由;(3)如图3所示,若点P运动到边AB的延长线上,则∠α、∠1、∠2之间有何数量关系?请先补全图形,再猜想并直接写出结论(不需说明理由.)答案和解析1.【答案】B【解析】解:∵23=8,∴8的立方根是2.故选:B.根据立方根的定义求解即可.本题考查了对立方根的定义,熟练掌握立方根的定义是解题的关键.2.【答案】B【解析】【分析】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个是轴对称图形,也是中心对称图形;第二个是轴对称图形,不是中心对称图形;第三个不是轴对称图形,也不是中心对称图形;第四个是轴对称图形,也是中心对称图形.故选:B.3.【答案】C【解析】解:原式=−ab22cd ⋅4cd 3ax=−2ab23ax=−2b23x.故选C.先判断分式的商的符号,再将除法转化为乘法解答.本题考查了分式的乘除法,将除法转化为乘法是解题的关键.4.【答案】D【解析】【分析】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠DFE,利用AAS可得△ABC≌△DEF;∠B=∠DEF,AB=DE,AC=DF,不能判定△ABC≌△DEF.故选D.5.【答案】C【解析】【分析】本题主要考查的是分式方程的解法,根据方程两边同时乘以最简公分母即可.【解答】解:2x −1=1x+1,方程两边乘以x(x+1)得:2(x+1)−x(x+1)=x.故选C.6.【答案】C【解析】解:A、3与√2不能合并,所以A选项错误;B、原式=8x6,所以B选项错误;C、原式=10ab,所以C选项正确;D、原式=√6÷3=√2,所以D选项错误.故选C.根据二次根式的加减法对A进行判断;根据积的乘方对B进行判断;根据单项式的乘法对C进行判断;根据二次根式的除法法则对D进行判断.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.【答案】C【解析】[分析]根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边的距离相等可得此时PC=PQ,从而得解.本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.[详解]解:当PQ⊥OB时,PQ的值最小,∵OP平分∠AOB,PC⊥OA,∴PC=PQ,∵PC=1,∴PQ的最小值为1.故选C.8.【答案】C【解析】【分析】本题主要考查了实数与数轴之间的对应关系,解题需注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【解答】解:因为圆的周长为π⋅d=1×π=π,所以圆从原点沿数轴向右滚动一周OO′=π,所以点O1的横坐标为π,故选C.9.【答案】B【解析】【分析】本题主要考查的是直角三角形斜边上的中线的有关知识,直接利用直角三角形斜边上的中线等于斜边的一半可以得到,到直角三角形的三个顶点距离相等的点是斜边上的中点.【解答】解:∵直角三角形斜边上的中线等于斜边的一半,∴到直角三角形的三个顶点距离相等的点是斜边上的中点.故选B.10.【答案】B【解析】【分析】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【解答】解:AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,(180°−70°)=55°.∴∠C=12故选B.11.【答案】√3−1【解析】【分析】本题主要考查了相反数的定义,直接根据相反数的定义可得答案.【解答】解:1−√3的相反数是√3−1,故答案为√3−1.12.【答案】x<3且x≠−3【解析】【分析】本题考查了二次根式有意义的条件以及分式有意义的条件.根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:{3−x ≥03−|x |≠0, 解得:x <3且x ≠−3,故答案为x <3且x ≠−3.13.【答案】17【解析】【分析】此题考查了全等三角形的应用,掌握全等三角形的判定与性质是关键,根据题意得到∠B =∠D =90°,BC =DC =50米,∠ACB =∠ECD ,得到△ACB≌△ECD ,即可得到AB =ED =17米.【解答】解:根据题意得,∠B =∠D =90°,BC =DC =50米,∵∠ACB =∠ECD ,∴△ACB≌△ECD ,∴AB =ED =17米,故答案为17.14.【答案】1【解析】【分析】本题主要考查的是算术平方根的定义,求得2x −5的值是解题的关键.将x =3代入,然后利用算术平方根的性质解答即可.【解答】解:当x =3时,√2x−5=√6−5=√1=1.故答案为1.15.【答案】50°【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理.首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得180°−4∠E+∠E=105°,继而求得答案.【解答】解:连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°−∠B−∠ACB=180°−4∠E,∵∠BAE=∠BAC+∠CAE=180°−4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故答案为50°.16.【答案】9【解析】【分析】本题考查的是同类二次根式,最简二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,这几个二次根式叫做同类二次根式.