飞机结构设计
飞机前起落架结构设计

飞机前起落架结构设计飞机前起落架结构设计8.7 前起落架的设计特点为了保证飞机在地面运动时有足够的滑跑稳定性,前轮应能绕支柱轴线自由定向旋转,因此在设计时要附加某些装置.一、前轮的自由定向及偏转操纵装置由于飞机在地面运动时要求灵活稳定,当飞机受到侧向力(如侧风、单边主轮受撞击等)而使机头偏向时,前轮应能自动转回原方向,并使飞机也e9较方便地转回原方向滑跑,面不致越偏越大,这是地面方向稳定性对前轮的要求.即便是方向稳定性好的前三点配置形式,如果将前轮固定死,则前轮处的摩擦力也将产生一定的不稳定力矩,使机头有越偏越大的趋势(图8.37)。
另外,地面滑行刹车转弯时(如刹住一侧主轮)也需前轮能自由,转以减小转弯半径。
因而现代飞机的前轮都不固定锁死,而有一定的偏转自由度,其最大值已。
由所需的最小转弯半径来定,即一般已,=~50’。
此外,为使前轮能自动转回飞机的前进方向,这就须将前轮放在支柱轴线后一定的距离“广(称为稳定距)处,这样,万一出现偏向,也会很快复原(参见图8.39).稳定距“广大一些则稳定性好,但对起落架受力不利,一般取,二e.1一o.4D(D为前轮直径)。
为了增大飞机地面运动的灵活性以保证矗小转弯半径,有的飞机,特别是大型旅客机,还装有使前轮偏转的操纵机构(如图8.38所示)。
飞机前起落架结构设计二、前轮的减摆装置当前起落架没有采用合适的减撰措施时前轮可能会出现摆振,即飞机在地面滑跑到一定速度时,能自由偏转的机轮和支柱的弹性振动与轮面的转动交织在一起,出现一种剧烈的僻摆振动,它会引起机头强烈摇晃,这种现象称为前轮摆振。
振动可能越来越厉害,直至支柱折断,轮胎撕裂,在很短的时间内酿成严重事故。
产生前轮摆振的原因是由于机轮(连带支柱)是一个弹性体.当偶然受到外力千扰时(如跑道不平、侧风、操纵不当等)使机轮偏离前进轴线一个距离^。
(图8.39)。
这时轮面倾斜,轮胎接地部分的形状变成弯腰形。
当飞机继续前进时,机轮将一边《9转“角;同时由于弹性恢复力的作用,一边向前进轴线靠近(减小^).当达到^二o,"二Jo时,由于惯性关系,在继续往前滚时又出现了一^,同时就又出现了弹性恢复力,而轮胎接地部分变成反的弯腰形,这样就使得A反向增大,到一厶后又开始减小。
飞机机身结构设计与优化

飞机机身结构设计与优化导语:随着飞机技术的不断发展,飞机机身结构的设计与优化成为了一个关键的研究领域。
本文将从飞机机身结构的重要性、设计原则、优化方法等方面探讨飞机机身结构的设计与优化技术。
一、飞机机身结构的重要性飞机机身结构作为飞机的骨架,承载了飞机的整个重量以及在飞行中产生的各种力和应力。
因此,飞机机身结构的设计与优化是确保飞机运行安全的重要环节。
合理的机身结构设计可以提高飞机的安全性能、减轻飞机的重量、提高飞机的飞行效率,从而减少能源消耗和环境污染。
二、飞机机身结构的设计原则1.安全性原则:飞机机身结构设计的首要原则是确保飞机的安全。
机身结构必须能够承受各种力和应力,不出现破裂和变形。
在设计中,需要考虑飞机在逆风、风切变等恶劣气象条件下的安全性能,以及在碰撞、爆炸等突发情况下的抗冲击能力。
2.轻量化原则:轻量化是飞机设计的重要指标之一。
减轻飞机的重量可以降低燃油消耗、延长飞机的续航能力,并且可以减少对环境的污染。
因此,在飞机机身结构的设计中,需要选择轻量化材料,并采用优化的结构设计方法,使得机身的重量最小化。
3.刚性和稳定性原则:飞机机身结构的刚性和稳定性对于飞机的操纵性和稳定性至关重要。
机身结构必须具有足够的刚性,使得飞机在飞行过程中不会出现过大的变形和振动。
同时,机身结构还需要具有足够的稳定性,以保证飞机的飞行平稳。
三、飞机机身结构的优化方法1.材料优化:飞机机身结构的材料选择对于整体性能的提升至关重要。
