数字图像处理 (2)
数字图像处理(第二版)章 (2)

第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)
计算机图形_Digital Image Processing, 2nd ed(数字图像处理(第2版))

Digital Image Processing, 2nd ed(数字图像处理(第2版))数据摘要:DIGITAL IMAGE PROCESSING has been the world-wide leading textbook in its field for more than 30 years. As the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992 edition by Gonzalez and Woods, the present edition was prepared with students and instructors in mind. The material is timely, highly readable, and illustrated with numerous examples of practical significance. All mainstream areas of image processing are covered, including a totally revised introduction and discussion of image fundamentals, image enhancement in the spatial and frequency domains, restoration, color image processing, wavelets, image compression, morphology, segmentation, and image description. Coverage concludes with a discussion on the fundamentals of object recognition.Although the book is completely self-contained, this companion web site provides additional support in the form of review material, answers to selected problems, laboratory project suggestions, and a score of other features. A supplementary instructor's manual is available to instructors who have adopted the book for classroom use.中文关键词:数字图像处理,图像基础,图像在空间和频率域的增强,图像压缩,图像描述,英文关键词:digital image processing,image fundamentals,image compression,image description,数据格式:IMAGE数据用途:DIGITAL IMAGE PROCESSING数据详细介绍:Digital Image Processing, 2nd editionAbout the BookBasic InformationISBN number 020*******.Publisher: Prentice Hall12 chapters.793 pages.© 2002.DIGITAL IMAGE PROCESSING has been the world-wide leading textbook in its field for more than 30 years. As the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992 edition by Gonzalez and Woods, the present edition was prepared with students and instructors in mind. The material is timely, highly readable, and illustrated with numerous examples of practical significance. All mainstream areas of image processing are covered, including a totally revised introduction and discussion of image fundamentals, image enhancement in the spatial and frequency domains, restoration, color image processing, wavelets, image compression, morphology, segmentation, and image description. Coverage concludes with a discussion on the fundamentals of object recognition.Although the book is completely self-contained, this companion web site provides additional support in the form of review material, answers to selected problems, laboratory project suggestions, and a score of other features. A supplementary instructor's manual is available to instructors who have adopted the book for classroom use.Partial list of institutions that use the book.NEW FEATURESNew chapters on wavelets, image morphology, and color image processing.A revision and update of all chapters, including topics such as segmentation by watersheds.More than 500 new images and