2020年秋内蒙古巴彦淖尔市临河四中第12章全等三角形复习卷

合集下载

人教版2020年秋季数学八年级上册第12章全等三角形单元卷(含答案)

人教版2020年秋季数学八年级上册第12章全等三角形单元卷(含答案)

人教版2020年秋季数学八年级上册第12章全等三角形单元卷一.选择题(共10小题)1.下列说法不正确的是A.面积相等的两个三角形全等B.全等三角形对应边上的中线相等C.全等三角形的对应角的角平分线相等D.全等三角形的对应边上的高相等2.如图,某人不小心将一块正五边形玻璃打碎成四块,若想到玻璃店配一块与原来一样大小的五边形玻璃,那么最省事的方法应该带玻璃碎片A.①B.①②C.①③D.①③④3.如图,的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,选取图中三个格点组成三角形,能与全等(重合的除外)的三角形个数为A.1个B.2个C.3个D.4个4.如图,且点在上,若,,则下列结论错误的是A.B.C.D.5.如图,△,,则的度数为A.B.C.D.6.如图,平分,于点,点是射线上的一个动点,若,则的最小值A.等于3B.大于3C.小于3D.无法确定7.如图,点,,,在同一条直线上,已知,,添加下列条件还不能判定的是A.B.C.D.8.如图,已知中,,平分,且.若,则点到边的距离为A.7B.9C.11D.149.为了测量池塘两侧,两点间的距离,在地面上找一点,连接,,使,然后在的延长线上确定点,使,得到,通过测量的长,得的长.那么的理由是A.B.C.D.10.如图,在中,,,,,分别是,,上的点,且,,则的度数为A.B.C.D.二.填空题(共8小题)11.如图,四边形四边形,则的大小是.12.如图,,,,则的长度是.13.一个三角形的三边为3、5、,另一个三角形的三边为、3、6,若这两个三角形全等,则.14.如图,,,,则的度数为.15.如图,已知、,若再增加一个条件不一定能使结论成立,则这个条件是.16.三条公路将、、三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是.17.如图,在中,为的中点,平分,,与相交于点,若的面积比的面积大1,则的面积是18.如图,两棵大树间相距,小华从点沿走向点,行走一段时间后他到达点,此时他仰望两棵大树的顶点和,两条视线的夹角正好为,且.已知大树的高为,小华行走的速度为,小华走的时间是.三.解答题(共7小题)19.如图,和的顶点,,,在同一条直线上,,边与相交于点,,.求证:.20.已知:如图,在中,,角平分线、相交于点.求证:平分.21.如图,已知,,.求证:(1);(2).22.如图,,,,点在边上.(1)求证:.(2)若,求的度数.23.小明利用一根长的竿子来测量路灯的高度.他的方法是这样的:在路灯前选一点,使,并测得,然后把竖直的竿子在的延长线上移动,使,此时量得.根据这些数据,小明计算出了路灯的高度.你知道小明计算的路灯的高度是多少?为什么?24.如图,在中,,是上的一点,且,于,.求证:(1);(2).25.如图,点、、、在同一条直线上,点、是直线.上方的点,连接、、、,若,,.(1)判断直线与是否平行?并说明理由;(2)求的长;(3)若,,求的度数.参考答案一.选择题(共10小题)1.下列说法不正确的是A.面积相等的两个三角形全等B.全等三角形对应边上的中线相等C.全等三角形的对应角的角平分线相等D.全等三角形的对应边上的高相等解:、不正确.面积相等的两个三角形不一定全等,符合题意;、正确.全等三角形对应边上的中线相等,不符合题意;、正确.全等三角形的对应角的角平分线相等,不符合题意;、正确.全等三角形的对应边上的高相等,不符合题意.故选:.2.如图,某人不小心将一块正五边形玻璃打碎成四块,若想到玻璃店配一块与原来一样大小的五边形玻璃,那么最省事的方法应该带玻璃碎片A.①B.①②C.①③D.①③④解:带①去,能够测量出此正五边形的内角的度数,以及边长,所以可以配一块完全一样的玻璃,带②③去,只能够测量出正五边形的内角的度数,不能够量出边长的长度,所以不可以配一块完全一样的玻璃;带④去,既不能测量出正五边形的内角的度数,也不能够量出边长的长度,所以不可以配一块完全一样的玻璃.所以最省事的方法是带①去.故选:.3.如图,的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,选取图中三个格点组成三角形,能与全等(重合的除外)的三角形个数为A.1个B.2个C.3个D.4个解:如图所示可作3个全等的三角形.故选:.4.如图,且点在上,若,,则下列结论错误的是A.B.C.D.解:,,,故,正确;,,故正确;,故错误;故选:.5.如图,△,,则的度数为A.B.C.D.解:△,,,,故选:.6.如图,平分,于点,点是射线上的一个动点,若,则的最小值A.等于3B.大于3C.小于3D.无法确定解:过点作于,如图,平分,,于,,点是射线上的一个动点,点与点重合时,有最小值,最小值为3.故选:.7.如图,点,,,在同一条直线上,已知,,添加下列条件还不能判定的是A.B.C.D.