水蓄冷技术概述1
新技术专题 论文 水蓄冷技术 简述

我眼中的节能新技术——水蓄冷技术的介绍摘要:介绍了中央空调水蓄冷的含义和节能耗能的原理。
指出了该技术存在的优缺点。
关键词:中央空调蓄冷技术;节能效果;优缺点分析。
Abstract : The meanings and principle of central air- conditioning water storage were introduced. The advantages and disadvantages of the technology were pointed out.Key words :central air-conditioning water storage technology;energy efficiency effect;analysis of advantages and disadvantages。
引言:日本是一个多地震且用地紧张的国家,许多建筑物的地下基础部分采用了双层板状结构,以此增加建筑的抗震能力,而对需空调用冷的建筑可充分利用这一地下空间,将其平面分成多个隔间作为水蓄冷装置,从而发展形成串连混合型水蓄冷空调系统。
在美国等一些国家多数采用垂直分层型水蓄冷装置,属于独立的结构设施,建于建筑物外的场所,也可根据具体条件与建筑物结构设计相结合设于其地下,或利用其管竖井,楼梯间等闲置空间。
空调水蓄冷技术的含义:(1)空调水蓄冷技术的含义空调水蓄冷顾名思义就是在晚上用电谷底时,中央空调主机运行,将冷冻水蓄存起来;待白天用电高峰时,不运行空调主机,用泵将蓄存起来的冷冻水抽出,在空调系统内循环。
(2)空调水蓄冷节能降耗的实际意义空调水蓄冷技术就是利用白天用电高峰时,往往电力供应比较紧张;而晚上用电谷底时,发电厂必须保证部分机组正常运行,这时的电力又是富余的,且不能储存,如果这些电不用掉,只能浪费。
通过水蓄冷项目,把可能浪费的电力资源利用起来,在白天用电高峰时尽量减少用电,形成节能效应;晚上环境温度比较低,冷却温度也相对较低,冷水机组运行效率较白天要高;同时电力部门为错开用电高峰和谷底,对谷底用电电价给予适当优惠,从而达到降低用电费用的效果。
水蓄冷实施条件和技术特点

水蓄冷实施条件和技术特点水蓄冷的实施条件水蓄冷是一种利用水的储热性质实现节能的技术,其实施需要满足以下条件:1.地下水资源充足:水蓄冷需要的是“冷水资源”,而地下水是理想的冷水来源,因为地下水的温度相对稳定,可以满足长期的供水需求。
因此,实施水蓄冷需要保证在该地区存在充足的地下水资源。
2.生产用水规模大:水蓄冷技术需要使用大量的水进行储热,因此需要有足够的生产用水规模来支持水蓄冷的运作。
如果规模过小,反而达不到节能的效果。
3.冷水负荷大:使用水蓄冷技术需要有较大的制冷需求,否则储存的冷水极易被闲置,无法发挥效果。
4.与冷却塔结合使用:水蓄冷技术需要与冷却塔技术相结合使用。
冷却塔可以将暖气体的热量传递到水中,使水温升高,从而实现储热的目的。
水蓄冷的技术特点水蓄冷技术是一种利用水的“储热性质”实现节能的技术,具有以下特点:1.适用范围广:水蓄冷技术可以适用于各种规模的建筑和工厂,在医院、超市、办公建筑、工厂等各个领域都可以使用。
2.节能效果显著:与传统的空调系统相比,使用水蓄冷技术可以实现最高60%的节能效果。
通过在夜间储存冷水,白天再将冷水供给空调系统使用,可以避免对电力系统的过度负荷。
3.维护成本低:使用水蓄冷技术需要投入的设备相对简单,且维护成本相对低廉。
水蓄冷系统的组成主要包括储冷水池、冷水管网、冷却塔、水泵等,维护成本比较低,且使用寿命长。
4.环保无污染:使用水蓄冷技术可以避免空调系统的臭氧破坏和对大气层的污染,因为水蓄冷技术中的压缩机、蒸发器等设备较少,几乎没有二氧化碳、硫化氢等有害气体的排放。
5.使用安全稳定:水蓄冷系统使用水作为储存介质,不存在燃气、电气等安全隐患。