over 200 new line drawings and tables.A reorganization that allows the reader to get to the material on actual image processing much sooner than before.A more intuitive development of traditional topics such as image transforms and image restoration.Numerous new examples with processed images of higher resolution. Updated image compression standards and a new section on compression using wavelets.Updated bibliography.Differences Between the DIP and DIPUM BooksDigital Image Processing is a book on fundamentals.Digital Image Processing Using MATLAB is a book on the software implementation of those fundamentals.The key difference between the books is that Digital Image Processing (DIP) deals primarily with the theoretical foundation of digital image processing, while Digital Image Processing Using MATLAB (DIPUM) is a book whose main focus is the use of MATLAB for image processing. The DIPUM book covers essentially the same topics as DIP, but the theoretical treatment is not asdetailed. Some instructors prefer to fill in the theoretical details in class in favor of having available a book with a strong emphasis on implementation.© 2002 by Prentice-Hall, Inc.Upper Saddle River, New Jersey 07458All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.The author and publisher of this book have used their best efforts in preparing this book.These efforts include the development, research, and testing of the theories and programs to determine their effectiveness.The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book.The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.数据预览:点此下载完整数据集。
c语言数字图像处理(二):图片放大与缩小-双线性内插法

c语⾔数字图像处理(⼆):图⽚放⼤与缩⼩-双线性内插法图像内插假设⼀幅⼤⼩为500 * 500的图像扩⼤1.5倍到750 * 750,创建⼀个750 * 750 的⽹格,使其与原图像间隔相同,然后缩⼩⾄原图⼤⼩,在原图中寻找最接近的像素(或周围的像素)进⾏赋值,最后再将结果放⼤最邻近内插法寻找最近的像素赋值双线性内插法v(x,y) = ax + by + cxy + d双线性内插法参数计算已知Q11, Q12, Q21, Q22,要插值的点为P点,⾸先在x轴上,对R1,R2两个点进⾏插值然后根据R1和R2对P点进⾏插值化简得对于边界值的处理,若x1 < 0 ,则直接令f(Q11), f(Q12) = 0处理结果原图扩⼤为6000 * 4000缩⼩为1000 * 500下⾯为代码实现的主要部分int is_in_array(short x, short y, short height, short width){if (x >= 0 && x < width && y >= 0 && y < height)return1;elsereturn0;}void bilinera_interpolation(short** in_array, short height, short width, short** out_array, short out_height, short out_width){double h_times = (double)out_height / (double)height,w_times = (double)out_width / (double)width;short x1, y1, x2, y2, f11, f12, f21, f22;double x, y;for (int i = 0; i < out_height; i++){for (int j = 0; j < out_width; j++){x = j / w_times;y = i / h_times;x1 = (short)(x - 1);x2 = (short)(x + 1);y1 = (short)(y + 1);y2 = (short)(y - 1);f11 = is_in_array(x1, y1, height, width) ? in_array[y1][x1] : 0; f12 = is_in_array(x1, y2, height, width) ? in_array[y2][x1] : 0; f21 = is_in_array(x2, y1, height, width) ? in_array[y1][x2] : 0; f22 = is_in_array(x2, y2, height, width) ? in_array[y2][x2] : 0; out_array[i][j] = (short)(((f11 * (x2 - x) * (y2 - y)) +(f21 * (x - x1) * (y2 - y)) +(f12 * (x2 - x) * (y - y1)) +(f22 * (x - x1) * (y - y1))) / ((x2 - x1) * (y2 - y1))); }}}。
