给水处理中常用技术概述
给水处理工程知识点

给水处理工程知识点一、概述给水处理工程是指对自然界中的水进行处理,使之达到符合人类生活、生产和环境保护需要的一种技术。
其主要目的是去除水中的杂质、有害物质和微生物,提高水质,确保供水安全。
二、给水处理工程流程1.预处理:包括混凝、絮凝和沉淀等过程,主要目的是去除悬浮颗粒和胶体物质。
2.过滤:通过滤料对水进行过滤,去除残留的悬浮颗粒和胶体物质。
3.消毒:采用化学或物理方法对水进行消毒,杀灭细菌和病毒等微生物。
4.调节pH值:通过加入碱性或酸性物质调节水的pH值,使之适合人类生活和工业用途。
5.软化:通过加入适当剂量的软化剂,去除硬度离子(如钙、镁离子),防止管道堵塞和设备损坏。
6.除氧:通过加热或其他方法将溶解在水中的氧气去除,防止管道腐蚀。
三、各项技术介绍1.混凝:将水中的悬浮颗粒和胶体物质聚集成较大的团块,使之易于沉淀或过滤。
常用的混凝剂有铝盐、铁盐、聚合铝等。
2.絮凝:将混凝后的小颗粒进一步聚集成较大的团块,以便更好地去除。
常用的絮凝剂有高分子有机物、氯化铁等。
3.沉淀:通过重力作用使水中悬浮颗粒和胶体物质沉淀到底部,以便更好地去除。
常用的沉淀池有竖流式、水平流式、斜板式等。
4.过滤:采用不同类型的滤料对水进行过滤,去除残留的悬浮颗粒和胶体物质。
常见的滤料有石英砂、活性炭、陶粒等。
5.消毒:采用化学或物理方法对水进行消毒,杀灭细菌和病毒等微生物。
常用的消毒剂有氯气、次氯酸钠、臭氧等。
6.软化:通过加入适当剂量的软化剂,去除硬度离子(如钙、镁离子),防止管道堵塞和设备损坏。
常用的软化剂有磷酸盐、EDTA等。
7.除氧:通过加热或其他方法将溶解在水中的氧气去除,防止管道腐蚀。
常用的方法有加热、真空泵等。
四、常见问题及解决方法1.水质不佳:可以通过增加混凝剂和絮凝剂的投加量,优化沉淀池结构等方式来改善。
2.管道堵塞:可以通过加入适当剂量的软化剂来去除硬度离子,防止管道堵塞。
3.设备损坏:可以通过增加过滤器和软化器等设备,以及定期维护保养来延长设备寿命。
给排水工艺中的去除硝氮技术

给排水工艺中的去除硝氮技术去除硝氮是给排水处理中重要的环节之一,它对于保护水体环境和人类健康具有重要意义。
随着工业化和城市化进程的不断推进,氮污染问题日益突出,因此研究和应用有效的去除硝氮技术成为当务之急。
本文将介绍几种常见的去除硝氮技术,包括生物法、物化法和电化学法,并对各种技术进行比较和分析。
一、生物法生物法是目前最常用的去除硝氮技术之一。
它利用微生物降解和转化硝酸盐,将其还原为氨氮或氮气,从而实现去除硝氮的目的。
常见的生物法包括厌氧反硝化/硝化法、硝酸盐还原法和植物吸附法。
1. 厌氧反硝化/硝化法:该方法通过在厌氧环境中利用特定微生物的反硝化和硝化作用来达到去除硝氮的目的。
它适用于高浓度硝氮的处理,但后续处理需考虑碳源供给和产生的气体处理等问题。
2. 硝酸盐还原法:该方法利用硝酸盐还原菌将硝酸盐还原为氨氮,通常在厌氧条件下进行。
这种方法操作简单,能耗低,但对于高浓度硝氮的处理效果有限。
3. 植物吸附法:该方法利用水生植物的吸收作用,将水中的硝氮通过植物根系吸附,并以此去除硝氮。
这种方法适用于低浓度硝氮的处理,但对水质的要求较高。