而且水蓄冷技术由于采用水的冷媒进行制冷处理,不会因为冷热传递过程中的温度变化而存在误差,稳定性较高。
总之,水蓄冷技术可以实现节能、环保、使用安全稳定等多种优点,在今后的实际生活和生产中有着广阔的应用前景。
水蓄冷的工作原理

水蓄冷的工作原理水蓄冷,也称水体蓄冷或水储冷),是指通过将冷水存放于水箱等设施中,再利用水箱的大容积、面积和水的比热、密度等优点,以调节室内温度的一种节能环保技术。
水蓄冷技术可以有效降低冷却负荷,减小空调系统的功率,降低空调系统的能耗,实现节能减排的目的。
工作原理水蓄冷系统主要由储水罐、水泵、冷却器、空气处理机等组成。
其工作原理如下:1.利用低峰期的夜间或周末等时段,以低电价电能,使用制冷机组,将水温降至2℃~4℃,并将其存放于储水罐中。
2.白天高峰期,将储水罐中的冷水通过水泵输送至冷却器中,使空气处理机吸入冷水,并经过冷却器的水帘式蒸发器进行空气冷却。
同时,空气处理机通过送风系统将冷却后的空气送入室内,形成凉爽的室内环境。
3.最后,冷却过的水再回流至储水罐中,等候下一个冷水储存周期的来临。
水蓄冷技术的优势1.降低空调系统的功率,缓解电力不足的压力。
2.节约能源,缩短能源回收期,具有较高的经济效益。
3.降低室内湿度与温度,营造舒适的工作和生活环境。
4.对于高层建筑的空气处理,其效果更佳,且能够节省空间。
5.可以与其他节能设备相结合,如太阳能板、地源热泵等,增强综合效益。
水蓄冷技术的应用目前,水蓄冷技术已被广泛应用于办公楼、购物中心、超市、酒店、医院、厂房等多个领域,成为节约能源的一项重要措施。
在未来,水蓄冷技术也将成为建筑节能领域的发展方向之一,提高空调效率,降低空调能耗,同时实现可持续发展,节能减排。
结语水蓄冷技术是以水体为冷源,以调节室内温度的一种节能环保技术。
其工作原理简单易懂,应用广泛。
此外,水蓄冷技术还具有较高的经济效益和环境优势,未来更是随着节能技术的迅速发展而得到迅速普及和发展。
劳特斯水蓄冷120...

改造项目的商业模式
用户: 零投资 零风险 高回报
劳特斯新能源公司: 承担所有技术、投资、风险
16
节能效益承诺模式:建造蓄冷系统的费用由客户投 资,蓄冷节约的电费为客户所有,节能公司承担蓄 冷系统节能效益的风险。按照合用能源管理的理念 ,节能公司通过承诺节约量等方式为客户承担节能 投资风险,并通过申报世界银行/GEF中国节能促 进项目二期担保机构(中国经济技术投资担保有限 公司)实施担保,客户得以高枕无忧的实现低投入 、高回报。
劳特斯新能源公司的技术优势主要在于:1。具有国内最丰 富的自然分层水蓄冷设计经验,国内比较大的水蓄冷项目 几乎全部是由我公司技术人员完成;2。拥有多项与水蓄冷 有关的实用新型和发明专利。
11
劳特斯新能源公司简介
❖ 致力于环境工程和节能技术开发的高科技公司,主 要提供:
大温差水蓄冷空调系统及常规中央空调改造 各种合同能源(费用)管理(EMC)服务
2台
冷冻水温度5.5/11.5℃
冷却水量900m3/h
20
冷却水温度32/38℃
台
1800m3/h,30m, 1450rpm
9台
900m3/h,30m,1450rpm 2台
1200m3/h,18m, 1450rpm
9台
600m3/h,18m,1450rpm 2台
2050m3/h,50m, 1450rpm
20
6.与冰蓄冷系统比较——缺点
❖ 实际案例中,由于冰蓄冷的蓄冷设备一般在多个 蓄冷槽内实现,设备之间需留有检修通道及开盖 距离,而且冰槽内有乙二醇及预留结冰时膨胀空 间,冰蓄冷的蓄水(冰)有效空间一般只是实际 占用空间的一小部分;大温差水蓄冷系统在一个 蓄冷槽内完成全部蓄冷和放冷过程,占用空间绝 大部分是有效的蓄冷空间。具体已投运的项目表 明,大温差水蓄冷的实际占用空间只略大于冰蓄 冷的实际占用空间。
水蓄冷技术