数字图像处理第二版夏良正著

数字图像处理第二版夏良正著(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如条据书信、合同协议、演讲致辞、规章制度、应急预案、读后感、观后感、好词好句、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as policy letters, contract agreements, speeches, rules and regulations, emergency plans, reading feedback, observation feedback, good words and sentences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!数字图像处理第二版夏良正著数字图像处理第二版(夏良正著)数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理 第2章 图像的数字化与显示

(2.20)
2.3.3 空间与灰 度级分辨率
对一幅图像,当量化级数Q一定 时,采样点数 M×N 对图像质量有着显 著的影响。采样点数越多,图像质量越 好;当采样点数减少时,图像越小,图 上的块状效应就逐渐明显。
图像的采样与数字图像的质量
图像的量化与数字图像的质量
量化级数越多,图像质量越好,当量化级数越少时,图像质量越 差,量化级数最小的极端情况就是二值图像,图像出现假轮廓。
2.2 图像场取样
2.2.1 取样和量化的基本概念
数字化包括取样和量化两个过程 :
取样(sampling):对空间连续坐标(x, y)的 离散化 量化(quantization):幅值 f (x, y)的离散化
(a)连续图像
(b)数字化结果
图2.1 图像的数字化过程
(a)
(b)
图2.2 采样网格 (a) 正方形网格; (b) 正六角形网格
截止频率。
u U c , v Vc u U c , v Vc
(2.8)
其中 U c , Vc 对应于空间位移变量x和y的最高
则当采样周期
x, y满足
(2.9)
1 u s 2U c x 1 vs 2Vc y
此时,通过采样信号 f ( mx, ny ) 能唯一地恢 复或重构出原图像信号f (x,y)。该条件称为 Nyquist采样定理。
• 2.3.1
•
标量量化
标量量化:将数值逐个量化 。 例:假设抽样信号的范围是0~5 V,将它分为8等
分,这样就有8个量化电平,分别是5/8 V,10/8 V,15/8 V,…,35/8 V。 对每一个采样将它量化为离它最近的电平。 在量化后,为了能在数字信号处理系统中处理 二进制码,还必须经过编码操作。
胡学龙《数字图像处理(第二版)》课后习题解答

2
1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘 莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 P扫描仪、数码相机等图像输入设备采集的图 像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能 可以很方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对 图像进行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色 模式的转换、改变图像的尺寸和分辨率、制作网页图像等。
1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有相互 间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发 出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础 类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高了代码 的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且复杂,为 了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动态链接库 ImageLoad.dll 支持 BMP、JPG、TIF 等常用 6 种格式的读写功能。 MATLAB 的图像处理工具箱 MATLAB 是由 MathWorks 公司推出的用于数值计算的有 力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆 脱繁杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些 函数可以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计 中的重复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和 算法,如图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检 测、二值图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足 之处限制了其在图像处理软件中实际应用。首先,强大的功能只能在安装有 MATLAB 系统 的机器上使用图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解 释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形 界面的处理不及 C++等语言。为此,通应用程序接口 API 和编译器与其他高级语言(如 C、 C++、Java 等)混合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MATLAB 与外部数据与程序的交互。编译器产生独立于 MATLAB 环境的程序,从而使其他 语言的应用程序使用 MATLAB。
数字图像处理2数字图像基础-4,5,6

2.5 图像处理算法的形式
二.图像处理的几种具体算法形式 1.局部处理
对于任一像素(i,j),把像素的集合 {(i+p,j+q),p、q取任意整数}叫做该像素的邻 域,
2.5 图像处理算法的形式
依赖于起始像素的位置。为此,跟踪处理的结果与从图像 哪一部份开始进行处理相关。
