有限差分法
有限差分法

有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。
把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
龙格库塔龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
有限差分法的原理与计算步骤

有限差分法的原理与计算步骤有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的数值解。
其基本原理是将连续的偏微分方程转化为差分方程,通过逼近导数,使用离散的点代替连续的点,从而将问题转化为代数问题。
下面将详细介绍有限差分法的原理和计算步骤:一、基本原理:有限差分法基于Taylor级数展开,通过利用函数在其中一点附近的导数信息来逼近函数在该点处的值。
该方法将连续的偏微分方程转化为差分方程,使用离散的点代替连续的点,从而将问题转化为代数问题。
在有限差分法中,常用的差分逼近方式有前向差分、后向差分和中心差分。
二、计算步骤:1.网格划分:将求解区域划分为有限个离散点,并定义网格上的节点和网格尺寸。
通常使用等距离网格,即每个网格点之间的间距相等。
2.离散化:将偏微分方程中的各个导数项进行逼近,利用差分近似来替代和求解。
一般采用中心差分逼近方式,即通过函数值在两侧点的差来逼近导数。
3.代数方程系统:利用离散化的差分方程,将偏微分方程转化为代数方程系统。
根据问题的边界条件和初值条件,构建代数方程系统的系数矩阵和常数向量。
4. 求解代数方程:利用求解线性方程组的方法求解代数方程系统,常用的方法有直接法(如高斯消元法、LU分解法)和迭代法(如Jacobi迭代法、Gauss-Seidel迭代法)。
求解得到各个离散点的解。
5.后处理:根据求解结果进行后处理,包括结果的插值和可视化。
将离散点的解通过插值方法进行平滑处理,并进行可视化展示,以得到连续的函数解。
三、优缺点:1.直观:有限差分法基于网格划分,易于理解和实现。
2.精度可控:可通过调整网格大小和差分逼近方式来控制计算的精度。
3.广泛适用性:可用于求解各种偏微分方程,适用于不同的边界条件和初值条件。
然而,有限差分法也存在一些缺点:1.精度依赖网格:计算结果的精度受到网格划分的影响,因此需要谨慎选择网格大小。
2.限制条件:有限差分法适用于边界对应点处导数有定义的问题,不适用于奇异点和非线性问题。
有限差分法

两端都要给定边界条件(双程坐标) 。
9
(C) 双曲型方程:适当的边界条件和初始条件,与波动传 播的性质有关 如:一维对流方程
∂u ∂u +c =0 ∂t ∂x u (x ,0) = f (x )
解为 u (x , t ) = f (x − ct ) ,代表一个向右(c > 0 时)或向左 ( c < 0 时)传播的波形。必须在波形传来的一侧提供边界条 件(单程坐标) 。
10
不适定的例子:
utt + u xx = 0 u (x ,0) = u t (x ,0) = 0
拉普拉斯方程+非闭域边界条件,解为 u (x , t ) ≡ 0 。 然而,若定解条件为 u (x ,0) = 0, ut (x ,0) =
u (x , t ) = 1 sin nx ,解为 n
1 sinh nt sin nx n
(
)
n n um+1 = um −
cτ n n um +1 − um −1 2h
(
)
设计算到第 n 步时的累积误差
n ~n εn = 计算值um − 差分法精确解um m
反之
n ~n um = εn + um m
15
则第 n+1 步的计算值
~n ~ n cτ u n − u n ~ ~ um+1 = um − m +1 m −1 2h cτ n cτ n n n = um − um +1 − um −1 + εn − εm +1 − εn −1 m m 2h 2h n = um+1 + εn +1 m
