三角形三边关系
三角型的三边关系

三角型的三边关系三角形是平面几何中最基本的图形之一,由三条线段组成。
在三角形中,三边之间存在着一些重要的关系,这些关系对于解决各种几何问题都非常重要。
下面将详细介绍三角形的三边关系。
一、基本概念1. 三角形的定义在平面直角坐标系中,如果有三个不共线的点A(x1,y1)、B(x2,y2)和C(x3,y3),则以这三个点为顶点所组成的图形称为三角形ABC。
2. 三边在一个三角形ABC中,AB、BC和AC分别称为这个三角形的“边”,而A、B和C则分别称为这个三角形的“顶点”。
3. 顶点连线在一个三角形ABC中,连接两个不相邻顶点所得到的线段称为这个三角形的“对角线”。
二、直角三角形1. 定义如果一个三角形有一个内角等于90度,则这个三角形就是直角三角形。
2. 特征直角三角形有以下特征:(1)直角所对应的边称为斜边,而另外两条边则分别称为直角腿;(2)斜边是直接连接两个不相邻顶点的线段;(3)直角腿的长度可以通过勾股定理求出,即c²=a²+b²。
三、等腰三角形1. 定义如果一个三角形有两条边相等,则这个三角形就是等腰三角形。
2. 特征等腰三角形有以下特征:(1)等腰三角形的两个等边所对应的内角相等;(2)等腰三角形的第三条边称为底边,底边所对应的内角称为底角;(3)等腰三角形的高是从底边上某一点到另一条边上垂直引出的线段,高所在的直线称为高线。
四、等边三角形1. 定义如果一个三角形的所有边都相等,则这个三角形就是等边三角形。
2. 特征等边三角形有以下特征:(1)等边三角形的每个内角都是60度;(2)等边三角形中任意两个顶点之间都存在一条相同长度的弧;(3)等边三角形中任意两个顶点之间都存在一条相同长度的弦。
五、不规则三角形1. 定义如果一个三角形的三条边长度都不相等,则这个三角形就是不规则三角形。
2. 特征不规则三角形有以下特征:(1)不规则三角形的内角和等于180度;(2)不规则三角形中任意两个顶点之间都存在一条弧,但这条弧的长度可能不同;(3)不规则三角形中任意两个顶点之间都存在一条弦,但这条弦的长度可能不同。
三角形的三边关系(基础)知识讲解

三角形的三边关系(基础)知识讲解三角形的三边关系(基础)知识讲解三角形是几何中常见的图形之一,由三条边和三个顶点构成。
在三角形中,三条边之间存在着一些特殊的关系,包括边长的关系和角度的关系。
本文将对三角形的三边关系进行知识讲解。
1. 三边关系的定义在一个三角形中,任意两边之和大于第三边。
换句话说,如果一条线段的长度小于另外两条线段的长度之和,那么这三条线段不能构成一个三角形。
2. 三边关系的分类根据三边关系的大小比较,三角形可以分成三类:锐角三角形、钝角三角形和直角三角形。
- 锐角三角形:三个内角都小于90度的三角形称为锐角三角形。
在锐角三角形中,任意两边的和大于第三边。
- 钝角三角形:三个内角中有一个大于90度的三角形称为钝角三角形。
在钝角三角形中,任意两边的和大于第三边。
- 直角三角形:一个内角等于90度的三角形称为直角三角形。
直角三角形的两条直角边的平方和等于斜边的平方,符合勾股定理。
3. 三边关系的性质在三角形中,三个内角的和为180度,也就是说,三个内角相加等于180度。
4. 三边关系的应用三边关系在几何推理和计算中有着广泛的应用。
下面介绍一些常见的应用:- 判断三角形的存在性:根据三边关系的定义,我们可以通过比较三条线段的长度来判断是否能构成一个三角形。
- 计算三角形的未知边长:如果已知三角形的两条边和它们之间的夹角,可以使用三角函数(正弦、余弦、正切)来计算第三边的长度。
- 判断三角形的类型:通过三边关系,我们可以判断三角形是锐角三角形、钝角三角形还是直角三角形,从而更好地进行几何推理。
- 寻找三角形的相似性质:对于两个具有相似三边关系的三角形,它们的对应角度相等,对应边长成比例。
通过对三角形的三边关系进行了解和应用,我们能够更好地理解三角形的性质和几何关系。
掌握这些基础知识,对于解决几何问题和推理证明都有很大的帮助。
希望本文能够对您掌握三角形的三边关系有所帮助。
直角三角形三条边的关系公式

直角三角形三条边的关系公式
直角三角形是指其中一个角是90度的三角形。
在直角三角形中,三条边之间有着重要的关系,可以用数学公式来表示。
1. 勾股定理:勾股定理是直角三角形中最基本的关系公式,它表示直角三角形的两条直角边的平方和等于斜边的平方。
即a²+b²=c²,其中a和b分别表示直角三角形的两条直角边,c表示斜边。