②能够根据利用在此以前的处理结果来限定处理范围,从而 可能避免徒劳的处理。另外,由于限制了处理范围,有可 能提高处理精度。
③用于边界线、等高线等线的跟踪(检测)方面。如根据搜索 法检测边缘曲线。
2.5 图像处理算法的形式
4.位置不变处理和位置可变处理 输出像素JP(i,j)的值的计算方法与像素
的位置(i,j)无关的处理称为位置不变处理或 位移不变处理。随位置不同计算方法也不同的 处理称为位置可变处理或位移可变处理。
2.5 图像处理算法的形式
5.窗口处理和模板处理 单独对图像中选定的矩形区域内的像素进
行处理的方式叫做窗口处理。 单独对图像中选定的任意形状的像素进行
0
255 0
255 0
255
(a) 恰当量化 (b)未能有效利用动态范围 (c)超过了动态范围
2.4 图像灰度直方图
2. 边界阈值选取(确定图像二值化的阈值)
假设某图象的灰度直方图具有 二峰性,则表明这 个图象的较亮的区域和较暗的区域可以较好地分离, 以这一点为阈值点,可以得到好的二值处理的效果。
2.4 图像灰度直方图
1 2 3 45 6 6 4 3 22 1 1 6 6 46 6 3 4 5 66 6 1 4 6 62 3 1 3 6 46 6
第8讲—第四章 数字图像处理技术(2)

y (x,y) x
图像的帧处理 ● 图像的帧处理 —— 将一幅以上的图像以某种特定的形式合成在一起, 将一幅以上的图像以某种特定的形式合成在一起, 特定的形式合成在一起 形成新的图像。 形成新的图像。 1) 进行“逻辑与”、“逻辑或”、“异或”的合成运 进行“逻辑与” 逻辑或” 异或” 算。 2) 按照相加、相减以及有条件的复合算法进行合成。 按照相加、相减以及有条件的复合算法进行合成。 3) 覆盖、取平均值进行合成。 覆盖、取平均值进行合成。
2.8
2.8
4
5.6 8 11 16 22
4 5.6 8
● 光圈与速度的关系 (1) 速度 曝光量 速度↑ 曝光量↓ (2) 光圈 曝光量 光圈↑ 曝光量↑ ● 感光度
11 16 22
B
8 15 30 60 125 250 500 1000
快门 1/s
感光指数为常数时的关系
60°—— 感光速度慢,颗粒小,影像清晰,适于光照条件非常好的场合 ° 感光速度慢,颗粒小,影像清晰, 100°—— 感光速度中等,颗粒中,影像较清晰,适于白天 ° 感光速度中等,颗粒中,影像较清晰, 400°—— 感光速度快,颗粒较粗,影像一般,适于傍晚、黎明、室内 ° 感光速度快,颗粒较粗,影像一般,适于傍晚、黎明、 1000°—— 感光速度极快,颗粒粗,影像一般,适于高速运动物体的摄影 ° 感光速度极快,颗粒粗,影像一般,
3
图像的获取 ● 图像获取 —— 把自然影像转换成数字化图像的过程。 把自然影像转换成数字化图像的过程。 获取途径 1) 利用设备进行模数转换 数码相机
扫描仪 2) 从光盘图像库或互联网上获取 PCD、JPG格式 、 格式 数字图像
4
互联网合法渠道
图像扫描技术 ● 保证扫描质量的条件 ● 正确的扫描方法 ● 正确的扫描参数 ● 合适的颜色深度 ● 适当的后期处理 选择分辨率 ≮300 dpi TWAIN扫描驱动程序 TWAIN扫描驱动程序 调整 亮度/对比度 亮度 对比度 饱和度 色调 ≮24 bit 增加锐度 去网纹
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理的理论基础及发展方向一、数字图像处理的起源及发展数字图像处理(Digital Image Processing) 将图像信号转换成数字信号并利用计算机对其进行处理,起源于20 世纪20年代,目前已广泛地应用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,已成为一门引人注目、前景远大的新型学科,发挥着越来越大的作用。
数字图像处理作为一门学科形成于20 世纪60 年代初期,早期的图像处理的目的是改善图像的质量,以人为对象,以改善人的视觉效果为目的,首次获得实际成功应用的是美国喷气推进实验室(J PL)并对航天探测器徘徊者7 号在1964 年发回的几千张月球照片使用了图像处理技术,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,随后又对探测飞船发回的近十万张照片进行了更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
数字图像处理取得的另一个巨大成就是在医学上获得的成果,1972 年英国EMI 公司工程师Ho usfield 发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph) 。
1975 年EMI 公司又成功研制出全身用的CT 装置,获得了人体各个部位鲜明清晰的断层图像。
1979 年这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。
随着图像处理技术的深入发展,从70 年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界。
很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。
其中代表性的成果是70 年代末MIT 的Ma rr 提出的视觉计算理论,这个理论成为计算机视觉领域其后多年的主导思想。
图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。
正因为如此,图像处理理论和技术受到各界的广泛重视,当前图像处理面临的主要任务是研究新的处理方法,构造新的处理系统,开拓更广泛的应用领域。
二、数字图像处理的研究内容数字图象处理,就是采用计算机对图象进行信息加工。
图象处理的主要内容有:图像的采集、增强、复原、变换、编码、重建、分割、配准、嵌拼、融合、特征提取、模式识别和图象理解。
对图像进行处理(或加工、分析)的主要目的有三个方面:1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。
2)提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。
提取特征或信息的过程是模式识别或计算机视觉的预处理。
提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。
3)图像数据的变换、编码和压缩,以便于图像的存储和传输。
不管是何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。
三、数字图像处理和分析模块的基本构成一个基本的图像可由五部分表示:这五部分分别是:采集、显示、存储、通信、处理和分析。
1)图像采集模块为采集数字图像,需要两种装置。