uin +1 − uin −1 uin+1 − uin +1 − uin −1 − uin−1 −α =0 Lh u = τ h2 ατ 2 ⎛ ∂ 2u ⎞ τ 2 ⎛ ∂ 3u ⎞ Ti = Lh u − Lu (x i , t n ) = 2 ⎜ 2 ⎟ + ⎜ 3 ⎟ − L 截断误差 6 ⎜ ∂t ⎟i h ⎜ ∂t ⎟i ⎝ ⎠ ⎝ ⎠
有限差分法

有限差分法有限差分法是数学领域的一项最新成果,它在某些特定情况下能得到非常好的结果。
所谓有限差分方程就是利用积分和求差公式将差分方程化成为多个等价的偏微分方程组的组合形式,然后再应用最优化方法求解这种方程组,从而得出未知数的近似值。
当已知方程组的每个参数及其变量代入数据计算后的误差时,只要对其进行必要的调整或者修改后,就可获得满意的精度与效率的估计值。
此外,还可以通过有限差分方程的求解来了解其物理背景。
比如说在物体碰撞问题中,两个质点之间距离的测量往往涉及到很复杂的三维几何关系。
即使是一个小的距离误差也会引起很大的误差。
因此,对于碰撞问题中两个质点之间的相互位置误差测量,必须考虑它们之间的三维几何关系,并根据具体问题建立相应的坐标系统。
有限差分方程可以用来描述许多不同类型的实际问题,例如质量、压力、速度、温度、流动、热传导、声音和电磁场等。
但是由于数学模型本身的复杂性,使得有限差分方程在求解上遇到了困难。
因此,人们开始寻找一种更加直观的方法来解决问题。
有限差分法正是基于此原理提出的。
利用有限差分方程求解偏微分方程,我们首先要给出所求解的偏微分方程的数学表达式,这样才能够在有限差分方程的数学模型中寻找解析解。
有限差分方程的解析解,需要借助解析函数的理论来确定。
但是在自然科学和工程技术领域里,对于一般的实际问题,很少会存在着某种数学模型完全适合于所有的具体问题,那么对于任意一个偏微分方程,总是存在着一个解析解。
当把偏微分方程的解析解用适当的坐标表示出来后,有限差分方程的求解就转化为如何寻找与这个解相对应的函数值的问题。
通常,解析函数的形式是比较复杂的,因此需要运用数值方法进行拟合,从而得到符合实际的数学表达式。
然后通过对这个数学表达式的求解来确定所求偏微分方程的解析解。
这种数值求解方法称为数值积分法。
在研究有限元法和边界元法时都可以采用一些简单易行而且计算机可能很容易处理的函数作为边界条件,而这些函数本身又是很容易计算的。
有限差分法

有限差分法有限差分法(Finite Differential Method, FDM )什么是有限差分法 有限差分法是指用泰勒技术展开式将变量的导数写成变量,在不同时间或空间点值的差分形式的方法。
按时间步长和空间步长将时间和空间区域剖分成若干网格,用未知函数在网格结(节)点上的值所构成的差分近似代替所用偏微分方程中出现的各阶导数,从而把表示变量连续变化关系的偏微分方程离散为有限个代数方程,然后解此线性代数方程组,以求出溶质在各网格结(节)点上不同时刻的浓度。
有限差分法的基本步骤(1)剖分渗流区,确定离散点。
将所研究的水动力弥散区域按某种几何形状(如矩形、任意多边形等)剖分成网络系统。
(2)建立水动力弥散问题的差分方程组。
(3)求解差分方程组。
采用各种迭代法,如点逐次超松驰方法(SOR)、线逐次超松驰方法(LSOR)、迭代的交替方向隐式方法(IADI)及强隐式方法(SID)等。
(1) 现在分别对时间(从0时刻到到期日)和股票价格(S max )为可达到的足够高的股票价格)进行分割,即\triangle S=S_{max}/M,\triangle T/N,这样就分别有N+1个时间段和M+1个股票价格,建立如图(所示的坐标方格,将定解区域网格化,坐标方格上的点(i,j )对应时刻和股票价格,用变量f i ,j 表示(i,j )点的期权价格。