水蓄冷、蓄热知识总结一、所属行业:空调二、技术名称:水蓄冷技术三、适用围:具有分时电价地区的医院、宾馆、商场、办公楼、住宅小区、工矿企业等空调系统和工艺用冷领域四、技术容:1.技术原理水蓄冷中央空调系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源的空调系统2.关键技术蓄冷水箱的结构形式应能防止所蓄冷水和回流热水的混合,提高蓄冷水箱的蓄冷效率,增加蓄村冷水可用能量,因此如何降低冷温水界面间斜温层的厚度是技术的关键。
3.工艺流程五、主要技术指标:斜温层厚度控制在0.9米,水箱完善度达95%以上六、技术应用现状:国已经建成的水蓄冷空调项目超过50个,广西、、等地的项目较多,其中由XX承建的ZZ的水蓄冷空调项目已被列为XX省研究级示工程。
七、典型用户:XX精密瓷(电子行业),用于空调制冷。
改造前,两台制冷量100万kcal/h 冷水机组白天12小时适时供冷,改造后,增加一台容积960立方的蓄冷槽,投资额85万元,夜间电力低谷期8小时开动两台冷水机组对蓄冷罐充冷,白天12小时以蓄冷罐对外供冷,冷水机组不运行。
运行效果:1、企业空调节电:12%;2、日运行费用节省:5608kWh×0.75元/kWh - 4908×0.3元= 2734元/天;3、年运行费用节省: 42万元。
投资回收期二年。
XX药业,用于区域供冷。
改造前空调总建筑面积30000平米,设计日最大冷负荷3208kW,扩建后空调总建筑面积45000平米,设计日最大冷负荷5197kW,增设1800立方蓄冷水槽,不增加冷水机组。
运行效果:水蓄冷改扩建与常规空调扩建比较,年运行费用节约34万元,投资增加43万元,不到二年即可回收多余投资。
八、推广前景和节能潜力:中国政府部门实行了电力供应峰谷不同电价政策,采用需求侧管理(DSM)的水蓄冷技术来达到削峰填谷,是缓解电力建设和新增用电矛盾的有效的解决途径之一。
水蓄冷空调原理

水蓄冷空调原理
随着气候变化和全球温度不断升高,空调已经成为人们生活中必不可少的电器。
然而,传统的空调使用制冷剂来降低室内温度,制冷剂的使用会对环境造成严重污染,加剧全球变暖。
因此,一种新型的空调技术——水蓄冷空调应运而生。
水蓄冷空调的原理是将水作为冷媒贮存在蓄冷槽中,夜间利用低峰电价的时间段,将冷却水通过冷却塔进行制冷,再将制冷后的水储存在蓄冷槽中,白天再利用这些冷却水来制冷。
相比于传统的空调,水蓄冷空调具有以下优点:
1.节能环保:水蓄冷空调采用的是水作为冷媒,避免使用氟利昂等制冷剂,大大降低了对环境的影响。
此外,由于夜间制冷,利用了低峰电价,因此也降低了能源消耗。
2.舒适度高:水蓄冷空调制冷效果好,不会像传统的空调一样出现室内外温差过大的情况,保持室内的舒适度。
3.长寿命:水蓄冷空调的冷却塔是使用冷却水对空气进行冷却,因此塔内不会出现积垢和腐蚀。
同时,水蓄冷空调的整个系统都是封闭的,不会受到污染和氧化的影响,因此使用寿命长。
4.适用范围广:水蓄冷空调不仅适用于大型商业建筑和工业厂房,也适合用于中小型商业建筑和家庭住宅。
尽管水蓄冷空调有这些优点,但也存在一些问题需要解决。
首先,水蓄冷空调需要配备冷却塔,对于空间有限的建筑物来说,这可能会成为难题。
其次,水蓄冷空调需要在夜间制冷,因此需要对电力系统进行调整,以满足夜间低峰电价的需求。
总体来说,水蓄冷空调是一种环保、高效的空调技术,逐渐受到人们的关注和推广。
随着科技的不断发展,相信水蓄冷空调的性能和效率会不断提高,成为未来空调市场的主流产品。
水蓄冷技术概述

不需设额外的设备对冷水温度进行调整;
水蓄冷系统控制简单,运行安全可靠;
在出现紧急状况可及时投入使用,即可以考虑兼作容灾备份冷源使用。
水蓄冷储水形式
多水罐/水槽式储水 迷宫式储水及其水路图
隔板法:类似自然分层式储水法,
在蓄水罐内部安装一个活动的柔性 膈膜或一个可移动的刚性隔板来实 现冷热水的分离,通常隔膜或隔板 为水平布置。这样的蓄水罐可以不 用散流器,但隔膜或隔板的初投资 和运行维护费用与散流器相比并不 占优势。
美观作用外,还