一种是对某个电磁能量谱段(如X射线、可见光、红外线等)敏感的物理器件,它能产生与所接受到的电磁能量成正比的(模拟)电信号。
另一种称为数字化器,他能将上述电信号转化为数字形式,所有采集数字图像的设备都需要这两种装置。
2)图像显示模块对于图像处理来说,最终的目的是要显示给人看的。
对于图像分析来说,分析的结果也可以借助计算机图形学技术转换为图像形式直观的显示。
所以图像的显示对其处理和分析系统是非常重要的。
常用的图像处理和分析系统主要显示设备是显示器,输入显示图像也可拷贝到照片或透明胶片上,除了显示器,还有投影仪和各种打印设备可以用于图像输出显示。
3)图像存储模块图像包含有大量的信息因而存储图像也需要大量空间。
用于数字处理和图像分析的数字存储器可分为三类:a,处理和分析过程中使用的快速存储器。
计算机内存就是一种提供快速存储功能的存储器,在图像处理中大量的运算所产生的缓存数据可以存储在里面,方便随时调用数据进行图像处理运算。
b,用于比较快速的重新调用的在线或联机存储器。
c,不经常使用的数据库存储器。
这种存储器的特点是要求非常大的容量,但对数据读取不太频繁,常用于对数字图像的保存。
4)图像通信模块随着网络发展的进步,图像的通信传输也得到极大关注。
图像传输可使不同的系统共享图像数据资源,极大地推动了图像在各个领域的应用。
5)图像处理和分析模块对图像的处理和分析一般可用算法来描述,而大多数算法可通过软件来实现,在为了提高速度和克服通用计算机的缺陷时才应用专用的硬件实现。
90年代后,各种工业标准的订立也促进了图像处理分析软件的发展,使图像处理变得更加方便快捷。
四、图像处理的常用方法1)图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像的增强图像的增强用于调整图像的对比度,突出图像中的重要细节,改善视觉质量。
通常采用灰度直方图修改技术进行图像增强。
图像的灰度直方图是表示一幅图像灰度分布情况的统计特性图表,与对比度紧密相连。
如果获得一幅图像的直方图效果不理想,可以通过直方图均衡化处理技术作适当修改,即把一幅已知灰度概率分布图像中的像素灰度作某种映射变换,使它变成具有均匀灰度概率分布的新图像,使图像清晰。
3)图像的平滑图像的平滑处理即图像的去噪声处理,主要是为了去除实际成像过程中,因成像设备和环境所造成的图像失真,提取有用信息。
实际获得的图像在形成、传输、接收和处理过程中,不可避免地存在外部干扰和内部干扰,如光电转换过程中敏感元件灵敏度的不均匀性、数字化过程的量化噪声、传输过程中的误差以及人为因素等,均会使图像变质。
因此,去除噪声恢复原始图像是图像处理中的一个重要内容。
4)边缘锐化图像边缘锐化处理主要是加强图像中的轮廓边缘和细节,形成完整的物体边界,达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。
锐化的作用是要使灰度反差增强,因为边缘和轮廓都位于灰度突变的地方。
所以锐化算法的实现是基于微分作用。
它是早期视觉理论和算法中的基本问题。
5)图像的分割图像分割是将图像分成若干部分,每一部分对应于某一物体表面,在进行分割时,每一部分的灰度或纹理符合某一种均匀测度度量。
其本质是将像素进行分类。
分类依据是像素的灰度值、颜色、频谱特性、空间特性或纹理特性等。
图像分割是图像处理技术的基本方法之一,应用于诸如染色体分类、景物理解系统、机器视觉等方面。
五、数字图像处理现今存在的问题和未来的方向图像提取技术得到了越来越多学者的关注,产生了很多的研究成果,但是仍存在以下点不足和有待解决的问题:(1)缺乏统一的评价标准;(2)缺乏先验知识来支持系统;(3)最终提取边界很大程度上依赖于T;(4)图像提取系统的计算量都比较大。
图像提取技术研究作为图像处理中一个重要研究分支,引人大量概率统计理论,目前图像提取技术领域的研究依然非常活跃。
如华盛顿大学专门成立了图形图像实验室( GRAIL),由SONY等企业联合一些大学也进行了相关的研究,Microsoft 在其亚洲微软研究院(MRA)专门设有图形图像处理技术研究所和交互可视媒体研究组,北京大学、浙江大学等都相继成立了从事数字图像处理技术研究的国家重点实验室。
天津大学从研制数字电视及电影制作设备(如切换台等)的角度,也对图像提取技术进行了较深人的研究。
笔者认为:前景与背景间交界区域估计模型仍是该领域研究的一个重点。
小波变换图像压缩编码有待解决的主要问题:尽管小波变换图像压缩编码算法具有结构简单、无需任何训练、支持多码率、压缩比较大、图象复原质量较理想等特点,但在不同程度上存在压缩/ 解压缩速度慢、图像复原质量不理想等问题,为了进一步改善此算法的工作效率,需要解决以下 2 个主要问题:正交小波基的选择问题;数据向量量化编码算法的选择问题。
纹理的理论和应用研究取得了丰富的成果,但也有一些与之相关的概念和理论尚未取得一致的看法,纹理研究方法多从信号处理、模式识别理论发展而来,并且处在不断的发展之中。
经过近90 年的发展,特别是第3 代数字计算机问世后,数字图像处理技术出现了空前的发展,但存在一定的问题,具体体现在以下5 个方面:(1)在提高精度的同时着重解决处理速度的问题,巨大的信息量和数据量和处理速度仍然是一对主要矛盾;(2)加强软件的研究和开发新的处理方法,重点是移植其他学科的技术和研究成果;(3)边缘学科的研究( 如人的视觉特性、心理学特性的研究的突破) 促进图像处理技术的发展;(4)理论研究已逐步形成图像处理科学自身的理论体系;(5)建立图像信息库和标准子程序,统一存放格式和检索。
图像信息量和数据量大,若没有图像处理领域的标准化,图像信息的建立、检索和交流将是一个极严重的问题,交流和使用极不便,造成资源共享的严重障碍。
图像处理技术未来发展大致体现在在以下4个方面:1)朝高速、高分辨率、立体化、多媒体、智能化和标准化方向发展。
具体表现:(1)提高硬件速度。
这不仅仅要提高计算机的速度,而且A/ D 和D/ A 的速度要实时化;(2)提高分辨率。
主要是提高采集分辨率和显示分辨率,其主要困难是显像管的制造和图像图形刷新存取速度;(3)立体化。
图像是二维信息,信息量更大的三维图像将随意计算图形学及虚拟现实技术的发展将得到广泛应用。
(4)多媒体化。
20世纪90 年代出现的多媒体技术,其关键技术就是图像数据的压缩,目前数据压缩的国际标准有多个,而且还在发展,它将朝着人类接收和处理信息最自然的方式发展。
(5)智能化。
力争使计算机识别和理解能够按照人的认识和思维方式工作,能够考虑到主观概率和非逻辑思维。
(6)标准化。
从整体上看,图像处理技术目前还没有国际标准。
2)图像和图形相结合朝着三维成像或多维成像的方向发展。
3)硬件芯片的开发研究。
目前结合多媒体的研究,硬件芯片越来越多,如Thomson 公司ST13220 采用Systolic结构设计了运动预测器,把图像处理的众多功能固化在芯片上,为实践服务。