解:已知,,添加的一个条件是,根据条件不可以证明,故选项符合题意;已知,,添加的一个条件是,根据可以证明,故选项不符合题意;已知,,添加的一个条件是,可得得到,根据可以证明,故选项不符合题意;已知,,添加的一个条件是,根据可以证明,故选项不符合题意;故选:.8.如图,已知中,,平分,且.若,则点到边的距离为A.7B.9C.11D.14解:如图,.设,则,,,,,,过点作于,是的平分线,,,点到边的距离是9,故选:.9.为了测量池塘两侧,两点间的距离,在地面上找一点,连接,,使,然后在的延长线上确定点,使,得到,通过测量的长,得的长.那么的理由是A.B.C.D.解:在和中,,,(全等三角形的对应边相等).故选:.10.如图,在中,,,,,分别是,,上的点,且,,则的度数为A.B.C.D.解:,,,在和中,,,,,,,,故选:.二.填空题(共8小题)11.如图,四边形四边形,则的大小是.解:四边形四边形,,,故答案为:.12.如图,,,,则的长度是 2.7.解:,,,故答案为:2.7.13.一个三角形的三边为3、5、,另一个三角形的三边为、3、6,若这两个三角形全等,则1.解:两个三角形全等,,,,故答案为:1.14.如图,,,,则的度数为.解:,,,,,,故答案为:.15.如图,已知、,若再增加一个条件不一定能使结论成立,则这个条件是.解:增加的条件为,理由:,,,,,不一定成立,故答案为:.16.三条公路将、、三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是、、的角平分线的交点处.解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在、、的角平分线的交点处.故答案为:、、的角平分线的交点处.17.如图,在中,为的中点,平分,,与相交于点,若的面积比的面积大1,则的面积是10解:作于,于,平分,,,,,设的面积为,则,,的面积比的面积大1,的面积比的面积大1,,,故答案为:10.18.如图,两棵大树间相距,小华从点沿走向点,行走一段时间后他到达点,此时他仰望两棵大树的顶点和,两条视线的夹角正好为,且.已知大树的高为,小华行走的速度为,小华走的时间是.解:,,,,,在和中,,,,,小华走的时间是,故答案为:.三.解答题(共7小题)19.如图,和的顶点,,,在同一条直线上,,边与相交于点,,.求证:.【解答】证明:,,,,,即,在与中,.20.已知:如图,在中,,角平分线、相交于点.求证:平分.【解答】证明:,,、分别平分和,,,,,在和中,,即平分.21.如图,已知,,.求证:(1);(2).【解答】证明:(1),,,,即,在和中,,;(2),,,.22.如图,,,,点在边上.(1)求证:.(2)若,求的度数.【解答】(1)证明:,,,在和中;(2),,,,,,,,即是.23.小明利用一根长的竿子来测量路灯的高度.他的方法是这样的:在路灯前选一点,使,并测得,然后把竖直的竿子在的延长线上移动,使,此时量得.根据这些数据,小明计算出了路灯的高度.你知道小明计算的路灯的高度是多少?为什么?解:,,,,在和中,,,,,,答:楼高是8.2米.24.如图,在中,,是上的一点,且,于,.求证:(1);(2).【解答】证明:(1)在和中,,,,,,,即;(2),,,.25.如图,点、、、在同一条直线上,点、是直线.上方的点,连接、、、,若,,.(1)判断直线与是否平行?并说明理由;(2)求的长;(3)若,,求的度数.解:(1),理由:,,;(2),,,;(3),,,,.。

人教版八年级上册数学第12章《全等三角形》单元测试(含答案)

人教版八年级上册数学第12章《全等三角形》单元测试(含答案)

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC ≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠A OD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a 2B . a 2C . a 2D . a 2【解答】解:过E 作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°,∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积,∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

2020年人教版八年级数学上册《第12章全等三角形》单元测试卷(解析版)

2020年人教版八年级数学上册《第12章全等三角形》单元测试卷(解析版)