研发新型轻质、高强度的材料是目前的研究方向之一。
例如,使用复合材料代替传统的金属材料,可以显著降低机身的重量。
2.结构优化:在飞机机身结构的设计中,结构优化是一种常用的方法。
结构优化可以通过调整结构的几何形状,使得机体在保证刚性和安全性能的前提下,尽量减轻重量。
此外,结构优化还可以通过改变材料厚度、加固关键部位等方式,进一步提高机身的安全性能。
3.计算仿真优化:计算机仿真技术在飞机机身结构的优化中发挥了重要作用。
飞机结构设计岗位职责

飞机结构设计岗位职责
飞机结构设计岗位的职责主要是负责飞机的机身结构设计和优化,包括机身外形设计、钢铝等材料的使用、零件的设计、3D模型
的制作及结构分析等方面。
具体来说,该职位的职责包含以下几个方面:
1. 编制飞机结构设计方案:根据飞机使用的需求和性能要求,
结合市场和技术情况,编制飞机结构设计方案。
这要求设计师不仅
了解飞机工业的相关技术和标准,也要熟悉飞机市场和行业的动态。
2. 完成飞机结构设计:根据飞机结构设计方案,进行具体的飞
机结构设计,包括零部件的位置、连接、安装等方面的设计,并根
据飞行器的力学性能、飞行状态和环境要求,进行合理的材料选择、合理的零部件布局及设计。
3. 进行结构分析:使用计算机辅助设计/工程软件进行结构建模、制作有限元模型、给出有限元计算结果、评估完整结构的刚度、强度等参数,并进行模拟等流场模型测试,验证设计的合理性,确
保飞机的安全可靠。
4. 与其他部门协调工作:和供应商和认证部门一起协调和解决
飞机零部件的技术问题和认证问题,同时加强与客户和其他部门的
沟通和合作,保证飞机结构设计方案和实际制造过程之间的一致性。
5. 制定配套文件:对于飞机结构设计和分析结果,需要输出配
套的技术文件,包括结构设计图纸、制造工艺流程等文件,同时进
行技术文件的维护和更新。
总之,飞机结构设计是飞机制造的核心环节之一,需要设计师具备扎实的专业知识、严谨的工作态度、优秀的沟通协调能力和较强的团队合作意识,才能确保飞机结构设计的质量和研发效率。
飞机结构设计(第3章-3.1)

载荷分析是机身结构设计的重要环节, 通过对各种载荷进行计算、分析和评 估,确保机身结构满足强度、刚度等 方面的要求。
机身结构的优化设计
机身结构的优化设计是在满足强度、刚度等要求的前提下,对机身结构进行改进和优化,以提高飞机 的性能和降低制造成本。
优化设计可采用多种方法和技术,如有限元分析、拓扑优化、形状优化等,通过对机身结构的材料分布、 结构形式等进行调整和改进,实现结构的最优设计。
集中载荷包括起落架、油箱和武器挂 载等引起的局部载荷。
机翼结构的优化设计
机翼结构的优化设计旨在实现强 度、刚度、疲劳和损伤容限等要
求的最优化。
优化设计方法包括有限元分析、 多目标优化和遗传算法等。
优化设计过程中需考虑材料、工 艺和制造成本等因素,以实现经 济性、可行性和可持续性的平衡。
04
第3章-3.3:尾翼结构设计
荷,并将其传递给骨架。
骨架用于支撑机身结构,承受 内部压力和其他内部载荷,并
保持机身的形状和尺寸。
连接件用于将蒙皮和骨架连接 在一起,传递载荷并保持结构
的完整性。
机身结构的载荷分析
机身结构的载荷主要包括气动载荷、 重力载荷、惯性载荷等,这些载荷在 机身结构中产生应力、应变等效应。
载荷分析还需考虑不同飞行状态下 (如起飞、巡航、着陆等)的载荷变 化,以确保机身结构在不同飞行状态 下都能保持安全和可靠。
桁条用于支撑蒙皮,提高其承载能力和刚 度。
05
06
接头用于将机翼与机身连接起来,传递力 和扭矩。
机翼结构的载荷分析
机翼结构的载荷主要包括气动载荷、 惯性载荷和集中载荷等。
惯性载荷由飞机的加速度和角加速度 引起,包括机翼弯曲、扭转和平移等 惯性力。