可以一定程度上 掩盖蓄冷罐的功 能性、减轻周边 人员的抵触感
水蓄冷罐的串联形式
数据中心应用中,水蓄冷罐串联接入一般是用于空调系统的容灾备份,
蓄冷罐内的冷水持续流动以保证随时保有备用蓄冷量供应,蓄冷罐通
常采用承压闭式罐形式。
水蓄冷罐的并联形式
在并联接入中,蓄冷罐既作为冷机的负荷端
板式换热器的使用
由上一页的计算公式可推算得知,当蓄冷罐一定时,蓄冷量与放冷回水温度与蓄冷
进水温度间的温差成正比关系,而采用板式换热器需要一、二次侧保证一定的温差用
于换热,假设换热器需要温差1℃,那在蓄冷罐温差普遍只有6~7℃的现状下,蓄冷量 将减少约14%;
使用板式换热器的初衷其实是为了保证水质,但开式蓄冷罐的水质也有其他办法可
大
4~6℃ 较低 较低 可利用现有系统冷源 技术要求低,运行费用较低 较高 可结合消防水池等现有建筑空间一 并使用,冬天可以作为蓄热系统使用
水蓄冷相比冰蓄冷在数据中心运用中的优势
水蓄冷系统可与原空调系统“无缝”连接,无需再额外配置蓄冷冷源或对
原系统用冷水机组进行调整;
水蓄冷系统的冷水温度与原系统的空调冷水温度相近,可考虑直接使用,
水蓄冷峰谷分时电价

水蓄冷峰谷分时电价水蓄冷峰谷分时电价水蓄冷技术是以水为媒介,通过储存和利用冷能来满足建筑物空调能量需求的一种节能技术。
水蓄冷峰谷分时电价机制是指根据电力系统负荷的不同,在一天24小时内划分出峰电价、谷电价和平电价,并根据用户的情况进行电价差异化设置,以促使用户能够在谷时段使用分时电价。
水蓄冷峰谷分时电价的出现,是为了解决电力系统的用电峰值和谷值之间的不匹配问题。
传统的电力系统负荷主要来自于工商业领域,在白天的用电峰值较高,夜晚的用电谷值较低。
然而,由于很多建筑的空调需求与电力系统的用电峰值和谷值不匹配,使得电力系统在高峰时段运转压力大,夜间的用电谷值无法有效利用。
这就导致了电力系统供需不平衡的问题,无法发挥电力系统的最高效能。
水蓄冷技术的应用,可以在晚上或谷时段制冷的同时通过储存冷能来满足白天或峰时段的空调需求。
同时,水蓄冷技术还具备储能能力,能够利用电力系统在用电谷值时段的低电价进行储存,待到用电高峰时段利用,实现用电负荷与供应峰谷的平衡,提高电力系统的供应能力和效率。
因此,水蓄冷峰谷分时电价机制的出现具有巨大的节能潜力和经济效益。
水蓄冷峰谷分时电价的实施需要与电力公司、建筑物使用者和政府等多方合作,以确保机制的顺利推行。
首先,电力公司需要在电价政策上进行调整和优化,制定相应的峰谷分时电价方案,激励用户在用电谷值时段进行用电。
其次,建筑物使用者需要购买并安装水蓄冷设备,与电力系统进行连接,在用电谷值时段进行冷能的储存。
再次,政府应加大政策引导力度,提供适当的奖励机制和政策支持,推广水蓄冷设备的应用。
水蓄冷峰谷分时电价的实施不仅能降低建筑物的能耗,减少对环境的影响,还能为用户带来经济效益。
在用电谷值时段使用水蓄冷设备制冷,用户可以享受到相对较低的电价,满足建筑物的空调需求,同时将高电价的峰时段用电需求降至最低,降低用电成本。
此外,水蓄冷峰谷分时电价机制的实施还能够调节电力系统的负荷曲线,平滑用电峰谷,提高电网的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水蓄冷罐的串联形式
数据中心应用中,水蓄冷罐串联接入一般是用于空调系统的容灾备份, 蓄冷罐内的冷水持续流动以保证随时保有备用蓄冷量供应,蓄冷罐通 常采用承பைடு நூலகம்闭式罐形式。
水蓄冷罐的并联形式
在并联接入中,蓄冷罐既作为冷机的负荷端 (蓄冷模式),也作为末端负荷的供冷源(放 冷模式),根据不同状况切换,如下三页所示。
水蓄冷系统 大 4~6℃ 较低 较低 可利用现有系统冷源 技术要求低,运行费用较低 较高 可结合消防水池等现有建筑空间一 并使用,冬天可以作为蓄热系统使用
水蓄冷相比冰蓄冷在数据中心运用中的优势