2.建立差分格式(1)内含的有限差分方法其步骤可分为以下几步:(1)求前向差分近似:(2) 后向差分格式:(3)将(2),(3)式平均可更加对称地求出的近似,即(4)(2)求用前向差分近似:(5)(3)求(6)(4)将(4),(5),(6)式代入(1)式可得到内含有限差分公式:+ b j f i,j−c j f i,j + 1 = f i + 1,j(7)aj f i,j− 1其中:i=0,1,…,N-1。
j=0,1…,M-1针对看跌期权和看涨期权可分别求出方程的边界条件:看跌期权:看涨期权:(5)利用边界条件和(7)式可以给出M-1个联立方程组:+ b j f N− 1,j + c j f N− 1,j + 1j=1,2…,M-1aj f N− 1,j− 1求解这M-1个联立方程组即可以求出期权价格,但对美式看跌期权时我们必须考虑其提前执行的情况。
微分方程数值求解——有限差分法

1. 引言有限差分法(Finite Difference Method,FDM)是一种求解微分方程数值解的近似方法,其主要原理是对微分方程中的微分项进行直接差分近似,从而将微分方程转化为代数方程组求解。
有限差分法的原理简单,粗暴有效,最早由远古数学大神欧拉(L. Euler 1707-1783)提出,他在1768年给出了一维问题的差分格式。
1908年,龙格(C. Runge 1856-1927)将差分法扩展到了二维问题【对,就是龙格-库塔法中的那个龙格】。
但是在那个年代,将微分方程的求解转化为大量代数方程组的求解无疑是将一个难题转化为另一个难题,因此并未得到大量的应用。
随着计算机技术的发展,快速准确地求解庞大的代数方程组成为可能,因此逐渐得到大量的应用。
发展至今,有限差分法已成为一个重要的数值求解方法,在工程领域有着广泛的应用背景。
本文将从有限差分法的原理、基本差分公式、误差估计等方面进行概述,给出其基本的应用方法,对于一些深入的问题不做讨论。
2. 有限差分方法概述首先,有限差分法是一种求解微分方程的数值方法,其面对的对象是微分方程,包括常微分方程和偏微分方程。
此外,有限差分法需要对微分进行近似,这里的近似采取的是离散近似,使用某一点周围点的函数值近似表示该点的微分。
下面将对该方法进行概述。
2.1. 有限差分法的基本原理这里我们使用一个简单的例子来简述有限差分法的基本原理,考虑如下常微分方程\begin{cases} u'(x)+c(x)u(x)=f(x), \quad x \in [a, b]; \\u(x=a) = d \end{cases} \tag{1}微分方程与代数方程最大的不同就是其包含微分项,这也是求解微分方程最难处理的地方。
有限差分法的基本原理即使用近似方法处理微分方程中的微分项。
为了得到微分的近似,我们最容易想到的即导数定义u'(x)=\lim_{\Delta x\rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x}\approx \frac{u(x+\Delta x)-u(x)}{\Delta x} \tag{2}上式后面的近似表示使用割线斜率近似替代切线斜率,\Delta x 即为步长,如图 1(a)所示。
传热学有限差分法

传热学有限差分法
传热学有限差分法是一种精确且高效的热分析方法。
它利用数学模型对传热过程进行模拟,能够准确地预测温度分布和热传导系数。
这种方法在工程领域被广泛应用,特别是在建筑、航空航天、电子和化学工业等领域。
有限差分法通过将连续的空间离散化为有限个网格,以解决偏微分方程的数值解问题。
在每个网格点上,有限差分法用差分方程近似代替偏微分方程,从而得到一组线性方程组。
然后,通过求解这组线性方程组,可以得到每个网格点的温度值,进而得到整个空间的温度分布。
这种方法具有高效性和精确性,因此在许多实际应用中都得到了广泛的应用。