根据同类二次根式的概念列方程,解方程即可.【解答】解:∵最简二次根式√x+1与√10可以合并,∴二次根式√x+1与√10是同类二次根式,∴x+1=10,解得,x=9,故答案为9.17.【答案】52【解析】解:∵∠ACB=90°,AC=4,BC=3,∴AB=√AC2+BC2=5,∵∠ACM=∠BAC,∴MC=MA,∵∠A+∠B=90°,∠MCA+∠MCB=90°,∠ACM=∠BAC,∴∠MCB=∠B,∴MB=MC,∴MC=12AB=52,故答案为:52.根据勾股定理求出AB,根据直角三角形的性质得到MC=MB=MA,计算即可.本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.【答案】17【解析】解:∵18−n≥0,∴n≤18,∵√18−n是正整数,∴n的最大值是17,故答案为:17.根据二次根式的定义,即可解答.本题考查了二次根式的定义,解决本题的关键是熟记二次根式的定义.19.【答案】8cm或6cm【解析】解:根据题意画出图形,如图,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,若AB+AD的长为12,则2x+x=12,解得x=4cm,则x+y=9,即4+y=9,解得y=5cm;若AB+AD的长为9,则2x+x=9,解得x=3cm,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8cm或6cm.故答案为:8cm或6cm.等腰三角形一腰上的中线将它的周长分为9厘米和12厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm,哪个是12cm,因此,有两种情况,需要分类讨论.本题考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错;利用三角形三边关系判断能否组成三角形是正确解答本题的关键.20.【答案】3【解析】【分析】本题考查了轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.根据对称轴的意义,可以求出EM=EM2,DM1=DM,M1M2=3cm,可以求出△MDE 的周长.【解答】解:∵点M关于直线AB,BC的对称点M1,M2,∴EM=EM2,DM1=DM,∴△MDE的周长=DE+EM+DM=M1M2=3(cm),∴△MDE的周长=3cm.故答案为3.21.【答案】解:(1)原式=2√2+2√3−3√3+√2=3√2−√3;(2)原式=√23×38×25=√1010;(3)原式=(3√2)2−(2√3)2=18−12=6;(4)原式=12√3−12√3÷2√3=12√3−6.【解析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)利用平方差公式计算;(4)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】证明:(1)∵BD、CE是高,点G是BC的中点,∴GE=12BC,GD=12BC,∴GE=GD;(2)由(1)可知GE=GD,∴△GED是等腰三角形,∵F是DE的中点,∴GF⊥DE.【解析】(1)利用直角三角形斜边上的中线等于斜边的一半进行证明;(2)由(1)知DG=EG=12BC,再根据等腰三角形三线合一的证明即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作出辅助线构造出等腰三角形是解题的关键.23.【答案】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得:4000x −40001.25x=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【解析】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.24.【答案】证明:∵△ABC和△DCE都是等边三角形,∴∠ACB=∠ECD=60°,CA=CB,CD=CE,∴∠ACD=∠ECB,在△ACD和△BCE中,{CA=CB∠ACD=∠BCE CD=CE,∴△ACD≌△BCE,∴AD=BE.【解析】本题考查的是全等三角形的判定和性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.根据等边三角形的性质得到∠ACB=∠ECD=60°,CA=CB,CD=CE,证明△ACD≌△BCE,根据全等三角形的性质解答.25.【答案】解:(1)<;(2)原式=(√2−1+√3−√2+2−√3+⋯+√2019−√2018)(√2019+1)=(√2019−1)(√2019+1)=2019−1=2018.【解析】【分析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.(1)通过比较√2019−√2018的倒数和√2018−√2017的倒数进行判断;(2)先分母有理化,然后合并后利用平方差公式计算.【解答】解:(1)∵2019−2018=√2019+√2018,2018−2017=√2018+√2017,∵√2019+√2018>√2018+√2017,∴2019−2018>2018−2017,∴√2019−√2018<√2018−√2017.故答案为<;(2)见答案.26.【答案】解:(1)150;(2)∠DPE的邻补角为180°−∠α,∠C的邻补角为90°,∵∠1与∠2是四边形DPEC的外角,∴由四边形外角和可知:∠1+∠2+90°+(180°−∠α)=360°,∴∠1+∠2=90°+∠α;(3)如图3所示,∠2=90°+∠α+∠1.