第二讲飞机结构设计思想和方法

第二讲飞机结构设计思想和方法飞机结构设计是指在航空工程领域中,按照一定的设计思想和方法,设计出满足飞机设计要求的结构。
飞机结构设计的过程包括结构布局设计、载荷分析、结构材料选用、结构参数设计、结构优化等阶段。
本文将介绍飞机结构设计的基本思想和常用方法。
飞机结构设计的基本思想是在满足强度、刚度、稳定性等安全性要求的基础上,尽可能减少结构重量,提高飞机的性能和经济性。
为了实现这一目标,飞机结构设计需要综合考虑以下几个方面的因素:1.载荷特性:对于不同类型的飞机,其载荷特性会有所不同,例如商用飞机主要受到飞行载荷和地面载荷的作用,军用飞机还会承受额外的战斗载荷。
在设计中需要根据实际情况合理选择载荷、确定载荷分布和载荷时程。
2.结构材料:飞机结构设计需要选择合适的材料来满足强度、刚度和轻量化的要求。
常用的材料包括金属材料(如铝合金、钛合金)、复合材料(如复合纤维增强塑料、复合层板)等。
选择合理的材料能够提高结构的强度,降低结构重量。
3.结构参数设计:飞机结构设计需要确定结构的几何形状和尺寸。
对于主要受力构件,需要合理选择断面形状和尺寸来满足设计要求;对于非受力构件,需要考虑其功能和集成性,设计合理的连接方式和安装方式。
4.结构优化:飞机结构设计中常采用结构优化方法,通过数值模拟和分析的手段,优化设计参数以达到最优的结构性能。
常用的结构优化方法有拓扑优化、尺寸优化、材料优化等。
结构优化可以提高结构的强度、刚度和轻量化水平。
常用的飞机结构设计方法包括经验设计法、传统设计法和计算机辅助设计法。
1.经验设计法:通过以往的经验和实际应用中的成功案例,总结出一些经验法则和设计准则,作为设计的基础。
这种方法具有简单、快捷的特点,但在设计创新性和设计效果上有一定局限性。
2.传统设计法:传统设计法采用一些经典的设计方法和理论,在满足结构强度、刚度和稳定性要求的前提下,通过手工计算和分析,给出结构的几何形状和尺寸。
这种方法需要设计师具备较强的数学和力学知识,设计过程相对繁琐,但能够提供较为可靠的设计结果。
飞机结构设计 第7章 机身结构设计(修改)

矩分布规律相符将有利于减轻框的重量。
注意: 上述曲线不能作为强度计算的依据; 工程梁假设不适宜机身的强度校核; 实际上刚框的内力分布与刚框截面形状、框缘形状与尺寸、
蒙皮对框的支持情况等因素有关; 实际刚框真实的内力分布必须通过有限元数值分析或者试
M=kMP•RP
在集中力矩作用处,框缘 截面的弯矩值也最大。
M=kMT •RT
法向集中力P和切向集中力T相比,前者产生 的弯矩较大,其最大值为RP/4,而切向集中力产 生的最大弯矩值约为RT/16。因此,当T=P时,法 向集中力产生的最大弯矩值为切向集中力产生的 最大弯矩值的4倍。
上述结论提醒:
满足机身断面形状与尺寸大小沿纵轴的分布符 合气动布局的要求;满足飞机对于重心的要求。
机身的内部布置和机身与其它部件的连接往往 决定了机身主要传力元构件的布置。
满足各种载重的使用、检测、维护、更换等要 求。
7.1.2 机身结构型式的选择
桁梁式:桁梁的截面面积很大,蒙皮很 薄,长桁很弱。这种结构型式适合于大开 口、小载荷的情况。
7.2 机身主要受力构件布置
受力构件布置的依据: 开口(位置、形状、大小和开口特性): 由内部布置和机身与其它部件的连接协调 关系确定。 集中载荷:由装载布置与机身-机翼、机 身-尾翼、机身-起落架确定。
机身受力构件布置主要是指横向构件(加强框、 普通框)、纵向构件(长桁、桁梁、纵向加强 壁板、加强长桁)以及蒙皮的布置。
(a) 不 对 称 弯 矩的分解方 法-对称与反 对称;
(b) 一 侧 作 用
力矩M时,加