例如,在建筑行业中,有限差分法可以用来模拟建筑物的热传导过程,从而预测建筑物的能耗和热舒适度。
在航空航天领域,有限差分法可以用来模拟飞机和火箭的热传导过程,从而预测其性能和安全性。
总的来说,传热学有限差分法是一种非常重要的工具,在解决复杂的传热问题时具有广泛的应用前景。
计算流体力学有限差分法

计算流体力学有限差分法流体力学有限差分法(Finite Difference Method,FDM)是一种常用的计算流体力学的方法。
它是基于流体力学基本方程对系统求解压力、速度和位置变化的一种近似数值方法,这些方程可以使用有限差分法求解得到准确结果。
一、流体力学有限差分法的概念1、端点条件:端点条件是差分方程组确定变量的边界条件,主要有边界条件和内部条件。
2、场变量定义:流动的物质可以用速度、压力和密度来描述,这种变量称为场变量。
3、有限差分法:有限差分法试图使描述精度在最小情况下得到一个可以接受的结果。
它将待求解区域划分为若干个小块,并且计算每一个小块上的变量。
4、边界条件:边界条件是用来描述物理事件发生的时候的物理量,如压力、流动量等。
二、流体力学有限差分法的基本步骤1、数学模型:开发有限差分方程,用来描述流体力学问题,这种模型可以由流体力学的基本方程得到。
2、网格划分:将区域网格划分成更小的网格,为了更准确的解决流体力学问题。
3、空间离散:将每一个网格按照有限差分公式空间离散,获得离散的压力方程式。
4、时间离散:在解决大规模动态流体力学问题时,通过一个更小的时间步骤进行求解。
5、求解:用适当的方法和算法求解有限差分方程式,获得求解结果。
三、流体力学有限差分法的优势1、高精度:使用此法,可以获得较高数值精度,从而准确描述流体力学过程。
2、计算效率:该方法可以快速找出有效的解决方案,并且计算效率更高。
3、计算能力:此方法可以处理复杂的物理问题,而且没有太多的硬件限制。
4、收敛性:当求解复杂的物理问题时,有限差分法不太容易出现"收敛"的情况。
5、可靠性:此方法可以快速、准确的求解出可靠的结果,相对于其他求解方法,其精度更高。
四、总结流体力学有限差分法是一种常用的计算流体力学的方法。
它易于实施,并且可以获得较高数值精度,从而准确描述流体力学过程。
处理复杂的物理问题时,它可以提供较快、较准确的结果,更能可靠性和可靠性更好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们现在考虑方程(4.2.1)中 p 为常数的二维的情况,我们可以得到下面的方程:
∂ 2φ + ∂ 2φ + f (x, y)φ = q(x, y). ∂x 2 ∂y 2
设函数φ 在区域 D 内满足方程(4.2.6)式(区域 D 的边界为 G)。
(4.2.6)
7
区域 D 的离散化:
即通过任意的网络划分方法把区域 D 离散为许许多多的小单元。原则上讲这种网格分割是可以任 意的,但是在实际应用中,常常是根据边界 G 的形状,采用最简单,最有规律,和边界的拟合程度最 佳的方法来分割。常用的有正方形分割法和矩形分割法(如图 4.2.1)。有时也用三角形分割法(见 图 4.2.2)。对圆形区域,应用图(4.2.3)所示的极网络格式也许更方便些。这些网络单元通常称 为元素,网络点称为节点。
第四章 有限差分方法
4.1 引言
有限差分法:数值求解常微分方程或偏微分方程的方法。
物理学和其他学科领域的许多问题在被分析研究之后, 往往可以归结为常微分方程或偏微分方 程的求解问题。一般说来,处理一个特定的物理问题,除了需要知道它满足的数学方程外,还应当同 时知道这个问题的定解条件,然后才能设计出行之有效的计算方法来求解。
φ |G = g(s).
(4.2.3)
(2)第二类边界条件,或称诺伊曼(Neumann)问题 (g1 ≠ 0, g2 = 0) 。
∂φ ∂n
|G
=
g ( s ).