【解析】【分析】本题考查四边形的外角和,涉及三角形的外角性质,综合程度较高,需要学生灵活运用所学知识.·(1)∠DPE的邻补角为120°,∠C的邻补角为90°,由四边形的外角和可知:∠1+∠2= 360°−120°−90°=150°;(2)∠DPE的邻补角为180°−∠α,∠C的邻补角为90°,由四边形的外角和可知:∠1+∠2+ 90°+(180°−∠α)=360°,化简即可得出答案;(3)根据题意画出图形可知,∠CFE是△DPF的外角,根据外角性质可知,∠CFE=∠DPE+∠PDB;另一方面,∠PEA是△CFE的外角,根据外角性质可知,∠PEA=∠C+∠CFE,根据以上两个等式即可得出∠α、∠1、∠2之间的数量关系.解:(1)∠DPE的邻补角为120°,∠C的邻补角为90°,由四边形的外角和可知:∠1+∠2= 360°−120°−90°=150°,故答案为150;(2)见答案;(3)理由如下:设PE交BC于点F,∴∠CFE=∠DPE+∠PDB=∠α+∠1,∵∠PEA=∠C+∠CFE,∴∠2=90°+∠α+∠1,故答案为∠2=90°+∠α+∠1.。
2019—2020年新冀教版八年级数学上册(第一学期)期末综合水平测试(C)及答案(试题).doc

八年级数学上册期末综合水平测试(C )河北 郑志宏一、认认真真选,沉着应战!(每小题3分;共30分) 1. 不等式⎩⎨⎧>+≤0212x x 的解集在数轴上表示为( )2.A 、B 两地相距m 千米,甲、乙两人同时从A 地出发,到B 地去,甲每小时走a 千米,乙甲每小时走b 千米()a b >.那么甲比乙早到( )A .(m m b a -)小时B .(m m a b -)小时C .(ma b+)小时 D .(ma b-)小时 3.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个4.小明设计了一个关于实数运算的程序:输出的数比该数的平方小1,A .B .C .D .小刚按此程序输入后,输出的结果应为()A.10 B.11 C.12 D.135.以下各组数据为三角形的三边长,能构成直角三角形的是()A. 5cm,6cm,7cmB. 2cm,3cm,4cmC. 2cm,2cm,1cmD.5 cm ,12 cm ,13 cm6.如图3,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF等于().(A)55 °(B)60°(C)70 °(D)90°7.线段CD是由线段AB平移得到的。
点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(–9,–4)8.一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)9.从分别标有2,3,4,5,6,7的卡片中任意抽取一张,考查下列事件:①取到2的倍数;②取到质数;③取到奇数;④取到3的倍数,其中发生的可能性最大的是()A.①B.②C.③D.④10.一布袋中有红球8个,白球12个和黄球5个,它们除颜色外没有其他区别,闭上眼睛随机地从袋中取出l球不是..黄球的概率为_______.A.45B.15C.1225D.825二、仔仔细细填,记录自信!(每小题3分,共24分)1.下列各数:12,0.32,π 3.14有___________.2.某军事行动中,对军队部署的方位,采用钟代码的方式来表示.例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1∶00,那么这个地点就用代码010045来表示.按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为 .3.在平面直角坐标系中,以点A (-2,0),B (1,0),C (2,2)为顶点的△ABC 的面积是 . 4. 观察下列一组等式,55552323+=⨯,77773434+=⨯,9927+=9927⨯……根据等式的特点用在字母表示其规律为 . 5. 如图,已知图中每个小方格的边长为1, 则点C 到AB 所在直线的距离等于 .6.计算:(53)+=7. 计算:x -1x -2 +12-x=_____.8.某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000万张(每张彩票2元).在这些彩票中,设置了如下的奖项.如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是_____________.三、平心静气做,展示智慧!(本大题共42分)1. (本小题6分)在如图所示的直角坐标系中画出△ABC关于y轴对称的△A'B'C' (不写画法),并将点A'的坐标填写在下面的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省保定市唐县2019-2020学年八年级上学期期末数学试题(word
无答案)
一、单选题
(★) 1 . 点P(﹣1,2)关于y轴对称的点的坐标是()
A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)(★) 2 . 如图,已知,则∠α等于()
A.72°B.60°C.58°D.50°
(★) 3 . 用一条长为16 cm的细绳围成一个等腰三角形,若其中有一边的长为4 cm,则该等腰三角形的腰长为()
A.4cm B.6cm C.4cm或6cm D.4cm或8cm (★) 4 . 在以下四个图案中,是轴对称图形的是()
A.B.C.D.