飞机结构设计

飞机结构设计•相关推荐飞机结构设计飞机结构设计南京航空航天大学飞机设计技术研究所2005.9一、本课程的特点注重基础理论概念的实用化、感性化以及工程化注重综合运用知识概念权衡复杂问题分析,抓住主要矛盾寻找解决问题途径的基本设计理念大量工程结构实例的剖析注重培养自行分析、动手设计的主观能力以及工程实用化的实践能力具体要求:注意定性分析,要求概念清楚;实践性强,要求常去机库观察实物;理性推理较差,要求认真上课。
二、基本内容和基本要求内容:飞机的外载荷;飞机结构分析与设计基础不同类型飞机结构的分析;飞机结构的传力分析;飞机结构主要元构件设计原则;内容要求:①掌握飞机结构分析和设计的基本手段——传力分析;②能够正确解释飞机结构元件的布置;③能够正确地分析和设计飞机结构的主要元件。
第1章绪论飞机结构设计将飞机构思变为飞机的技术过程;成功的结构设计离不开科学性与创造性;结构设计有其自身的原理和规律,不存在唯一正确答案,需要不断的探索和完善。
1.1 飞机结构设计在飞机设计中的位置飞机功用及技术要求空-空:军用空-地:截击、强击、轰炸. 战术技术要求运输:客运民用货运使用技术要求运动,……技术要求技术要求:Vmax,升限,航程/作战半径,起飞着陆距离,载重/起飞重量,机动性指标(加速,最小盘旋,爬升),使用寿命;非定量要求:全天候,机场要求,维护要求;趋势:V ,Hmax ,载重,航程;苏-30阵风F-117第四代战斗机(俄罗斯称之为第五代战斗机)更着重强调同时具备隐身技术、超音速巡航、过失速机动和推力矢量控制、近距起落和良好的维修性等性能。
由于各种飞机的用途和设计要求不同,会带来飞机气动布局和结构设计上的差别;飞机设计的基本概念、设计原理和设计方法是一致的;本课程将对典型结构型式进行分析的基础上,将主要介绍飞机设计的基本概念、设计原理和方法。
1.1.1飞机研制过程技术要求飞机设计过程飞机制造过程试飞定型1.拟订技术要求通常可由飞机设计单位和订货单位协商后共同拟订出新飞机的战术技术要求或使用技术要求。
航空行业的飞机结构设计资料

航空行业的飞机结构设计资料航空行业一直以来都扮演着重要的角色,飞机的结构设计是航空行业中至关重要的一环。
本文将介绍航空行业中的飞机结构设计资料,包括设计原则、相关参数和常见材料等。
一、设计原则在航空行业中,飞机的结构设计旨在确保安全、可靠并且具有良好的性能。
以下是一些常见的设计原则:1. 强度与刚度:飞机必须具备足够的强度和刚度,以应对各种外部力和飞行过程中的振动、变形等。
结构设计师需要考虑受力分布、材料强度以及合理的设计模型,以确保飞机的结构能够承受各种载荷。
2. 轻量化:航空行业对于飞机的重量要求较高,因为较轻的飞机可以减少燃料消耗并提高飞行性能。
因此,结构设计师需要在保证强度和刚度的前提下,尽可能减少飞机的重量。
3. 耐久性:飞机通常需要在恶劣的环境条件下运行,如高温、低温、湿度等。
结构设计师需要选择能够在不同环境下保持性能稳定的材料,并采取相应的设计措施以确保飞机的耐久性。
二、相关参数在飞机结构设计中,有一些关键的参数会对设计产生重要影响,包括但不限于以下几个方面:1. 翼展:翼展是指飞机两侧翼展的长度,它会直接影响飞机的横向稳定性和机动性能。
结构设计师需要根据飞机的类型和用途确定合理的翼展大小。
2. 翼型:翼型是指飞机翼面的形状。
翼型的选择会对飞机的升力、阻力和稳定性产生重要影响。
结构设计师需要根据飞机的要求选择适合的翼型,并优化其设计。
3. 腹部曲率:腹部曲率是指飞机机身底部的曲率形状。
腹部曲率的设计会影响飞机的升力和阻力分布,进而影响飞机的飞行性能。
结构设计师需要考虑腹部曲率的合理性和优化设计。
三、常见材料航空行业中,常用的飞机结构材料包括金属和复合材料两大类。