二、物化法物化法是利用化学和物理的手段来去除硝氮。
常见的物化法包括吸附法、膜分离法和氧化法等。
1. 吸附法:该方法利用特定吸附剂对硝氮进行吸附,从而实现去除硝氮的目的。
常用的吸附剂包括活性炭、树脂等。
这种方法操作简单,去除效果较好,但需要对吸附剂进行再生或更换。
2. 膜分离法:该方法利用膜的选择性透过性来实现硝氮的去除。
常见的膜分离技术包括逆渗透、超滤和纳滤等。
这种方法操作复杂,成本较高,但可以实现高效的去除硝氮。
3. 氧化法:该方法利用化学氧化剂将硝酸盐氧化为氨氮或氮气,从而去除硝氮。
常见的氧化剂包括臭氧、高氯酸和过氧化氢等。
这种方法去除效果较好,但操作要求较高。
三、电化学法电化学法是利用电化学反应将硝酸盐还原为氨氮或氮气,从而实现去除硝氮的目的。
常见的电化学法包括电解法和微电解法。
水处理技术总结范文

水是人类不可或缺的生存资源,但随着人类的迅速发展,水污染问题越来越严重,给我们的生活和环境带来了极大的威胁。
因此,水的治理是每个国家和地区都必须面对的重要问题。
水处理技术作为目前最有效的水污染治理手段之一,其发展和应用已经成为水治理领域的重要研究方向。
本文将对目前已经广泛应用的水处理技术进行总结。
一、化学沉淀法化学沉淀法是一种利用化学反应产生的沉淀物质将水中多余的离子、悬浮物或胶体颗粒从水体中分离出来的方法。
该方法通过调整水中某些无机物质的浓度和pH值,使这些物质形成不易溶于水的沉淀物质,从而达到净化水质的目的。
这种方法经济、简单、可靠,对于一些低浓度有机物、重金属离子、泥土颗粒等比较有效。
二、生物净化法生物净化法是以微生物为主体的处理方法,包括好氧生物法、厌氧生物法以及微生物膜技术等。
好氧生物法是最常用的一种生物法之一,通过一定控制条件下的生物氧化过程,将水中的有机物分解为稳定的无机物,并改变水的氧化还原电位来抑制细菌生长。
厌氧生物法则是利用厌氧微生物代谢中产生的复杂物质代替空气等媒介进行分解反应,达到净化水体的目的。
微生物膜技术则是将厌氧或好氧微生物固定在一定载体上构成生物膜,形成新的净水流程。
三、吸附法吸附法是指将固体吸附剂与水中污染物起到相互吸附的作用,使污染物分子从水中向固体吸附剂表面转移的方法。
常见的固体吸附剂包括活性炭、离子交换树脂、天然沸石等。
活性炭具有高比表面积、发达的微观孔隙结构和化学活性等优点,在多种污染物治理中都有优异的性能,具有吸附效果好、使用简便、多用途等特点。
而离子交换树脂则可对水体中的离子交换实现重吸、解吸,并可回收利用,是治理高浓度金属离子及放射性核素污染的一种有效技术。
四、氧化还原法氧化还原法是指应用过硫酸盐、高锰酸钾等氧化剂或还原剂,使得氧化还原体系发生化学反应,使污染物被氧化、降解、还原或沉淀的方法。
其中过硫酸盐具有效率高、速度快、投剂量小的特点,适合在工业废水、化学废水等处置上。
水处理中的新型工艺技术

水处理中的新型工艺技术随着人口的不断增长和环境污染的加剧,水资源短缺和水污染日益严重,如何高效地处理废水并回收水资源,成为了全球共同关注的问题。
在水处理领域,新型工艺技术的出现给人们带来了新的希望。
一、生物反应器生物反应器是一种能够在一定程度上模拟自然界中生物降解废物的设备,常用于污水处理行业中。