(3)第三类边界条件,或称混合问题 (g1 ≠ 0, g2 ≠ 0) 。
对于算符 L 为斯杜-刘维尔(Sturm-Liouville)算符的特定情况,即
1
有限差分法的具体操作分为两个部分:
(1)用差分代替微分方程中的微分,将连续变化的变量离散化,从而得到差分方程组的数学形式; (2)求解差分方程组。 在第一步中,我们通过所谓的网络分割法,将函数定义域分成大量相邻而不重合的子区域。通 常采用的是规则的分割方式。这样可以便于计算机自动实现和减少计算的复杂性。网络线划分的交点 称为节点。若与某个节点 P 相邻的节点都是定义在场域内的节点,则 P 点称为正则节点;反之,若节 点 P 有处在定义域外的相邻节点,则 P 点称为非正则节点。 在第二步中,数值求解的关键就是要应 用适当的计算方法,求得特定问题在所有这些节点上的离散近似值。
−
φ
0
)
⎤ ⎥
⎦
+
f 0φ0
=
q0
(4.2.18)
如果在 x 和 y 方向的步长分别相等, 即 h1 = h3 = hx 和 h2 = h4 = hy 时,则上式化为
φ1
− 2φ 0 hx 2
+φ3
+ φ2
− 2φ 0 hy 2
+φ4
+
f 0φ 0
=
q0
,
(4.2.19)
一般可以用角标来表示节点的标记,将上式写为
..., x = x + h = b , 然
n+1
n
后求出 f(x)在这些点上的近似值。显然步长 h 越小,近似解的精度就越好。与节点 xi 相邻的节点有
xi − h 和 xi + h ,因此在 xi 点可以构造如下形式的差值:
f (xi + h) − f (xi ), f (xi ) − f (xi − h),
有限差分法以变量离散取值后对应的函数值来近似微分方程中独立变量的连续取值。
在有限差分方法中,我们放弃了微分方程中独立变量可以取连续值的特征,而关注独立变量离 散取值后对应的函数值。但是从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的 连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值插值计算来近似得 到。这种方法是随着计算机的诞生和应用而发展起来的。其计算格式和程序的设计都比较直观和简单, 因而,它的实际应用已经构成了计算数学和计算物理的重要组成部分。
⎞ ⎟
的差分表达式:
⎝ ∂y 2 ⎠ 0
⎛ ⎜ ⎝
∂
2
φ
⎞ ⎟
∂y 2 ⎠ 0
≈
2
h4 (φ 2
− φ 0 ) + h2 (φ 4 h2h4 (h2 + h4 )
−φ0)
.
当采用等步长 h2 = h4 = hy 时, 有
⎛ ⎜
∂
2φ
⎞ ⎟
≈ φ 2 − 2φ 0 + φ 4 .
⎝ ∂y 2 ⎠ 0
hy 2
⎞ ⎟ ⎠
0
≈
2
h3 (φ 1
−φ0) + h1h3 (h1
h1 (φ 3 + h3 )
−
φ0)
.
当用等步长 h1 = h3 = hx 时,上式成为
(4.2.14)
10
⎛ ⎜
∂
2φ
⎞ ⎟
≈ φ1 − 2φ 0 + φ 3 .
⎝ ∂x2 ⎠ 0
hx 2
用完全相同的计算方法,我们可以推导出
⎛ ⎜
∂
2φ
本书中我们将略去对差分法稳定性和收敛性理论的讨论,尽管这方面的内容是相当重要的。以下 的讨论中所讲到的各种差分格式,我们均假定求解方法满足稳定性和收敛性的要求。
5
4.2 有限差分法和偏微分方程
利用上节所介绍的微分的差分表示,我们就很容易地将微分方程离散化为差分方程组的形式。但 是由差分方程所得的解完全取决于待求微分方程的特性。正如我们在物理上所知道的,边界条件的情 况变化将会引起差分方程组的不同。在求解微分方程中,我们会遇到两类问题:一类是初始值问题; 另一类是边值条件的问题。在初始值问题中,部分边界上的函数值和部分的函数偏导值是给定的。通 常在这类问题中的独立变量之一是时间 t。在边界值问题中,边界上的信息是给定的。本书中我们仅 讨论后一类问题。
f ( xi + h) − f ( xi − h).
