四川大学高数微积分II单元测验(定积分)自测练习题(含答案)

合集下载

川大 高数2 答案

川大 高数2  答案

一、单选题(共40 道试题,共100 分。

)1.题目:A. B. C. D.2.题目:A. B. C. D.3.A. 1B. 0C. bD. -b4. 题目:A. B. C. D.5. 题目:A. B. C. D.6.题目:A. B. C. D.7.题目:A. 2B. 1C. 0D. -18.题目:A. B. C. D.9.A. B. 2 C. 0 D. /210.A. B.C. D.11.A. B. C. D.12.A. 3B. -3C. 1D. -113.题目:A. B. C. D.14. 下列命题中,正确的是A.B.C.D.满分:2.5 分15.A. 单调递增B. 单调递减C. 部分递增,部分递减D. 不可计算满分:2.5 分16. 题目:A. B. C. D.17.题目:A. B. C. D.18. 题目:A. 奇函数B. 偶函数C. 非奇非偶函数D. 以上均不对19. 题目:A. 25B. 26C. 27D. 2820.A. 连续点B. 可去间断点C. 跳跃间断点D. 无穷间断点21. 题目:A. 仅有一条B. 至少有一条C. 不一定存在D. 不存在22.A. 依赖于s和tB. 依赖于s,t,xC. 依赖于t和xD. 依赖于s,不依赖于t23.题目:A. 2B. 1C. -1D. 024.A. 1B. 2C. 1/2D. 325.A. 1B. 2C. 3D. 426. 题目:A. 在点(1,2)处取最大值5B. 在点(1,2)处取最小值-5C. 在点(0,0)处取最大值0D. 在点(0,0)处取最小值027.A. 2B. -2C. 1/2D. -1/228.A. 处处单调减小B. 处处单调增加C. 具有最大值D. 具有最小值29.题目:A. 1B. 2C. 3D. 430. 题目:A. 垂直B. 斜交C. 平行D. 重合31.题目:A. B. C. D.32.A.B.C.D.满分:2.5 分33.A B.C. D.34. 题目:A. B. C. D.35. 下列式子中正确的是( )A. B.C. D.36. 题目:A. B. C. D.37.题目:A. B. C. D.38. 题目:A. B. C. D.39.A.B.C.D.40.题目:A. 1B. 2C. 3D. 4。

四川大学微积分1-2(2016)B卷

四川大学微积分1-2(2016)B卷
( xy2 2 y)dx ( x2 y 3x)dy . L
4.设空间曲面: z 1 ( x 2 y2 ) (0 z 1部分) 所围成,方向指向外侧,计算曲面积分 2
( x y)dydz ( y z)dzdx ( x z)dxdy .
5.求微分方程 y 4 y x cos x 的通解.
(1)求常数 A,以及该微分方程的通解.
(2)计算曲线积分 (0,1) 2 xydx ( Ax 2 2 y)dy 的值. (1,0)
3.设二元函数
f
(
x,
y)
xy , x2 y2
0,
( x, y) (0, 0)
.
( x, y) (0, 0)
(1)求证:二元函数 f ( x, y) 在点(0,0)处不可微.
0
2
0
确定的隐函数组,求
y(1),
z(1) .
第 1 页,共 2 页 试卷编号:
2.设空间区域是由 z x2 y2 与 z 2 x2 y2 所围成,计算三重积分
(2x y 3z)dxdydz .
3.设平面闭曲线 L: y cos x 从点 A(1,1)到 B(1,1),计算曲线积分
四川大学期末考试试题(闭卷) (2015-2016 学年第 2 学期) B 卷
课程号:201138040 适用专业年级:
课序号: 学生人数:
课程名称:微积分(I)-2 任课教师:
成绩:
印题份数:
学号:
姓名:
考生承诺
我已认真阅读并知晓《四川大学考场规则》和《四川大学本科学生考试违纪作弊处分规定(修 订)》,郑重承诺:
2.二元函数 z
f (u, v) 具有二阶连续偏导数,
u

微积分试题及答案【精选】

微积分试题及答案【精选】

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x >二、填空题(每题2分) 1、__________2、、2(1))l i m ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、limββαα=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x xx x→-求 5、计算6、21lim (cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x=++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x xxdx='=+-++= 3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxx x x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x aaL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A x f A x εεξε→∞→∞=∴∀>∃>>-<><<>∴-<= 当时,有取=,则当0时,有即。