传统的生物反应器需添加大量的氧气,而且操作过程中不能保证处理效果的稳定和高效。
而新型的生物反应器应用了生物膜技术,利用生物体自身附着于载体表面,生长成生物膜,形成有效降解废物的微生物群落。
生物膜技术具有运行稳定、降解效率高等颇具优势。
二、电化学技术电化学技术是一种利用电流处理废水的技术,实现了有效去除难降解的污染物,并可回收部分金属资源。
常用的电化学技术包括电化学氧化、电化学还原、电吸附和电沉积等。
这些技术并不需要运用大量的氧气,而是利用电化学反应中电子传递和离子迁移的过程来处理污水。
电化学技术具有处理效率高、处理过程中无二次污染等优点。
三、膜分离技术膜分离技术是一种利用能量驱动力分离物质的技术,常用于水和废水的处理。
膜分离技术的原理是利用半透膜对污染物进行筛选和分离,能有效地去除废水中的悬浮物、胶体、细菌、离子等难以去除的污染物。
膜分离技术具有选择性好、稳定性高等优点。
四、生物载体技术生物载体技术是一种能够将微生物等生物体固定在某种载体上的技术,将生物体与自然或合成的支撑材料相结合,形成为生物载体材料。
生物载体材料能够提供良好的环境支持和大量的生物附着面积,使废水中的微生物成为生物载体表面微生物附着的一部分,实现了对废水的高效处理和回收。
生物载体技术具有操作简单、降解效率高等优点。
五、深度氧化技术深度氧化技术是一种利用化学氧化作用将废水中的有机物氧化成二氧化碳和水的高效技术。
深度氧化技术实现了污染物的完全矿化,有机物几乎可以被氧化成无害的化合物和盐类。
深度氧化技术具有高度处理效率、处理质量高等特点。
结语新型工艺技术的出现和应用,为水处理行业带来了全新的发展机遇。
给排水工艺中的去除氨氮总氮技术

给排水工艺中的去除氨氮总氮技术随着城市发展和人口增长,污水处理成为了一项关键的环保任务。
而其中,去除氨氮和总氮是污水处理过程中的重要指标之一。
本文将介绍几种常用的去除氨氮总氮技术,包括生物法、化学法和物理法。
一、生物法生物法是最常见的去除氨氮总氮的方法之一。
其原理是利用微生物将有机物和氨氮等有害物质转化为无害的固体物或气体。
常用的生物法包括活性污泥法、厌氧氨氧化法和硝化—反硝化法。
1. 活性污泥法活性污泥法利用污水中的微生物菌群,通过细菌的降解作用将氨氮和有机物质转化为沉淀物。
该方法适用于中小型污水处理厂,具有成本低、运行稳定等优点。
2. 厌氧氨氧化法厌氧氨氧化法是利用厌氧菌将氨氮氧化为亚硝酸盐。
该方法适用于高氨氮浓度的废水处理,能够大幅度减少氨氮的去除能耗。
3. 硝化—反硝化法硝化—反硝化法是将氨氮先氧化成硝酸盐,然后通过反硝化将硝酸盐还原为氮气排出。
该方法适用于氨氮浓度较低的废水处理,能够实现氮气的高效去除。
二、化学法化学法是采用化学品与氨氮或总氮发生反应,从而实现去除的方法。
常用的化学法包括硝化—硝化法和氨氮氧化法。
1. 硝化—硝化法硝化—硝化法是利用化学药剂将氨氮转化为亚硝酸盐或硝酸盐,再通过沉淀、吸附等方式进行去除。
该方法适用于废水中氨氮浓度较高的情况,但同时也会产生相应的化学废物。
2. 氨氮氧化法氨氮氧化法是利用高效氧化剂将氨氮氧化为无机氮。
该方法适用于氨氮含量较低的废水处理,但氧化剂的使用会增加运营成本。
三、物理法物理法主要是通过物理手段去除废水中的氨氮和总氮。