2. 正弦定理:正弦定理表示直角三角形中,任意一条边的长度与其对应的角度之间的关系。
即a/sinA=b/sinB=c/sinC,其中a、b、c分别表示直角三角形的三条边,A、B、C分别表示对应的角度。
3. 余弦定理:余弦定理表示直角三角形中,任意一条边的长度与其对应的角度之间的关系。
即a²=b²+c²-2bc*cosA,b²=a²+c²-2ac*cosB,c²=a²+b²-2ab*cosC,其中a、b、c分别表示直角三角形的三条边,A、B、C分别表示对应的角度。
这些公式的应用可以帮助我们解决直角三角形的各种问题,如求解三角形的边长、角度大小等等。
三角形三边关系公式三角函数

三角形三边关系公式三角函数三角形是初中数学中一个重要的几何形体,也是很多高中数学的基础知识。
而三角形的三边关系公式和三角函数则是三角形相关的必备知识。
下面我们来详细了解一下这方面的内容。
一、三角形三边关系公式三角形三边关系公式是求解三角形的重要公式,在初中的教学中,通过这些公式,可以求解任意三角形的内角和、周长、面积等重要性质。
1. 余弦定理:在任意三角形ABC中,设三边对应的内角分别为α、β、γ,边长分别为a、b、c,则有:cos α = (b² + c² - a²) / 2bccos β = (a² + c² - b²) / 2accos γ = (a² + b² - c²) / 2ab其中,cos表示余弦函数,a、b、c表示三边,α、β、γ表示与其对应的内角。
2. 正弦定理:在任意三角形ABC中,设三边对应的内角分别为α、β、γ,边长分别为a、b、c,则有:a / sin α =b / sin β =c / sinγ其中,sin表示正弦函数。
3. 勾股定理:在直角三角形ABC中,设斜边AB对应的内角为α,直角边AC和BC分别对应的内角为β、γ,斜边AB的长度为c,直角边AC和BC的长度分别为a、b,则有:a² + b² = c²二、三角函数三角函数是三角学中的重要分支,是数学和物理学中非常基础而常用的知识。
在初中数学中,学习三角函数有助于理解三角形的各种性质,同时也是后续高中数学学习的基础。
1. 正弦函数:在直角三角形ABC中,设斜边AB对应的内角为α,斜边AB的长度为c,直角边AC的长度为a,则有正弦函数:sin α = a / c2. 余弦函数:在直角三角形ABC中,设斜边AB对应的内角为α,斜边AB的长度为c,直角边BC的长度为b,则有余弦函数:cos α = b / c3. 正切函数:在直角三角形ABC中,设直角边AC对应的内角为α,直角边BC的长度为b,直角边AC的长度为a,则有正切函数:tan α = b / a4. 余切函数:在直角三角形ABC中,设直角边BC对应的内角为α,直角边BC的长度为b,直角边AC的长度为a,则有余切函数:cot α = a / b通过学习上述三角形三边关系公式和三角函数的知识,我们可以更深刻地理解三角形的结构和性质,从而更好地解决与其相关的问题。
普通三角形三边关系

普通三角形三边关系三角形是几何学中的基本图形之一,它由三条边和三个角组成。
在普通三角形中,三条边的关系是其中一个重要的性质,它们之间存在着一定的关系。
我们来讨论三边之间的关系。
对于一个普通三角形ABC,它的三条边分别为a、b、c。
根据三角形的定义,任意两边之和大于第三边,即a+b>c,a+c>b,b+c>a。
这是因为,如果两边之和等于第三边,那么这三条边就不能构成一个三角形,而是一条直线。
如果两边之和小于第三边,那么这三条边也无法连接起来形成一个封闭图形。
所以,三边之间的关系可以表达为a+b>c,a+c>b,b+c>a。
接下来,我们来探讨三边的长度关系。
在普通三角形中,三边的长度不一定相等,但它们之间有一定的大小关系。
根据三角形三边关系定理,如果一个三角形的两条边的长度之和大于第三条边的长度,那么这两条边所对应的两个角的夹角就是锐角。
如果两条边的长度之和等于第三条边的长度,那么这两条边所对应的两个角的夹角就是直角。
如果两条边的长度之和小于第三条边的长度,那么这两条边所对应的两个角的夹角就是钝角。
三边之间还存在着一种关系,即三边的长度之间的比值关系。
在普通三角形中,三边的长度之间满足一定的比例关系。
这个比例关系可以通过正弦定理、余弦定理和正切定理来描述,但在本文中我们不涉及公式。
简单来说,如果已知三角形的一个角和两边的长度,那么可以通过正弦、余弦或正切函数来计算出其余两边的长度。
这些函数可以帮助我们解决一些实际问题,比如测量无法直接测量的距离。
我们来总结一下普通三角形三边关系的要点。