【四川大学】2014-2015春(微积分II-2)半期试题

【四川大学】2014-2015春(微积分II-2)半期试题

2x 2 八. (10 分)求函数 f ( x , y ) e ( x y 2 y ) 的极值,并判断是极大值还是极小值?
四川大学半期考试试卷
(2014—2015 年第二学期) 科目:微积分(II)-2 考试时间:90 分钟 注:请将答案写在答题纸规定的方框内,否则记 0 分。
一 、计算下列多元函数的极限。若极限不存在,请给出理由(每题 5 分,共 15 分)
sin( x 4 y 4 ) 1、 lim ( x , y ) ( 0 , 0 ) x2 y2 ln(1 x ) dx 。 (2 x ) 2 x3 y5 2、 lim ( x , y ) ( 0 , 0 ) x 2 y 2 1 dx 。 x (1 x 2 ) 2
1 x 1
x
1
(1 x ) 3
t
f ( u)du )dt

四. (10 分)设函数 f ( x ) 连续,且 f ( 0) 0 ,求极限 lim
x 0
x
0
( x t ) f ( t )dt
x 0
x f ( x t )dt

五. (10 分)证明函数 f ( x , y ) | xy | 在点 ( 0,0) 连续、偏导数存在,但、 lim ( x , y ) ( 0 , 0 ) x 6 y 2
二.计算题。 (每小题 5 分,共 25 分) 1、
1 0
2、
3
1
3、设 f ( x ) x sin x

4 0
f ( 2 x )dx ,求 2 f ( x )dx 。
4、 u ( xy ) z ,求 du |(1, 2 ,1) 。
1 ,x 1 x x 1 x 5、 f ( x ) x ,0 x 1 ,求 f ( t )dt 。 0, x 0

高等数学II试卷A(含答案)

高等数学II试卷A(含答案)

一、填空题(共7小题,每小题2分,共14分)1.过直线123:101z L -==-且平行于直线221:211x y zL +-==的平面方程 为:320x y z -++=。

2.极限2222222(,)(0,0)1cos()lim()x y x y x y x y e→-++=12。

3.设二元函数()y z xyf x =,且()f u 可导,则z zx y x y∂∂+∂∂=2z 。

4.设二元函数(,)f x y 在点(0,0)的某个领域内连续,且(0,0)1f =,则222201l i m(,)x y f x y d ρρσρ→++≤⎰⎰=π。

5.设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为:2,0()0,0x x f x x ππ-≤<⎧=⎨≤<⎩,则()f x 的傅里叶级数在(21)(0,1,2,)x k k π=+=±± 处收敛于π-。

6.交换二次积分的积分次序,则1(,)dy f x y dx ⎰=11(,)dx f x y dy-⎰。

7.设23(,,)f x y z x y z =++,则f 在点0(1,1,1)P 处沿方向:(2,2,1)l -的方向导数为:13。

二、选择题(共7小题,每小题2分,共14分)1.设,,a b c 为单位向量,且满足++=0a b c ,则⋅+⋅+⋅a b b c c a =( D ) (A) 1 (B) 1- (C)32 (D) 32- 2.zox 面上曲线2x z e =绕z 轴旋转所得旋转曲面方程为( C )x e = (B)22x y z e += (C)22xy z e += (D)z =3.设(,)z f x y =在00(,)x y 处取得极小值,则函数0()(,)y f x y ϕ=在0y 处( C )(A)取到最小值 (B)取到极大值 (C)取到极小值 (D)取到最大值 4.设(1)ln(1n n u =-,则( C ) (A)1n n u ∞=∑与21nn u ∞=∑均收敛 (B)1n n u ∞=∑与21n n u ∞=∑均发散(C)1n n u ∞=∑收敛而21nn u ∞=∑发散 (D)1n n u ∞=∑发散而21n n u ∞=∑收敛5.函数项级数1(0)n n nx x ∞-=≠∑的收敛域是( C )(A)(1,0)(0,1)- (B)[1,0)(0,1]-(C) (,1)(1,)-∞-+∞ (D) (,1][1,)-∞-+∞6.向量,,a b c 两两构成3π角,又4,2,6,===a b c 则++a b c 的长度为( A )(A) 10(B)(C) (D) 5 7.若曲线L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周,则第一类曲线积分222()Lx y z ds ++⎰=( B )332a π (C) 33a π (D) 34a π 三、计算题(共5小题,每小题9分,共45分)1.求幂级数1211(1)21n n n x n -∞-=--∑的和函数,并求1(1)3214nn n n ∞=-⎛⎫⎪-⎝⎭∑的值。