常用的物理法包括吸附法和膜分离法。
1. 吸附法吸附法是利用吸附剂吸附污水中的氨氮和总氮物质,从而实现去除。
常用的吸附剂有活性炭、树脂等。
该方法适用于小型污水处理系统,但吸附剂的再生和处理也需要额外考虑。
2. 膜分离法膜分离法是利用膜的筛选作用,通过渗透、过滤等方式将废水中的氨氮和总氮分离出来。
常见的膜分离方法有超滤法、反渗透法等。
常用给水处理工艺

常用给水处理工艺【常用给水处理工艺】一、引言其实啊,水是我们生活中不可或缺的东西。
但你有没有想过,从自然界中获取的水,是怎么变成我们家里干净、卫生、能直接使用的自来水的呢?这就得靠神奇的给水处理工艺啦。
今天,咱们就来好好聊聊这方面的事儿。
二、给水处理工艺的历史1. 早期的简单处理在很久以前,人们对水的处理可简单啦。
说白了就是找个相对干净的水源,直接取用。
比如说,在河边挖个坑,让河水渗进来,沉淀一下杂质,就拿来用了。
这就像我们小时候在沙坑里挖个洞,等水渗进来,虽然简单,但杂质还是很多的。
2. 逐渐发展的工艺随着时间的推移,人们发现这样不行,水还是不干净,容易生病。
于是就有了一些初步的处理方法,像用沙子过滤水。
这就好比用筛子筛面粉,把大颗粒的杂质给筛出去。
3. 现代工艺的形成到了现代,给水处理工艺越来越先进和复杂。
有了各种化学方法、物理方法,还有生物方法,把水里的有害物质去除得干干净净,让我们能放心使用。
三、给水处理工艺的制作过程1. 混凝这一步就像是给水里的杂质“打群架”。
往水里加入混凝剂,让杂质们抱成一团,变得更大更重,容易沉淀下来。
比如说,就像把一群调皮的小孩子聚在一起,他们就跑不动啦。
2. 沉淀经过混凝后的水,进入沉淀池,那些抱成团的杂质就会慢慢沉到池底。
这就好像是让一群跑累了的小孩子坐下来休息,慢慢就都安静下来了。
3. 过滤沉淀后的水还要经过过滤这一关。
过滤池里有各种滤料,比如沙子、石英砂等,把残留的小杂质都拦住。
这就像是过筛子,把细小的颗粒都筛掉。
4. 消毒过滤后的水还得消毒,把水里的细菌、病毒等杀灭。
常见的消毒方法有加氯气、二氧化氯等。
这就好比给水里的“小坏蛋”们来一场“大清洗”,让它们无处可逃。
四、给水处理工艺的特点1. 高效性现代的给水处理工艺能够快速、大量地处理水,满足城市和工业的用水需求。
比如说,一个大型的水厂,一天就能处理几十万吨甚至上百万吨的水,效率那是相当高。
2. 稳定性处理后的水质稳定,不会出现大的波动。
环境保护中的水处理技术

环境保护中的水处理技术随着人们对环境问题的关注日益增强,水资源的保护成为重中之重。
水资源的保护不仅仅需要大家共同的努力,更需要科学技术的支持。
在环境保护中,水处理技术起到了极其重要的作用。
本文将着重介绍环境保护中的水处理技术的应用与发展。
一、传统水处理技术1. 机械过滤机械过滤技术是以捕捉和拦截的方式去掉水中悬浮和漂浮物,如沙子、泥土、食物残渣、树叶、毛发等。
该技术可应用于消费者饮用水、工业废水、污水处理等领域,并广泛应用于水质提升和提高给水水源的稳定性。
2. 吸附吸附技术是通过吸附剂来吸附水中的特定物质,如有机污染物、重金属离子、气味等。
该技术主要用于水的净化处理和废水处理领域。
例如,通过使用粘土、活性炭和氧化铝等材料,可以有效地去除水中的有机物和重金属。