1. 金属材料:金属材料常用于飞机的结构骨架和连接件,具有良好的强度和刚度。
常见的金属材料包括铝合金、钛合金和高强度钢等。
2. 复合材料:复合材料由纤维增强材料和基础树脂组成,具有优异的强度和重量比。
复合材料在飞机结构设计中的应用越来越广泛,常见的有碳纤维增强复合材料和玻璃纤维增强复合材料等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、飞机研制技术要求(1)战术技术要求军用飞机(2)使用技术要求(民用飞机)它包括飞机最大速度、升限、航程、起飞着陆滑跑距离、载重量、机动性(对战斗机)等指标和能否全天候飞行,对机场以及对飞机本身的维修性、保障性等方面的要求。
二、飞机的研制过程四个阶段:1.拟订技术要求2.飞机设计过程3.飞机制造过程4.飞机的试飞、定型过程三、飞机的技术要求是飞机设计的基本依据四、飞机设计一般分为两大部分:总体设计结构设计五、飞机结构设计是飞机设计的主要阶段“结构”是指“能承受和传递载荷的系统”——即“受力结构”。
六、安全系数:安全系数定义为设计载荷与使用载荷之比也就是设计载荷系数与使用载荷系数之比。
其物理意义就是实际使用载荷要增大到多少倍结构才破坏,这个倍数就是安全系数。
八、飞机结构设计的基本要求1.空气动力要求和设计一体化的要求2.结构完整性及最小重量要求3.使用维修要求4.工艺要求5.经济性要求九、结构完整性:是指关系到飞机安全使用、使用费用和功能的机体结构的强度、刚度、损伤容限及耐久性(或疲劳安全寿命)等飞机所要求的结构特性的总称。
十、全寿命周期费用(LCC) (也称全寿命成本) 主要是指飞机的概念设计、方案论证、全面研制、生产、使用与保障五个阶段直到退役或报废期间所付出的一切费用之和。
十一、现代军机和旅客机的新机设计,规范规定都必须按损伤容限/耐久性或按损伤容限/疲劳安全寿命设计。
十二、结构完整性及最小重量要求就是指:结构设计应保证结构在承受各种规定的载荷和环境条件下,具有足够的强度,不产生不能容许的残余变形;具有足够的刚度,或采取其他措施以避免出现不能容许的气动弹性问题与振动问题;具有足够的寿命和损伤容限,以及高的可靠性。
在保证上述条件得到满足的前提下,使结构的重量尽可能轻,因此也可简称为最小重量要求。
十三、使用维修要求飞机的各部分(包括主要结构和装在飞机内的电子设备、燃油系统等各个重要设备、系统),须分别按规定的周期进行检查、维护和修理。
良好的维修性可以提高飞机在使用中的安全可靠性和保障性,并可以有效地降低保障、使用成本。
对军用飞机,尽量缩短飞机每飞行小时的维修时间和再次出动的准备时间,还可保证飞机及时处于临战状态,提高战备完好性。
为了使飞机有良好的维修性,在结构上需要布置合理的分离面与各种舱口,在结构内部安排必要的检查、维修通道,增加结构的开敞性和可达性。
十四、飞机设计思想的发展过程大致可划分为五个阶段(1)静强度设计阶段(2)静强度和刚度设计阶段(3)强度、刚度、疲劳安全寿命设计阶段(4)强度、刚度、损伤容限和耐久性(经济寿命)设计阶段(5)结构可靠性设计试用阶段十五、损伤容限其是指结构在规定的未修使用周期内,抵抗由缺陷、裂纹或其他损伤而导致破坏的能力结构分类1:破损安全(多路传力结构;止裂结构)2:缓慢裂纹扩展十六、飞机的外载荷是指:飞机在起飞、飞行、着陆和地面滑行等使用过程中,作用在机体各部分上的气动力、重力和地面反力等外力的总称。
外载荷的大小取决于飞机的重量、飞行性能、外形的气动力特性、起落架的减振特性以及使用情况等许多因素。
十七、飞机的外载荷按使用情况不同,分为两类:(1)飞行时的外载荷。
(2)起飞、着陆时的外载荷。
十八、损伤容限设计:组成损伤容限结构的特性具有以下三个要素:临界裂纹尺寸或剩余强度、裂纹扩展、损伤检查。