【答案】2015-2016春四川大学微积分(I)-2

【答案】2015-2016春四川大学微积分(I)-2

第 2页
解:令 F x2 y2 z2 1(x2 y2 1) 2 (x 2y 3z 6)
Fx Fy Fz F1 F2
2x 21x 2 0 2 y 21 y 22 0 2z 32 0 x2 y2 1 0
x 2y 3z 6 0
解:设辅助面1: z 1, ( x, y) Dxy:x 2 y 2 1 方向指向上侧,根据高斯公式,
( x2 y)dydz ( y2 z)dzdx ( x z2 )dxdy
[( x2 y)dydz ( y2 z)dzdx ( x z2 )dxdy]
1
1
(2
x
A 3, B 1 .
(2) 根据微分公式, (3 x2 y 6 xy2 y)dx (6 x2 y x3 x)dy d( x3 y 3 x2 y2 xy)
所以微分方程的通解: x3 y 3x2 y2 xy C .
(3) 曲线积分 (1,2) (3 x2 y 6 xy2 y)dx (6 x2 y x3 x)dy (0,0)
6.设平面闭曲线 L 是由 y 3x, y 0, x 1 所围成,则曲线积分 xyds ( 9 10 ).
L
2
7.微分方程 y y 2xy 满足 x 0 时 y 1 的特解是( y e x x2 ).

二.计算题(每小题 9 分,共 45 分)
1.设
ez
2x
3y
z
1
0
确定的二元函数
f l
(0,0)
lim
0
f
(x,y )
f
(0, 0)
lim
0
f
( cos ,
cos )
lim
0
3 cos2 cos 3

高数II及微积分I-B(2)答案

所以级数收敛 (2) …………………………(4 分)

sin α 1 ) 2 n n n =1 ∞ ∞ sin α 1 1 sin α ≤ 2 , ∑ 2 收敛,所以 ∑ 2 收敛 解: 2 n n n =1 n n =1 n ∞ 1 ∑ ( n ) 发散 n =1
∑(

所以原级数发散 六. 解: lim
…………………………(2 分)
…………………………(4 分)
…………………………(8 分)
由点 A(0, 0) 到 B (1,1) 的曲线积分 十.解: un = e
∫ ( xe
L
x
1 + f ( x)) ydx + f ( x)dy = e ………………………(10 分) 2
1 n x 令 f ( x) = e 1 x, f (0) = 0
南 京 航 空 航 天 大 学
第 1 页 (共 3 页)
二○○ 六 ~ 二○○七 课程名称: 《 命题教师:
一.填空题 1.
学年
第 2 学期
高等数学 II 及微积分 I》参考答案及评分标准
试卷类型:B 卷 试卷代号:
1 (dx dy ) + dz ; 2. 7 ; 2
3. 2π e ;
2
4. 2 x + 2 y + z = 6 ; 7. + 1

…………………………(8 分)
n+2 = 1 ,收敛半径为 1, x = ±1 时原级数发散, n →∞ n + 1 …………………………(3 分) 所以收敛域为 (1,1) s ( x) = ∑ (n + 1) x n = (∑ x n +1 )′

高数B2分题型练习(答案)