(★) 5 . 一个多边形的每一个外角都是45°,则这个多边形的边数为()
A.6B.7C.8D.9
(★) 6 . 若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()
A.﹣2B.2C.0D.1
(★) 7 . 若3 x=4,3 y=6,则3 x+y的值是()
A.24B.10C.3D.2
(★) 8 . 如图,已知,求作射线,使平分.
①作射线.②在和上分别截取、,使.
③分别以、为圆心,以大于二分之一长为半径,在内作弧,两弧交于点
.作法合理的顺序是()
A.①②③B.②①③C.③②①D.②③①
(★) 9 . 下列计算中,正确的是( )
A.x3•x2=x4B.x(x-2)=-2x+x2
C.(x+y)(x-y)=x2+y2D.3x3y2÷xy2=3x4
(★★) 10 . 下列各式中,从左到右的变形是因式分解的是()
A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x
(★★) 11 . 如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则
∠CBD的度数为( )
A.30°B.45°C.50°D.75°
(★) 12 . 某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在汛期前完成,采用新技术,工作效率比原来提升了25%,结果比原计划提前4天完成任务.设原计划每天修建管道米,依题意列方程得()
A.B.
C.D.
(★) 13 . 若分式方程有增根,则a的值为()
A.5B.4C.3D.2
(★) 14 . 如图,设和是镜面平行相对且间距为30cm的两面镜子,把一个小球A放在
和之间,小球在镜中的像为,在镜中的像为,则等于()
A.10cm B.20cm C.40cm D.60cm
(★★) 15 . 如图,已知△ ABC的面积为12, BP平分∠ ABC,且AP⊥ BP于点 P,则△ BPC 的面积是()
A.10B.8C.6D.4
(★) 16 . 如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2020个白色纸片,则n的值为( )
A.671B.672C.673D.674
二、填空题
(★★) 17 . 数0.000015用科学记数法表示为 _____ .
三、解答题
(★) 18 . 如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再回到P处.请画出旅游船的最短路径(实际行走路径画实线,其它辅助线画虚线)
(★★) 19 . 如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+C
A.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:
如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.
(1) 判定△ABD 与△AED 全等的依据是______________ (SSS,SAS,ASA,AAS 从其中选择一个);
(2)∠ACB 与∠ABC的数量关系为: ___________________
(★) 20 . (1)化简:
(2)符号“ ”称为二阶行列式,规定它的运算法则为: =ad﹣bc.请你根据上述规定,求出下列等式中x的值:=1
(★) 21 . 分解因式
(1) x 2-4
(2)
(★★) 22 . 在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标; (2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.
(★★) 23 . 如图,在五边形 ABCDE 中,∠ BCD=∠ EDC=90°, BC= ED , AC= AD . (1)求证:△ ABC≌△ AED;
(2)当∠ B=140°时,求∠ BAE 的度数.
(★) 24 . 把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.
(1)选择题:图1是一个长2a 、宽2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形.然后,按图2那样拼成一个(中间空的)正方形,则中间空的部分面积是( )
A .2ab
B .(a+b )2
C .(a ﹣b )2
D .a 2﹣b 2
(2)如图3,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c 的正方形,试用不同的方法计算这个图形的面积.据此,你能发现什么结论,请直接写出来: (3)如图4,是将两个边长分别为a 和b 的正方形拼在一起,B 、C 、G 三点在同一直线上,连接BD 和B
E .若两个正方形的边长满足
a+b=10,ab=20,求阴影部分的面积.
(★★) 25 . 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;
(3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成.
试问:(1)规定日期是多少天?
(2)在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
(★★) 26 . 如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.
(1)求证:△ADB≌△ADC ,并求出∠ADB的度数;
(2)小明说△ABE是等腰三角形,小华说△ABE是等边三角形.请问说法更准确,并说明理由.
(3)连接DE,若DE⊥BD,DE=8,求AD的长.。