2020年人教版八年级数学上册《第12章全等三角形》单元测试卷一.选择题(共10小题)1.下列说法正确的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是等边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等2.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等3.如图,点B、C分别在线段NM、NA上,在△ABC中,∠A:∠ABC:∠BCA=3:5:10,且△ABC≌△MNC,则∠BCM:∠NBA等于()A.1:2B.1:3C.1:4D.1:54.如图,Rt△ABC≌Rt△DEF,∠E=55°,则∠A的度数为()A.25°B.35°C.45°D.55°5.如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC6.下列两个三角形中,一定全等的是()A.两个等腰三角形B.两个等腰直角三角形C.两个等边三角形D.两个周长相等的等边三角形7.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.48.下列条件中能说明两个直角三角形全等的是()A.锐角分别相等B.一条直角边分别相等C.斜边分别相等D.两直角边分别相等9.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点D.画出A、B两点的距离10.下列作图语句正确的是()A.作线段AB,使α=ABB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以O为圆心作弧二.填空题(共8小题)11.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3=度.12.如图,在3×3的正方形ABCD中,由A向各交叉点引连线,构成∠1,2,…∠9,则这9个角的和为度.13.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=50°,AB=18cm,则∠C′=,A′B′=.14.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1=度.15.如图,在△ABC与△ADE中,点E在BC上,AC=AE,且EA平分∠CED,请你添加1个条件使△ABC≌△ADE,你添加的条件是:.16.如图,AB=CD,AD=BC,AC与BD相交于O点,则图中有全等三角形对.17.如图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△≌△,其判定依据是,还有△≌△,其判定依据是.18.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件,便可得Rt△ABC≌Rt△DEF.三.解答题(共8小题)19.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上(1)若BE⊥AD,∠F=62°,求∠A的大小;(2)若AD=9cm,BC=5cm,求AB的长.20.如图1,△ABC与△DBC全等,且∠ACB=∠DBC=90°,AB=6,AC=4.如图2,将△DBC沿射线BC方向平移得到△D1B1C1,连接AC1,BD1.(1)求证:BD1=AC1且BD1∥AC1;(2)△DBC沿射线BC方向平移的距离等于时,点A与点D1之间的距离最小.21.已知:如图,点E、F在线段BD上,BE=DF,AB∥CD,∠A=∠C.求证:△ABF≌△CDE.22.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.23.如图,已知∠A=∠B,OA=OB,AD与BC相交于点E,试证明:(1)△OAD≌△OBC;(2)AE=BE.24.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC =AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.25.如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?26.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.2020年人教版八年级数学上册《第12章全等三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列说法正确的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是等边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等【分析】根据全等形的概念和性质进行解答,注意全等中的对应不能忽略.【解答】解:全等三角形的三条对应边相等,三个对应角也相等,A不正确;判定两个三角形全等的条件中至少有一个是等边,B正确;面积相等的两个图形不一定是全等形,C不正确;全等三角形的面积和周长都相等,D正确,故选:BD.【点评】本题考查的是全等形的性质,能够完全重合的两个图形叫做全等形,全等形的对应边相等,对应角也相等,面积和周长都相等.2.