水蓄冷系统可与原空调系统“无缝”连接,无需再额外配置蓄冷冷源或对 原系统用冷水机组进行调整; 水蓄冷系统的冷水温度与原系统的空调冷水温度相近,可考虑直接使用, 不需设额外的设备对冷水温度进行调整; 水蓄冷系统控制简单,运行安全可靠; 在出现紧急状况可及时投入使用,即可以考虑兼作容灾备份冷源使用。
实施水蓄冷的基本条件
水蓄冷和冰蓄冷的对比
项目 蓄冷槽容积 冷机冷冻水出水温度 冷机耗电 蓄冷系统初投资 蓄冷冷源 设计及运行 制冷性能系数COP 其他用途
冰蓄冷系统 小(仅为水蓄冷槽的10%~35%) 1~3℃ 较高 较高 需要能独立运行的制冰机组或双工况冷机 技术要求高,运行费用较高 低(比水蓄冷低10%~20%) 无
水蓄冷储水形式
迷宫式储水及其水路图
多水罐/水槽式储水
隔板法:类似自然分层式储水法, 在蓄水罐内部安装一个活动的柔性 膈膜或一个可移动的刚性隔板来实 现冷热水的分离,通常隔膜或隔板 为水平布置。这样的蓄水罐可以不 用散流器,但隔膜或隔板的初投资 和运行维护费用与散流器相比并不 占优势。
自然分层式储水法
即使担心开式蓄冷水罐的水质保持问题,还可以采用氮气密封系统,这种 系统广泛应用于石化行业,用于隔离罐内物质免受大气氧气作用,而且普 遍都是持压罐体,所以应用在我们这种微正压的蓄冷水罐是可行的。
氮封系统原理图
通过在蓄冷罐外 立面采用结构装 饰件,除了起到 美观作用外,还 可以一定程度上 掩盖蓄冷罐的功 能性、减轻周边 人员的抵触感
最适合自然分层的蓄水罐的形状为直立的平底圆柱体。与立方体或长方体蓄水罐相比,圆柱 体在同样的容量下,蓄冷罐的面积容量比最低,热损失就越小,单位冷量的基建投资就越低。
散流器/布水器的形式
蓄冷罐的设计要素
蓄冷罐的容积V的计算公式为:
V=3600*Q/Δt*ρ*Cp*FOM*av 其中除ρ蓄冷水密度(1000kg/m3)、Cp冷水比热容(4.18kJ/kg*℃)为定值外, 其余均为直接影响蓄冷罐最终容积的变量,如Q蓄冷量(RT)、Δt放冷回水 温度与蓄冷进水温度间的温差、FOM蓄冷罐保温效率、av蓄冷罐容积效率。
自然分层式储水的优势与技术关键
一般来说,自然分层法储水既无迷宫法容易产生用水死区导致蓄冷量减少的问题,也无隔板 法机械活动机构的故障隐患,是最简单、有效和经济的储水方法,如果设计合理,蓄冷效率 可以达到85%-95%。
自然分层式储水的技术关键在于散流器/布水器,将水平稳地引入罐中,依靠密度差而不是 惯性力产生一个沿罐底或罐顶水平分布的重力流,形成一个使冷热水混合作用尽量小、厚度 尽量薄的斜温层,要求通过散流器的进出口水流流速合理,以免造成斜温层的扰动破坏。
水蓄冷技术概述
2014_11_29
技术原理
利用夜间谷段电力的低电价,利用数据中心的冷水机组、冷水循环水泵、 冷却循环水泵等设备的备用机组进行工作,将储水罐中的水制冷到5℃以下, 并在白天电价较高的峰段电力期间将蓄藏的低温冷冻水释放出来供空调系统 制冷使用,对电网来说达到削峰填谷的目的,对数据中心来说达到降低电费 的目的。
板式换热器的使用
由上一页的计算公式可推算得知,当蓄冷罐一定时,蓄冷量与放冷回水温度与蓄冷 进水温度间的温差成正比关系,而采用板式换热器需要一、二次侧保证一定的温差用 于换热,假设换热器需要温差1℃,那在蓄冷罐温差普遍只有6~7℃的现状下,蓄冷量 将减少约14%;
使用板式换热器的初衷其实是为了保证水质,但开式蓄冷罐的水质也有其他办法可 以解决,因此,建议无需为了水质问题在蓄冷系统配置板式换热器;
常规空调系统 运行原理简图
水蓄冷系统夜间 蓄冷运行原理图
水蓄冷系统白天 放冷运行原理图
至于如果采用地下水池式冷槽必须使用板式换热器的,或者北方使用了免费冷源的 机房已经使用了板式换热器的,则无需讨论。
开式蓄冷罐的水质保障措施
开式蓄冷水罐虽然与大气接触,但只通过一透气口,与罐外空气接触面很 小,冷冻水中的含氧量变化很小,加上水罐水体量相对于原空调系统的水 量来讲大得多,只要保证初始补水水质合格,以后的水质更容易保持;