在普通三角形中,三边之间满足a+b>c,a+c>b,b+c>a的关系。
三边的长度之间也存在着一定的大小关系,可以分为锐角、直角和钝角三种情况。
此外,三边的长度之间还满足一定的比例关系,可以通过正弦、余弦或正切函数来计算出未知边的长度。
这些关系和定理在解决实际问题时非常有用,可以帮助我们更好地理解和应用三角形的性质。
三角形3条边的关系

三角形3条边的关系三角形是初中数学中非常重要的一个概念,它是由三条线段组成的一个平面图形,具有很多特殊性质和规律。
其中,三角形3条边的关系是三角形研究中最基础和最重要的内容之一。
下面将从定义、性质、证明等方面详细介绍三角形3条边的关系。
一、定义在平面直角坐标系中,若有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),则以它们为顶点所组成的图形称为三角形ABC。
其中,AB、BC、CA分别称为三角形ABC的边,A、B、C分别称为三角形ABC的顶点。
二、性质1. 任意两边之和大于第三边这是三角形存在的必要条件。
即对于任意一条边a和b,它们之和大于第三边c,即a+b>c;同理可得b+c>a和a+c>b。
2. 任意两边之差小于第三边这是三角形存在的充分条件。
即对于任意一条边a和b,它们之差小于第三边c,即|a-b|<c;同理可得|b-c|<a和|a-c|<b。
3. 等边三角形的三条边相等等边三角形是指三个边长相等的三角形。
它的性质是任意两条边都相等,且所有角都是60°。
4. 等腰三角形的两条底边相等等腰三角形是指两个底边相等的三角形。
它的性质是两个底角相等,顶角为其余角。
5. 直角三角形斜边平方等于两直角边平方和直角三角形是指其中一个内角为90°的三角形。
它的性质是斜边平方等于两直角边平方和,即c^2=a^2+b^2。
6. 锐角三角形任意两条中线之和大于第三条中线锐角三角形是指其中所有内角均小于90°的三角形。
它的性质是任意两条中线之和大于第三条中线,即m_a+m_b>m_c、m_b+m_c>m_a、m_a+m_c>m_b。
其中,m_a、m_b、m_c分别为锐角三角形ABC中以A、B、C为中点的BC、AC、AB中线。
7. 钝角或平面四边行内一对对顶棱之和小于第二对顶棱之和钝角或平面四边行内一对对顶棱之和小于第二对顶棱之和,即AB+CD<AC+BD或AB+CD<AD+BC。
三角形的三边关系

三角形的三边关系教学目标:1、了解线段构成三角形的条件2、知道三角形三边之间的关系3、了解三角形所特有的稳定性教学重点:三角形三边关系及其简单应用教学难点:探究构成三角形的条件一、复习引入1、三角形的三个内角和是多少?三角形的外角有什么性质?2、如图(1),在连接两点的所有线中最短的是哪一条?二、探索新知1、结合课本,用手中的小木棒做实验(按要求摆三角形)(1)2cm 5cm 6cm(2)3cm 5cm 6cm(3)2cm 3cm 5cm(4)2cm 3cm 6cm2、是不是任何长度的三根小木棒都能围成三角形?3、通过实验,你发现三角形的三边之间有什么样的关系?定理:三角形的两边之和大于第三边。
此定理可依据公理“两点之间线段最短”得出。
说明三角形任何一边都小于其他两边的和,即便是最大边也必须小于其他两边之和。
推论:三角形两边的差小于第三边。
说明三角形任意一边都大于其他两边的差,即便是最小边也必须大于其他两边之差。
知识点一三角形的任何两边的和大于第三边,三角形的任何两边的差小于第三边。
点拨:判断三条线段能否组成三角形,就用较短的线段长度的和与最长线段比较,若是大于,则这三条线段可以组成三角形;反之,则不能组成三角形。
配套练习:判断下列长度的各条线段能否组成三角形(口答)。
(1)15cm,10cm,7cm(2)4cm,5cm,10cm(3)3cm,8cm,5cm(4)4cm,5cm,6cm【拓展】:运用三角形的三边关系,可求第三边的取值范围。
例1:在三角形ABC中,三角形的三条边分别为a、b、c,已知a=8cm,b=5cm,求第三条边c的取值范围。
知识点二三角形的稳定性当三角形的三边长确定之后,这个三角形的大小和形状就完全确定了,三角形的这一特性称为三角形的稳定性。
三角形的稳定性在生产、生活实践中有着广泛的应用,如桥梁、电视塔底座等等,都是三角形结构。