3. 化学沉淀化学沉淀技术是通过将化学药剂加入水中反应,使水中的溶解物质沉淀,从而达到净化水质的目的。
该技术主要用于废水处理领域,常用药剂有聚合氯化铝、氢氧化钙等。
二、近年来的新型水处理技术1. 膜技术膜技术是利用一定的压力,在膜上形成透明的微孔,通过这些微孔,将水中的离子、颗粒、有机物、微生物等从水中过滤出来。
主要包括微滤膜、超滤膜、纳滤膜和反渗透膜等。
该技术在饮用水处理、海水淡化、工业废水处理和污水处理等方面广泛应用。
2. 固定化生物膜技术固定化生物膜技术是利用微生物固定化技术和生物膜反应技术,将有机物和无机物通过生物反应降解或转化为无害物质的一种新型废水处理技术。
固定化生物膜技术在废水处理中的应用效果较好,可以降低生产成本,提高废水处理效果。
3. 微电解技术微电解技术是通过电化学反应,将水中有机物、重金属离子等破坏分解成水和无害的气体、盐等。
该技术在废水处理和饮用水处理中的应用效果较好。
三、未来发展趋势未来,水处理技术将更加注重技术升级,以更高的效率和更低的成本实现环境保护。
未来几年,微生物技术、纳米技术、光催化技术、超声波技术等将成为水处理技术的主要发展方向。
水处理技术基础知识

水处理技术基础知识通常,自然界的液态水中都会或多或少的含有多种杂质,才使得不同的水体呈现不同的颜色、浊度、色度等物理或化学特性,这些杂质按颗粒大小分为以下三类:①悬浮物质:指悬浮于水中的物质(颗粒直径大于10-4mm)。
其中相对密度大于1的,如泥土、砂粒等;相对密度小于1的,如水藻、植物残渣及细菌等。
②胶体物质:指水中带电荷的胶体微粒,颗粒直径在10-9~10-5mm之间。
如硅、铁、铝的化合物及一些高分子的有机物如腐殖质等,也有一些粒径在此范围内的细菌、菌胶团、病毒等。
悬浮物质和胶体物质是使天然水体呈现浑浊的主要因素。
③溶解物质:指为水所溶解的、呈分子或离子状态的溶质或气体。
如氯化物、硫酸盐,氧气、二氧化碳及部分可溶有机物等。
是指为让进水达到一定的使用要求,对原水进行相应处理的过程,包括给水处理和排水处理。
针对不同的要求也相应采用不同的工艺,例如自来水的常规处理工艺,主要是去除悬浮物、胶体、细菌病毒等,很难去除溶解的有机物等有害物质;市政污水处理主要以降低有机物和氨氮等污染物的含量为目标;城市给水处理以满足生活饮用水标准为目标;而工业给水处理则根据工业生产的工艺、产品质量、设备材料等对水质的要求来决定处理工艺。
给水处理工艺主要分为以下几种:1、除浊:指用化学或物理的方法去除水体中含有的悬浮物、胶体等物质,从而达到降低浊度的目的。
目前常用的除浊工艺有过滤、絮凝沉淀、絮凝过滤、超滤、微滤等,可以使浊度小于2NTU。
除浊是最常见的水处理工艺之一,几乎所有的水处理工艺流程中都有除浊工艺。
主要设备有石英砂过滤器、精密过滤器、中空纤维过滤器等。
2、软化:指用化学或其他方法降低或去除水体中的钙、镁、钡等离子,降低水的硬度。
常用的软化工艺有药剂软化、离子交换两种,近年来还开发出纳滤膜软化等新工艺,它们的软化出水硬度通常在0.05mmol/L~0.80mmol/L之间。
主要设备有钠离子交换器,阻垢软化剂添加装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给水处理中常用技术概述