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【分析】根据全等图形的判定和性质对各个选项进行判断即可.【解答】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选:D.【点评】本题考查的是全等图形的判定和性质,对应角相等、对应边相等的两个图形确定,全等形的周长和面积相等.3.如图,点B、C分别在线段NM、NA上,在△ABC中,∠A:∠ABC:∠BCA=3:5:10,且△ABC≌△MNC,则∠BCM:∠NBA等于()A.1:2B.1:3C.1:4D.1:5【分析】由三角形内角和定理求出∠A、∠ABC、∠ACB的度数,由全等三角形的性质、三角形的外角性质、等腰三角形的性质求出∠BCM和∠NBA的度数,即可得出答案.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∠A+∠ABC+∠ACB=180°,∴∠A=30°,∠ABC=50°,∠ACB=100°,∵△MNC≌△ABC,∴∠N=∠ABC=50°,∠M=∠A=30°,CN=BC,∴∠MCA=∠M+∠N=80°,∠CBN=∠N=50°,∴∠BCM=∠ACB﹣∠MCA═20°,∠NBA=∠CBN+∠ABC=50°+50°=100°,∴∠BCM:∠NBA=1:5,故选:D.【点评】本题考查的是全等三角形的性质、等腰三角形的性质以及三角形的外角性质,掌握全等三角形的对应角相等是解题的关键.4.如图,Rt△ABC≌Rt△DEF,∠E=55°,则∠A的度数为()A.25°B.35°C.45°D.55°【分析】根据三角形内角和定理求出∠EDF,根据全等三角形的性质解答.【解答】解:∵∠EFD=90°,∠E=55°,∴∠EDF=90°﹣55°=35°,∵Rt△ABC≌Rt△DEF,∠A=∠EDF=35°,故选:B.【点评】本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.5.如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC【分析】根据公共边AD和各选项中给出的条件分别证明△ABD≌△ACD即可解题.【解答】解:A、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS);故A正确;B、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(AAS);故A正确;C、在△ABD和△ACD中,,∵ASS不能证明三角形全等,故C错误;D、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SAS);故D正确;故选:C.【点评】本题考查了SSS,AAS,SAS证明三角形全等的方法,本题中牢记ASS不能求证三角形全等是解题的关键.6.下列两个三角形中,一定全等的是()A.两个等腰三角形B.两个等腰直角三角形C.两个等边三角形D.两个周长相等的等边三角形【分析】由全等三角形的判定方法得出A、B、C不正确,D正确,即可得出结论.【解答】解:∵两个等腰三角形不一定全等,∴选项A不正确;∵两个等腰直角三角形一定相似,不一定全等,∴选项B不正确;∵两个等边三角形一定相似,不一定全等,∴选项C不正确;∵两个周长相等的等边三角形的边长相等,∴两个周长相等的等边三角形一定全等,∴选项D正确;故选:D.【点评】本题考查了全等三角形的判定方法、等边三角形的性质、等腰直角三角形的性质、等腰三角形的性质;熟记全等三角形的判定方法是解决问题的关键.7.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.4【分析】共有4对.分别为△ADC≌△AEB,△BOD≌△COE.Rt△ADO≌Rt△AEO,△ABO≌△ACO;做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【解答】解:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEE=90°,∵在△ADC和△AEB中,,∴△ADC≌△AEB(AAS);∴AD=AE,∠C=∠B,∵AB=AC,∴BD=CE,在△BOD和△COE中,,∴△BOD≌△COE(AAS);∴OB=OC,OD=OE,在Rt△ADO和Rt△AEO中,,∴Rt△ADO≌Rt△AEO(HL);在△ABO和△ACO中,,∴△ABO≌△ACO(SSS).∴共有4对全等三角形.故选:D.【点评】本题考查三角形全等的判定方法,熟练掌握全等三角形的判定方法是解题的关键.8.下列条件中能说明两个直角三角形全等的是()A.锐角分别相等B.一条直角边分别相等C.斜边分别相等D.两直角边分别相等【分析】依据全等三角形的判定定理进行判断即可.