损伤容限结构按可检查度分类:(1)飞机中明显可检结构(2)地面明显可检结构(3)目视可检结构(4)特殊目视可检结构(5)翻修级或基地级可检结构(6)使用中不可检结构十九、飞机重力G(mg)和惯性力N(-ma)均与飞机本身质量m有关,故统称之为质量力二十、载荷系数的定义:除重力外,作用在飞机上的某方向上所有外力之合力与当时飞机重量之比值,叫载荷系数。
载荷系数的物理意义载荷系数表示了实际作用于飞机重心处(坐标原点)除重力外的外力与飞机重力的关系。
载荷系数又表示了飞机质量力与重力的比率。
二十一、载荷系数的实用意义(1) 载荷系数确定了,则飞机上的载荷大小也就确定了。
(2) 载荷系数还表明飞机机动性的好坏二十二、着陆时的载荷系数:着陆载荷系数的定义是起落架的实际着陆载荷Plg与飞机停放地面时起落架的停机载荷Pdg之比二十三、疲劳载荷飞机是一种长期使用的结构体系,根据飞机的类型不同,使用期从几千小时到几万小时。
因此,飞机受到的载荷是多次重复的,这样就形成了疲劳载荷。
前面所讲述到的各种载荷系数仅用来确定飞机结构的静态极限强度和刚度。
在满足静强度、刚度条件下,飞机要反复承受各种机动载荷和着陆时的撞击载荷,这些反复载荷会引起飞机结构的疲劳破坏,而且疲劳破坏在远小于材料的原有静强度情况下就可能发生,因而更具有危险性。
二十四、飞机使用环境谱的编制步骤为:(1)确定飞机使用环境种类(2)根据飞机的战术、技术要求或使用要求,确定飞机在不同地域内服役的时间。
(3)根据使用任务剖面或其他资料,确定各种类型任务不同任务段的时间比例及地面停放时间比例。
(4)获取环境数据(5)编制各类环境谱二十五、蒙皮与长桁、翼梁缘条连接在一起,构成了加劲式薄壁结构,通常称为加劲壁板,同时在机翼上翼肋向加劲壁板提供了横向支持。
当蒙皮较薄、桁条断面尺寸较大时,失稳现象较易确定,这类壁板通常称为经典型加劲壁板。
二十六、副翼反效在大展弦比后掠机翼上较严重这是因为展弦比愈大,对刚度愈不利;而后掠翼弯曲引起顺气流翼剖面的附加扭角,也产生不利于操纵的附加气动力。
二十七、颤振是气动翼面的一种自激振动。
由有关部件的气动力、惯性力和弹性特性的综合作用所引起。
颤振基本上分两种类型:一为机翼的弯扭颤振二为副翼的弯曲颤振二十八、提高机翼(或全动尾翼)弯扭颤振临界速度的有效措施:(1)尽量使重心前移,可加适当的配重。
配重宜放前端或翼尖,且必须有很好的连接刚度。
将配重放于翼尖处,是由于翼尖处弯曲挠度最大,因此其加速度最大,故配重的效率高。
(2)提高扭转刚度能减少不利的扭转变形,也是有好处的。
(3)现代飞机上则经常采用人工阻尼器;(4)更为先进的,则采用颤振主动控制技术二十九、副翼弯曲颤振:提高副翼弯曲颤振临界速度的措施是使副翼结构本身的重心尽量前移,并加以适当的配重。
三十、疲劳破坏的一般特征结构构件在循环或交变载荷作用下,即使载荷的应力水平低于材料的极限强度,经过若干次载荷循环后,也会发生断裂,此即疲劳破坏现象。
疲劳破坏与传统的静力破坏有着本质的区别,其典型的一般特征表现为以下几个方面: (1)疲劳破坏不像静力破坏那样在一次最大载荷作用下发生断裂,而一般要经历一定的甚至是很长的时间。
破坏过程实际是裂纹形成、扩展以至最后断裂的过程。
(2)构件中的循环或交变应力在远小于材料的静强度极限情况下,破坏仍可能发生。
(3)不管是脆性材料还是塑性材料,疲劳破坏在宏观上均表现为无明显塑性变形的突然断裂,故疲劳断裂表现为低应力脆性断裂,这一特征使疲劳破坏具有更大的危险性(不易觉察)。
(4)静力破坏的抗力,主要取决于材料自身的强度;疲劳破坏则对于材料特性、构件的形状尺寸、表面状态、使用条件及外界环境等都十分敏感。