摘要:给水处理是指运用各种水处理技术去除水中有关杂质,详细介绍几种常见的水处理技术:混凝技术、过滤技术、吸附技术、膜分离技术以及消毒技术,分析各技术去除水中杂质的作用原理及应用范围。
关键词:混凝;过滤;膜分离;消毒
由于水是一种溶解力很强的溶剂,又与外界环境如空气、地壳、土壤等广泛接触,故而水中必然含有很多杂质,而水的处理或者净化其实质就是通过各种水处理技术去除水中有关杂质,以获得达到一定水质标准的水供生活饮用或工业使用。
水处理技术包括混凝、过滤、吸附、膜分离和消毒等。
1 混凝技术
混凝技术的处理对象是水中的悬浮物和胶体物质,其关键技术是选择和投加适当的混凝剂,经混凝过程使水中悬浮物和胶体形成大颗粒絮凝体,然后通过澄清、沉淀进行分离。
历史上很早以前就有以明矾净水的记载,直至今日,我国的水厂大都采用铝盐或铁盐作为无机混凝剂,近年来也研究开发和应用了一些新的混凝剂如无机聚合态的聚合氯化铝(PAC)和聚合硫酸铝(PAS)等,也包括一些有机高分子絮凝剂如聚丙烯酰胺(PAM)等。
给水和废水的处理过程中,为了满足用水水质和环境排放的要求,一般在预处理中采用混凝沉淀法,即向水中投加混凝剂或絮凝剂以破坏溶胶稳定性,使水中的胶体和悬浮物颗粒絮凝成较大的絮凝体,以便从水中分离出来,达到水质净化的目的。
混凝处理实际上包括凝聚和絮凝两种胶体颗粒物的聚集过程,是一种较为经典的水处理工艺,应用十分普遍。
近年来,在絮凝动力学、絮凝形态学、新型高效混凝剂以及高效絮凝反应器等方面的研究和应用,有了许多新的发展,推动了混凝技术的进步。
2 过滤技术
过滤技术是选择和利用多孔的过滤介质(或称滤料截面)使水中的杂质得到分离的固液分离过程。
它通常与混凝、澄清或沉淀结合使用,这样不仅能有效的降低水的浊度,而且对去除水中某些有机物和细菌、病毒也有一定的效果,因此,在生活饮用水处理中,过滤是必不可少的,在大多数工业用水处理中也常采用作为预处理过程。
根据过滤技术的特点可知,在过滤技术中选择适当的过滤介质-滤料是极为重要的,目前常用的过滤介质--滤料从砂、无烟煤、微孔塑料、陶瓷,到各种高分子分离膜等可以有多种选择,它们可以去除水中不同粒度的杂质,此外,通过对过滤器进行优化设计可对过滤效果产生较大的影响。
原水经过混凝澄清处理以后,大部分悬浮物已被去除,但此时水质仍无法满足饮用水标准和后续处理工艺的水质要求,所以在常规水处理工艺中,过滤常被安排在沉淀池或澄清池之后,经过滤后的出水浊度可以降到小于1单位。
在原水浊度较低时(25单位以下),也可采用不经澄清直接过滤。
3 吸附技术
吸附是一种物质附着在另一种物质表面的过程,他可以发生在气--液、气--固和液--固两相之间,在水处理中主要讨论物质在水与固体吸附剂之间的转移过程。
许多多孔的固
相物质可以作为吸附剂,例如活性炭、木屑、活化煤、焦炭、吸附树脂等,其中以活性炭使用作为广泛。
吸附剂表面的吸附力可分为分子引力(范德华力)、化学键力和静电引力三种,故而吸附可分为物理吸附、化学吸附和离子交换吸附。
影响吸附的因素很多,主要有吸附剂、被吸附物质的性质和吸附过程操作条件等,吸附剂的性质又可分为吸附剂微孔的大小、比表面积以及其表面化学特性等。