【解答】解:A、没有边对应相等,不一定全等,B、一条直角边和一组直角相等,不一定全等;C、一组斜边和一组直角相等,不一定全等;D、两直角边分别相等,依据SAS可证明两个三角形全等.故选:D.【点评】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.9.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点D.画出A、B两点的距离【分析】利用射线的定义,线段中点及距离的定义判定即可.【解答】解:A、画射线OP=5cm,错误,射线没有长度,B、画射线OA的反向延长线,正确.C、画出A、B两点的中点,错误,中点是线段的不是两点的,D、画出A、B两点的距离,错误,画出的是线段不是距离.故选:B.【点评】本题主要考查了射线及线段的中点,距离,解题的关键是熟记射线的定义,线段中点及距离的定义.10.下列作图语句正确的是()A.作线段AB,使α=ABB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以O为圆心作弧【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A、应为:作线段AB,使AB=α,故本选项错误;B、应为:延长线段AB到C,BC=AB,故本选项错误;C、作∠AOB,使∠AOB=∠α,故本选项正确;D、需要说明半径的长,故选项错误.故选:C.【点评】本题考查尺规作图的定义:只能用没有刻度的直尺和圆规.二.填空题(共8小题)11.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3=135度.【分析】根据△ABC≌△EDC得到∠3=∠BAC,求出∠1+∠3=90°,根据等腰直角三角形的性质得到∠2=45°,计算即可.【解答】解:由题意可知△ABC≌△EDC,∴∠3=∠BAC,又∵∠1+∠BAC=90°,∴∠1+∠3=90°,∵DF=DC,∴∠2=45°,∴∠1+∠2+∠3=135度,故答案为:135.【点评】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,根据题意和图形证明△ABC≌△EDC是解题的关键.12.如图,在3×3的正方形ABCD中,由A向各交叉点引连线,构成∠1,2,…∠9,则这9个角的和为405度.【分析】根据题意和全等三角形的判定定理找出全等三角形,根据全等三角形的性质计算即可得到答案.【解答】解:观察图形可知:∠1所在的三角形与∠9所在的三角形全等,∴∠1与∠9的余角相等,也就是∠1与∠9互余,同理:∠2与∠6互余.∠4与∠8互余,又∠3=∠5=∠7=45°∴∠1+∠9=90°、∠2+∠6=90°、∠4+∠8=90°、∠3+∠7=90°、∠5=45°,∴∠1+∠2+∠3+…+∠9=405°.故答案为:405.【点评】考查三角形全等的性质的运用:由三角形全等得到对应角角相等.认真观察图形,发现并利用全等三角形是正确解决本题的关键.13.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=50°,AB=18cm,则∠C′=50°,A′B′=18cm.【分析】根据全等三角形的对应边相等、对应角相等解答.【解答】解:∵△ABC≌△A′B′C′,∠C=50°,AB=18cm,∴∠C′=∠C=50°,A′B′=AB=18cm,故答案为:50°;18cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.14.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1=54度.【分析】根据全等三角形的对应角相等解答.【解答】解:∵两个三角形全等,∴∠1=54°,故答案为:54.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.15.如图,在△ABC与△ADE中,点E在BC上,AC=AE,且EA平分∠CED,请你添加1个条件使△ABC≌△ADE,你添加的条件是:∠B=∠D.【分析】根据角平分线的定义、等腰三角形的性质得到∠AED=∠C,利用AAS定理证明△ABC≌△ADE.【解答】解:添加∠B=∠D或BC=DE或∠BAC=∠DAE或∠BAD=∠EAC(答案不唯一),∵EA平分∠CED,∴∠AED=∠AEC,∵AC=AE,∴∠C=∠AEC,∴∠AED=∠C,当∠B=∠D时,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS),故答案为:∠B=∠D.【点评】本题考查的是全等三角形的判定,掌握角平分线的定义、等腰三角形的性质、全等三角形的判定定理是解题的关键.16.如图,AB=CD,AD=BC,AC与BD相交于O点,则图中有全等三角形4对.【分析】利用全等三角形的判定及性质做题,做题时,从已知开始结合全等的判定方法由易到难逐个找寻,要不重不漏.【解答】解:∵AB=CD,AD=BC,又BD=DB,∴△ABD≌△CDB,进而可得△ADC≌△ABC,△AOD≌△BOC,△ABO≌△CDO,共4对.