(5)疲劳破坏常具有局部性,而并不牵涉到整个结构的所有构件,因而改变局部细节设计或工艺措施,即可明显地增加疲劳寿命;如在发现裂纹后,更换损伤构件或制止裂纹扩展,结构还可继续使用。
(6)疲劳破坏是一个损伤的长期积累过程,其断口在宏观上和微观上均有其特征,与静强度破坏断口明显不同。
三十一、疲劳断裂的过程大致分为:裂纹成核阶段;裂纹微观扩展阶段;裂纹宏观扩展阶段;最终破坏阶段三十二、疲劳断口及特征(1)疲劳裂纹源区(2)疲劳裂纹扩展区(3)快速断裂区三十三、尺寸效应:零件的尺寸对疲劳性能也有较大影响。
一般地说,零件的疲劳性能随其尺寸的增大而降低。
这种现象称为尺寸效应。
产生尺寸效应的因素:尺寸不同,在相同的承力形式下,零件的应力梯度不同(如果最大应力值相同)。
大尺寸零件的高应力区域大,从统计概率看,产生疲劳裂纹的概率就大。
大尺寸零件中包含了更多可能产生疲劳裂纹的不利因素,例如材料不均匀性、内部缺陷、各向异性等。
加工零件时,表面会有一些硬化。
大多数情况下,硬化可提高疲劳极限,对小试件这种影响更为显著。
表面加工的影响其他三十四、应力强度因子、断裂韧度和能量释放率应力强度因子表征裂纹尖端应力奇异性强度的力学量试验表明,对一定材料,当应力强度因子K 达到某一临界值KC 时,裂纹失稳扩展,断裂随即发生。
试验证明KⅠC 是材料的固有性能,它是衡量材料抵抗裂纹失稳扩展能力的度量,故称之为断裂韧性KⅠC。
裂纹扩展过程中要消耗能量。
三十五、含裂纹结构的剩余强度与裂纹扩展寿命带损伤(含缺陷或裂纹)结构同无损结构比较,承载能力显然要降低。
带损伤结构的实际承载能力称之为剩余强度。
三十六、尾翼上的气动力外载以它的作用分,有以下三类:(1)平衡载荷(2)机动载荷(3)不对称载荷三十七、翼面结构的典型构件从构造上看,机翼、尾翼结构及其构件的组成是完全一致的,故通称为翼面结构。
因翼面结构属薄壁型结构形式,构造上主要分蒙皮和骨架结构。
骨架结构中,纵向构件有翼梁、长桁、墙(腹板);横向构件有翼肋(普通肋和加强肋)。
1.蒙皮的直接功用是形成流线形的机翼外表面。
为了使机翼的阻力尽量小,蒙皮应力求光滑,减小它在飞行中的凹、凸变形。
从受力看,气动载荷直接作用在蒙皮上,因此蒙皮受有垂直于其表面的局部气动载荷。
2.长桁(也称桁条)是与蒙皮和翼肋相连的构件。
3.普通翼肋,构造上的功用是维持机翼剖面所需的形状。
一般它与蒙皮、长桁相连加强翼肋虽也有上述作用,但其主要是用于承受并传递自身平面内的较大的集中载荷或由于结构不连续(如大开口处)引起的附加载荷4、翼梁由梁的腹板和缘条(或称凸缘)组成。
翼梁是单纯的受力件,主要承受剪力Q和弯矩M。
5.纵墙(包括腹板)的缘条比梁缘条弱得多,一般与长桁相近,纵墙与机身的连接为铰接,腹板即没有缘条。
墙和腹板一般都不能承受弯矩三十八、机翼的特点:是薄壁结构,因此以上各构件之间的连接大多采用分散连接,如铆钉连接、螺栓连接、点焊、胶接或它们的混合型式--- 如胶铆等。
连接缝间的作用力可视为分布剪流形式。
除以上构成机翼结构的基本构件外,还有机翼---机身连接接头,它是重要受力件。
接头的形式视机翼结构的受力型式而定。
连接接头至少要保证机翼静定地固定于机身上,即能提供六个自由度的约束。
实际上一般该连接是静不定的。
三十九、翼面结构的典型受力型式有:薄蒙皮梁式主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).多梁单块式从构造上看,蒙皮较厚,与长桁、翼梁缘条组成可受轴力的壁板承受总体弯矩;纵向长桁布置较密,长桁截面积与梁的横截面比较接近或略小;梁或墙与壁板形成封闭的盒段,增强了翼面结构的抗扭刚度,为充分发挥多梁单块式机翼的受力特性,左、右机翼最好连成整体贯穿机身。