吸附过程操作条件主要与pH值、温度、接触时间等因素有关。
活性炭吸附技术目前应用较多的是在给水处理中去除微量有害物质和嗅味等,尤其是去除水中有机污染物效果较好,因而可单独或与臭氧结合用于给水深度处理。
此外,活性炭吸附在废水处理中也有广泛的应用。
近年来在新的吸附剂方面又发展了有关的离子交换树脂和KDF等吸附剂已在给水处理中应用较广,值得重视。
4 膜分离技术
膜分离技术是利用特殊的有机高分子或无机材料制成的膜将溶液隔开,使溶液中的某些溶质或水渗透出来,从而达到分离的目的。
膜分离的优点是分离截面效果好,一般没有相的变化,设备容易操作,便于产业化等。
当然,膜分离技术也存在一定的局限性,例如对待处理的原水水质要求严格,处理能力相对较小,需要注意膜的堵塞与清洗等,目前常用的膜分离技术主要有反渗透(RO)、电渗析(ED或ERD)、纳滤(NF)、超滤(UF)、和微滤(MF)等,主要用途也各不相同,ED或ERD的局限性是可去除带电杂志,但对病菌和大多数有机物效果较差;UF和MF去除颗粒直径较大,但运行时所需压力较低,膜的成本和运行费用较低;而RO和NF由于它们分离的颗粒直径小,对病菌、有机物和无机物均有较好的效果,因此具有较广泛的处理能力和应用范围,既可用于工业水处理,也可应用于饮用水处理,尤其是近几年发展迅速的NF技术,因其运行压力较低,膜的成本和运行成本大幅减少,目前正成为水处理中优先发展的技术和领域。
由于水资源紧缺是21世纪全球的一个突出矛盾,而且近年来相关法律法规不断完善与严格,水质分析检测技术不断改进,膜的生产成本及销售价格有下降趋势,因此,膜技术在水处理方面必将得到越来越广泛的应用。
5 消毒技术
水的消毒主要是为了杀灭或抑制水中对人体有害的致病微生物。
水的消毒技术可分为化学消毒和物理消毒两大类,化学消毒中采用的消毒剂又可分为氧化型消毒剂和非氧化型消毒剂,氧化型消毒剂中应用最广的是氯及其制品,这是由于氯的价格低廉、消毒效果良好、使用较方便等特点,在非氧化型消毒剂中如季铵盐等在工业冷却水的杀菌,灭藻中应用较多。
物理消毒中应用较多的是臭氧消毒和紫外线消毒,臭氧消毒的特点是杀菌效果好,不需很长的接触时间,受水中的PH值和氨氮影响较小,能通过强氧化作用消除水中的有机物,对水中的铁、锰、色度和嗅味也有一定的去除效果,其缺点是耗电较多,运行费用高,同时,臭氧需边生产、边使用,不易存储;紫外消毒的缺点是消毒作用有一定的作用距离和范围,当水中的悬浮物和浊度高时会妨碍紫外线的透射等。
近年来以氯为主要消毒剂已发展了一些新品种,如二氧化氯(ClO2)、
氯代异氰酸盐(TCCA与DCCA)以及一些加氯的增效剂,如等三嗪类化合物等,此外,含溴的消毒剂也有相应的发展,在非氧化型消毒剂中出现了异噻唑啉酮、季铵盐等新品种。
物理消毒中臭氧和紫外消毒也发展较快,这可能和加氯后产生消毒副产物有关,如卤
代甲烷类化合物等,有的已确认为致癌物而引起广泛关注,因此非氯消毒剂也有很大的发展前景。
6 结语
给水处理技术的目的是通过各种必要的处理技术改善原水水质,使他们符合生活饮用或工业使用的要求,因此水处理需要根据原水水质和出水水质的要求加以确定,为了达到处理的要求,应根据实际情况选用合适的技术,有时往往将几种处理技术结合或复合使用。