故答案为4.【点评】本题考查了全等三角形的判定;做题时注意由易到难进行,这是比较关键的.17.如图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△ABC≌△DCB,其判定依据是HL,还有△ABO≌△DCO,其判定依据是AAS.【分析】根据已知条件,利用HL可直接判定△ABC≌△DCB,然后利用全等三角形的对应边相等,根据AAS可判定△ABO≌△DCO.【解答】解:∵在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,BC是Rt△ABC和Rt△DCB的公共边,根据HL,∴△ABC≌△DCB;由△ABC≌△DCB(已证)得AB=DC,∴在△ABO和△DCO中,∠A=∠D=90°,∠AOB=∠DOC(对顶角),依据是AAS可判定△ABO≌△DCO.故答案为:ABD;DCB;HL;ABO;DCO.【点评】此题主要考查学生对全等三角形判定这一知识点的理解和掌握,解答此题的关键是先利用HL求证△ABC≌△DCB,然后利用全等三角形对应边相等,利用AAS来求证△ABO≌△DCO的.18.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件答案不唯一,如BC=EF等,便可得Rt△ABC≌Rt△DEF.【分析】由直角三角形全等的判定方法HL,即可得出结论.【解答】解:补充一个条件BC=EF,便可得Rt△ABC≌Rt△DEF;理由如下:在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【点评】本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法是解决问题的关键.三.解答题(共8小题)19.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上(1)若BE⊥AD,∠F=62°,求∠A的大小;(2)若AD=9cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=28°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=9cm,BC=5cm,∴AB+CD=9﹣5=4cm,∴AB=2cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.20.如图1,△ABC与△DBC全等,且∠ACB=∠DBC=90°,AB=6,AC=4.如图2,将△DBC沿射线BC方向平移得到△D1B1C1,连接AC1,BD1.(1)求证:BD1=AC1且BD1∥AC1;(2)△DBC沿射线BC方向平移的距离等于2时,点A与点D1之间的距离最小.【分析】(1)根据全等三角形的性质、平移的性质得到四边形BD1C1A为平行四边形,根据平行四边形的性质证明结论;(2)根据勾股定理计算即可.【解答】(1)证明:由图1可知,△ACB≌△DBC,∴AB=CD,AC=BD,∠ABC=∠DCB,∴AB∥CD,由平移的性质可知,CD=C1D,CD∥C1D,∴AB=C1D,AB∥C1D,∴四边形BD1C1A为平行四边形,∴BD1=AC1且BD1∥AC1;(2)解:当点C于点B重合时,点A与点D1之间的距离最小,∴△DBC沿射线BC方向平移的距离=BC==2,故答案为:2.【点评】本题考查的是全等三角形的性质、平移的性质、平行四边形的判定和性质,掌握全等三角形的性质定理、平移的性质是解题的关键.21.已知:如图,点E、F在线段BD上,BE=DF,AB∥CD,∠A=∠C.求证:△ABF≌△CDE.【分析】两角及其中一个角的对边对应相等的两个三角形全等,据此利用AAS进行判定即可.【解答】证明:∵BE=DF,∴BE+EF=DF+EF,即BF=DE,∵AB∥CD,∴∠B=∠D,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS).【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.22.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.【分析】由∠ECB=70°得∠ACB=110°,再由AB∥DE,证得∠CAB=∠E,再结合已知条件AB=AE,可利用AAS证得△ABC≌△EAD.【解答】证明:由∠ECB=70°得∠ACB=110°又∵∠D=110°∴∠ACB=∠D∵AB∥DE∴∠CAB=∠E∴在△ABC和△EAD中∴△ABC≌△EAD(AAS).【点评】本题是全等三角形证明的基础题型,在有些条件还需要证明时,应先把它们证出来,再把条件用大括号列出来,根据等三角形证明的方法判定即可.23.如图,已知∠A=∠B,OA=OB,AD与BC相交于点E,试证明:(1)△OAD≌△OBC;(2)AE=BE.