你能举出三角形的稳定性在生产、生活中应用的例子吗?四边形有这样的性质吗?三、实践应用1、下列长度的三条线段中,能组成三角形的是()A. 2cm,4cm,5cmB. 5cm,4cm,9cmC. 0.2cm,0.5cm,0.2cmD. 7cm,3cm,11cm2、五条线段的长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长可以构成_______个三角形。
13.三角形三边关系

13.三角形三边关系【知识要点】1、三角形的概念、分类2、三角形三边关系:任意两边之和大于第三边;任意两边之差小于第三边3、三角形的角平分线、中线、高线的作法及性质角平分线的作法:作三角形的角平分线,只需作一个角的平分线与这个角的对边相交,连结这个角的顶点和交点之间的线段即是三角形的角平分线;一个三角形有三条角平分线,它们相交于三角形内一点。
中线的作法:作三角形的中线,只需连结顶点及其对边中点即可,一个三角形有三条中线,且相交于三角形内一点。
高线的做法:作三角形高,只需经过三角形的顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高。
【典型例题】【例1】(1)如图16-1所示,D 是△ABC 内任一点,求证:AB+AC>BD+CD 。
【例2】在ABC ∆中,AB=9,BC=2.并且AC 为奇数,那么ABC ∆的周长为多少呢?【例3】已知等腰三角形ABC ∆的周长为23cm ,D 为AC 边上中点,ABD ∆的周长比BCD ∆的周长大7cm ,求AB 和BC 的长。
【例4】 一个三角形的周长是个偶数,其中的两条边长分别是4和1997,满足上述条件的三角形的个数为( )A .1个B .3个C .5个D .7个CAB DDE C BA图16-1【例5】如图,AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线。
(1)△ABD 与△ADC 的面积有何关系?请说明理由?(2)若△GFC 的面积GFC S ∆=1cm 2,则△ABC 的面积ABC S ∆= 。
【例6】已知等腰三角形的一边长为6cm ,另一边长为12cm ,则其周长为多少?【课堂训练】一.选择题1.在一个三角形中,两条边长分别为2和7,另一条边的长是奇数,符合这样条件的三角形( )A.不存在B.只有一个C.只有两个D.有三个2.有长度分别为10cm ,7cm ,5cm 和3cm 的四根铁丝,选其中三根组成三角形则( )A.共有4种选法B.只有3种选法C.只有2种选法D.只有1种 选法3、在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶2∶3,③∠A=900-∠B ,④∠A=∠B= 12 ∠C 中,能确定△ABC 是直角三角形的条件有( )A.1个B.2个C.3个D.4个4.ABC ∆的三边c b a ,,,且()()0=-⋅-+c a c b a ,那么ABC ∆中( )A.c b a >>B.c b a =+C.c a =D.不能确定其边的关系5.三角形的两边长分别为2和5,则三角形的周长t 的取值范围是( )A.73<<tB.129<<tC.1410<<tD.无法确定6.三角形的角平分线、中线、高都是( )A.线段B.射线C.直线D.射线或线段7.下列说法中,正确的是( )A.三角形的角平分线、中线、高都在三角形的内部B.三角形的角平分线有时在三角形的外部C.三角形的中线有时在三角形的外部D.三角形的高至少有1条在三角形的内部8.能把1个三角形分成2个面积相等的小三角形的是该三角形的( )A.角平分线B.中线C.高D.一边的垂直平分线二、解答题1.已知三角形的两边长分别为7和2.(1)如果这个三角形是等腰三角形,求它的周长.(2)如果周长是奇数,求第三边的长.2.已知等腰三角形的周长为20.(1)当一边长为6时,另两边的长是多少?(2)当一边长为4时,另两边的长是多少?3.等腰三角形一腰上的中线把周长分为6和4两部分,则这个三角形的各边分别为_________、_________、_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章:多边形
9.1.3三角形三边关系
学习目标:
1.了解构成三角形的条件
2.知道三角形三边关系
3.了解三角形的稳定性
过程与方法:
1.经历探索构成三角形的条件的过程。
2.通过操作演示,让学生体验三角形的稳定性。
教学重点:三角形三边关系及其简单应用
教学难点:探究构成三角形的条件
教学关键:让学生用不同长度的三根棍子进行演示,从中体验三角形三边的关系及构成三角形的条件。
教学过程:
一复习引入
1.什么样的图形是三角形?