节点 xi 的一阶向前差分 节点 xi 的一阶向后差分 节点 xi 的一阶中心差分
2Leabharlann 与 xi 点相邻两点的泰勒展开式可以写为
f (xi
− h) =
f
( xi
)
−
hf
'
( xi
)
+
h2 2
f
''
( xi
)
−
h3 3!
f
'''
( xi
)
+
h4 4!
f
⎛ ∂φ ⎞ ⎝⎜ ∂x ⎠⎟ 0
≈
φ1 −φ0 h1
.
或
(4.2.7)
⎛ ∂φ ⎞ ⎝⎜ ∂x ⎠⎟ 0
≈
φ0 −φ3 h3
.
显然这种单侧差商的误差较大。
(4.2.8)
如果要寻求更精确的差分格式,我们可以引入待定常数 α , β ,由 φ1 和 φ3 的泰勒展开,构造出如下的 关系式:
α (φ1
− φ0
y
y
D
D
0
x0
x
4.2.1 求解区域的矩形分割。 4.2.2 求解区域的三角形分割。 4.2.3 求解区域的极网络分割。
8
用节点上的函数值来表示节点上偏导的数值。
设区域内部某节点 0 附近的各节点如图 4.1.1 所示。这里我们取步长 h 不相等的最一般情况。以
φ0,φ1,φ2,φ3,φ4 分别代表在节点 0,1,2,3,4 处φ 的函数值。如前所述,0 点的一阶偏导数可以通过先 前或向后的差商,由 1 和 3 节点近似写出
假定某方程形式上可以写为:
Lφ = q.
其中 L 为含偏微商的算符.
(4.2.1)
它的边界条件一般可写为:
φ
|G
+ g1(s)
∂φ ∂n
|G =
g2 (s).
G 表示场域 D 的边界, g1(s), g2 (s) 为边界上 s 点的逐点函数。
(4.2.2)
6
三类边界条件:
(1)第一类边界条件,或称为狄利克莱(Dirichlet)问题 (g1 = 0, g2 ≠ 0) 。
二阶偏导数的差分表达式(“五点格式”或“菱形格式”)
在(4.2.9)式中,如果令
⎛ ⎝⎜
∂φ ∂x
⎞ ⎠⎟
0
的系数为零,则有
α
和
β
间存在关系式:
α = h3 β. h1
(4.2.13)
将上式(4.2.13)代入(4.2.9)式中,并忽略 h 三阶以上的高次项,则得到表达式:
⎛ ⎜ ⎝
∂ 2φ ∂x 2
有限差分法的差分格式:
一个函数在 x 点上的一阶和二阶微商,可以近似地用它所临近的两点上的函数值的差分来表示。
如对一个单变量函数 f(x),x 为定义在区间[a,b]的连续变量。以步长 h= Δ x 将[a,b]区间离散化,我
们得到一系列节点 x = a , 1
x=x +h,
2
1
x =x
3
2
+ h = a + 2Δx ,
上述差分步骤应用于偏微分:
例如,对于 f
=
f
(x,
y)
的情况,拉普拉斯算符在
0
点作用在此函数上的值
⎛ ⎜
∇
2
⎝
f
=
⎛ ⎜ ⎝
∂ ∂
2f x2
+∂2f ∂ y2
⎞ ⎟
⎞ ⎟
,也可
⎠⎠
以用临近的点上的函数值来表示出来。(见图 4.1.1, 且 h1 = h2 = h3 = h4 = h 时)
∇2 f ≈
⎛⎝⎜
∂φ ∂x