【分析】(1)根据ASA证明△OAD≌△OBC;(2)可通过证明△ACE≌△BDE获得.【解答】解:(1)在△OAD和△OBC中,∴△OAD≌△OBC(ASA)(2)由(1)得△OAD≌△OBC∴OC=OD,∴OA﹣OC=OB﹣OD,即AC=BD.在△ACE和△BDE中,,∴△ACE≌△BDE(AAS),∴AE=BE.【点评】本题考查了全等三角形的判定和性质.学会分析是关键.全等三角形的判定条件有四种:SSS,SAS,ASA,AAS.24.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC =AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.【分析】(1)根据等腰三角形的性质得到∠C=∠AEG,利用ASA定理证明AGE≌△AFC;(2)延长AF至点H,使AH=AD,证明△CAH≌△BAD,根据全等三角形的性质得到CH=BD,∠ACH=∠ABD=90°,得到CH∥AB,证明HC=HF,结合图形证明结论.【解答】证明:(1)∵∠CAB=∠FAE=90°,∴∠CAB﹣∠FAG=∠FAE﹣∠FAG,即∠CAF=∠EAG,∵AC=AE,∴∠ACF=∠AEG,在△AGE和△AFC中,,∴△AGE≌△AFC(ASA);(2)延长AF至点H,使AH=AD,在△CAH和△BAD中,,∴△CAH≌△BAD(SAS)∴CH=BD,∠ACH=∠ABD=90°,∴CH∥AB,∴∠CHA=∠HAG,∵△AGE≌△AFC,∴∠AGE=∠AFC,∴∠AGF=∠AFG,∴∠HCF=∠HFC,∴HC=HF,∴AH=AF+HF=AF+CH,∴AD=AF+BD.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.如图,有一湖的湖岸在A、B之间呈一段圆弧状,A、B间的距离不能直接测得.你能用已学过的知识或方法设计测量方案,求出A、B间的距离吗?【分析】过点B作AB的垂线BF,在BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,可证△EDC≌△ABC,即可证明DE=BA.【解答】解:要测量A、B间的距离,可用如下方法:过点B作AB的垂线BF,在BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,∵∠ACB=∠ECD,CB=CD,∠ABC=∠EDC,∴△EDC≌△ABC(ASA).∴DE=BA.答:测出DE的长就是A、B之间的距离.【点评】本题考查了全等三角形在实际生活中的应用,全等三角形的证明,全等三角形对应边相等的性质,本题中求证△EDC≌△ABC是解题的关键.26.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.【分析】根据BC=CD,∠CED=∠CAB,∠ACB=∠ECD,即可求证△ABC≌△EDC,根据全等三角形对应边相等的性质可以求得AB=DE.【解答】解:∵DE∥AB,∴∠CED=∠CAB,∴△ABC≌△EDC(AAS),∴AB=ED,答:DE的长就是A、B之间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中正确的求证△ABC≌△EDC是解题的关键.。

人教版八年级上《第12章全等三角形》单元测试(2)含答案解析.doc

人教版八年级上《第12章全等三角形》单元测试(2)含答案解析.doc

《第12章全等三角形》一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠28.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.23.已知:如图,在四边形ABCD中,E是AC上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.《第12章全等三角形参考答案与试题解析一、选择题1.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【考点】全等三角形的判定.【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.【解答】解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选C.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.5.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【专题】压轴题.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.6.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.7.