2.是不是任意三条线段都能组成三角形?
二探索新知
小组活动:让学生拿出预先准备好的四根小棒(6cm、5cm、3cm、2cm),让学生任意的取其中的三根,首尾连接,摆成三角形。
1、有哪几种取法?
2、是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以?
3、用三根什么样的小棒才能拼成三角形呢?你从中发现了什么?
(1)6cm、5cm、2cm(2)6cm、5cm、3cm
(3)2cm、3cm、5cm(4)2cm、3cm、6cm
经过实践可知:
(1)、(2)可以摆出三角形
(3)、(4)不可以摆出三角形
我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形。
这就是说:三角形的任意两边的和大于第三边
a.b.c分别是三角形ABC的三边:则有
a+ b﹥c
a+ c﹥b
b+ c﹥a
根据不等式的性质得出
c - b ﹤a
b - a ﹤c
a – c ﹤b
这就是说:三角形的任意两边的差小于第三边
练习:
下列长度的三条线段能否组成三角形?为什么?
(1)3,4,8 ()
(2)2,5,6 ()
(3)5,6,10 ()
(4)3,5,8 ()
思考
判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法?
技巧:只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形.
考考你:有人说他一步能走3米,你相信吗?能否用今天学过的知识去解答呢?
姚明腿长1.28米
答:不能。
如果此人一步能走3米,由三角形三边的关系得,此人两腿长要大于3米,这与实际情况相矛盾,所以它一步不能走3米。
练习:
木工师傅小李要做一个三角形的木架,已有两根长分别为1m和1.5m的木条,需要再找一根木条,把它们首尾相接钉在一起。
这根木条长0.4m合适吗?2.3米呢?这根木条长度为多少米才合适呢?
已知三角形两边的长度,第三边长度范围是:
第三边长度的范围你能确定吗?
两边之差<第三边<两边之和
牛刀小试:
1、四根小木棒的长度分别为2cm、5cm、9cm、10cm,任取3根可以搭出()个三角形。
A、1
B、2
C、3
D、4
2、三角形的两边分别为5和11,第三边a的取值范围是()
3、若等腰△ABC的两边长为5和9,则它的周长为:()
4、三角形的两边分别为5cm和9cm,周长c的取值范围(
5、三角形两边为2cm和9cm,第三边为奇数周长为()
6、三角形的三边为a、b、c 。
则︳a+b –c ︳+ ︳a- b-c ︳=()学以致用:
1。
尽管草地不允许踩,但还是被人们踩出了一条小路,这是为什么?请用今天学习的知识解释这一现象。
2。
元旦的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色的彩灯的电线哪根长呢?能否用学过的知识来解释你的结论.
三角形的稳定性:教具演示
三角形具有稳定性,
四边形具有不稳定性
三角形的稳定性在生活中有着广泛的应用:
出示图片
练习:工人师傅在做完门框后,为防止变形常常象图中那样上两条斜拉的木条AB,CD。
这样做的根据是:
1.如图:有A、B、C、D四个村庄,打算公用一个水厂,若要使用的水管最节约,水厂应建在村庄的什么地方?
小结:
1、构成三角形的条件:
①三条线段
②不在同一条直线上
③首尾顺次连接
2、(1)三角形的三边关系定理:
三角形的任何两边的和大于第三边
三角形的任何两边的差小于第三边
(2)判断三条已知线段能否组成三角形时,采用一种较为简便的判法:若较短的两条边的和大于第三条边,则可构成三角形,否则不能.
(3)确定三角形第三边的取值范围:
两边之差<第三边<两边之和
3、三角形具有稳定性
作业:教科书第67页第1、4 题
板书设计
三角形的三边关系
三角形的三边关系定理:
三角形任意两边之和大于第三边
三角形任意两边之差小于第三边
判断方法:
只要两条较短线段的和大于最长的线段就可以组成三角形
三角形的稳定性。