高等数学B2分题型练习(参考答案)一、单顶选择题1、 ()C2、()D3、()C4、()C5、()C6、()D7、 ()B8、()B9、()B 10、()C 11、()D 12、()A 13、()A 14、()D 15、()D 16、()A 17、()B 18、()B 19、()B 20、()C 21、()C 22、()C 23、()D 24、()C 25、()D 26、()A 27、()B 28、()A 29、()A 30、()D 31、()D 32、()B 33、()A 34、()B 35、()C 36、()A二、填空题1、02、03、 04、05、12 6、12 7、0 8、2dx dy + 9、12dx dy + 10、0 11、0 12、222()xdx ydy x y ++ 13、1arccos 00(,)y dy f x y dx ⎰⎰14、12arcsin (,)ydy f x y dx π⎰⎰15、110(,)dx f x y dy ⎰ 16、210(,)xxdx f x y dy ⎰⎰17、16 18、S 19、0a > 20、12p <≤ 21、( 22、2 23、[1,1)- 24、(2,4)- 25、0(1),(1,1)n n n x x ∞=-∈-∑ 26、0!n n x n ∞=∑ 27、210(1),(,)(21)!n nn x x n +∞=-∈-∞∞+∑28、110- 29、x e - 30、2xy e = 31、2± 32、312x x y C e C e -=+ 33、312y x C x C =++34、C y x = 35、5212415y x C x C =++三、计算定积分1、求定积分cos 2sin x e xdx π⎰解:cos cos cos 222sin cos |1xx x exdx ed x ee πππ=-=-=-⎰⎰2、求定积分cos x xdx π⎰解:cos (sin )x xdx xd x ππ=⎰⎰00sin |sin x x xdx ππ=-⎰0cos |2x π==-3、求定积分220124xdx x ++⎰ 4、求定积分 21ln x xdx ⎰解:2222220001212444x x dx dx dx x x x +=++++⎰⎰⎰ 解:22211ln ln ()2x x xdx xd =⎰⎰ 222001arctan |ln(4)|22x x =++ 22211ln |22x x x dx =-⎰ln 28π=+ 22132ln 2|2ln 244x =-=- 5、求定积分02222dxx x -++⎰解:00022222(1)arctan(1)|()221(1)442dx d x x x x x πππ---+==+=--=++++⎰⎰ 6、求定积分dx 解:令sin x t =,则cos dx tdt =,且当x =时,4t π=;1x =时,2π=t 。

四川大学高数微积分I(下)考前复习用2017年期末真题试卷(含答案)


L
7.微分方程 xy′ + y = x2 满足 y(3) = 4 的特解为

二、解答题 (每小题 9 分,共 36 分)
1.设曲面Σ 为 z =
,求 . ∫∫ x2 + y2 (x2 + y2 1)
(20 xy + 17 y2 )dS
Σ
2.设曲面Σ 为 z = 1 − x2 − y2 ,方向为上侧,求 ∫∫ x2dydz + y2dzdx + . 5z3dxdy Σ 第 1 页,共 2 页
.
解:原式=
´ 2π
0

´π
0

´1
0
r2
·

r2 sin ϕdr
=

·
2
·
1 5
=
4 π.
´5
T、设L是y = x2 − 1上从(0, −1)到(2, 3)的有向曲线,则 ydx + xdy = N
L
解´ y:dx曲+线x积dy分=与−路´02径d无x +关´,−31选2d择y 折=线−2l
2.在椭圆抛物面 z = x2 + y2 与平面 z = 20围成的空间区域中内置一个长方体,假设该长方
20
4
体的一个面位于z = 20上,长方体的其它面都与某个坐标平面平行,求长方体的体积的最大值.
五、证明题 (7 分)
设区域 D 为 x2 + y2 1, I = ∫∫ sin( x2 + y2 )5/2dxdy ,求证: D
三、综合题 (每小题 9 分,共 18 分)
1.讨论函数
f
( x,
y)
=

四川大学高数微积分I(下)考前复习用2016年期末真题试卷(含答案)

四川大学期末考试试卷A(2015‐2016年第二学期)科目:微积分II 课程号: 考试时间:120分钟注:请将答案写在答题纸对应的方框内,否则记0分。

一、 填空(每小题3分,共18分)1. 22011xy xy y x -+→→lim=41. 2. 设0=-,则--),,(x z z y y x F x z ∂∂= 0232313≠---'''''',F F F F F F . 3. 若0d ,则d 022=+⎰⎰xx y t t t t e sin )(cos x yd d = 22y ex x cos )(sin cos - . 4. 函数y x 在),(01取极y xy x y x f +-+-=222),( 小 值. 5. 21)'(的通解是 ''y y +=))sin(ln(21C x C y +-= .6. 若区域D 由0=x ,0=y ,21=+y x ,1=+y x 围成,且,y x d 12,y x d d 12,+∈Z n ,依从小到大的顺序给321I I I ,,排序为 ⎰⎰++=D n y x y x I d d 121)][ln(⎰⎰+=DI 2+n y ]x [d I 3⎰⎰=Dx [sin(++n y )]231I I I << .二、 计算题(每小题8分,共48分)1. 求x x 的通解.e y y x sin ''432+=-解:齐次问题的特征方程为1, 1012-==⇒=-λλλ,则齐次问题的通解为。

x x e C e C y -+=21特解可分解为,x e y y 23=-''x x y y sin ''4=-的特解之和。

x e y y 23=-''的特解为,x e 2x x y y sin ''4=-的特解为)cos sin (x x x +-2,则所求方程的通解为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档