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.8.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.【点评】本题考查了全等三角形的判断方法;一般三角形全等判定的条件必须是三个元素,并且一定有一组对应边相等,要找准对应边是解决本题的关键.9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB 于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE ≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④【考点】全等三角形的判定;等腰三角形的性质.【分析】根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.【解答】解:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);③△BDA≌△CEA (ASA);④△BOE≌△COD (AAS或ASA).故选D.【点评】此题考查等腰三角形的性质和全等三角形的判定,难度不大.10.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个【考点】全等图形.【专题】常规题型.【分析】根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.【解答】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.【点评】本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.二、填空题11.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.12.如图,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是.【考点】全等三角形的性质.【分析】已知中AD=BC,说明二者为对应边,而AB是公共边,即AB的对应边是BA,所以B的BD对应边只能是AC,根据对应边所对的角是对应角可得答案为∠ABC.【解答】解:∵△ABD≌△BAC,AD=BC,∴∠BAD的对应角是∠ABC.【点评】本题考查了全等三角形性质的应用,确认两条线段或两个角相等,往往利用全等三角形的性质求解.13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等的性质可得点D到AC的距离等于点D到AB的距离DE 的长度.【解答】解:如图,∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC,∴DE=DF,∵DE=3cm,∴DF=3cm,即点D到AC的距离为3cm.故答案为:3cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.14.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据可得到△AOD≌△COB,从而可以得到AD= .【考点】全等三角形的判定与性质.【专题】计算题.【分析】判定三角形全等,由题中条件,即要利用两边夹一角进行求解,所以找出对应角即可判定其全等,再有全等三角形的性质得出对应边相等.【解答】解:要判定△AOD≌△COB,有OA=OC,OD=OB,所以再加一夹角∠AOD=∠COB,根据两边夹一角,即可判定其全等,又有全等三角形的性质可得AD=CB.故答案为∠COB,SAS,CB.【点评】本题主要考查了全等三角形的判定及性质问题,应熟练掌握.15.如图,∠A=∠D=90゜,AC=DB,欲证OB=OC,可以先利用“HL”说明得到AB=DC,再利用证明△AOB≌得到OB=OC.【考点】全等三角形的判定与性质.【分析】根据HL证Rt△BAC≌Rt△CDB,推出AB=DC,根据AAS证△AOB≌△DOC.【解答】解:∵在Rt△BAC和Rt△CDB中∴Rt△BAC≌Rt△CDB(HL),∴AB=DC,在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:△ABC≌△DCB,AAS,△DOC.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.16.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.【考点】全等三角形的性质.【分析】第三边所对的角即为前两边的夹角.分两种情况,一种是两个锐角或两个钝角三角形,另一种是一个钝角三角形和一个锐角三角形.【解答】解:当两个三角形同为锐角或同为钝角三角形时,易得两三角形全等,则第三边所对的角是相等关系;当一个钝角三角形和一个锐角三角形时(如图),则第三边所对的一个角与另一个角的邻补角相等,即这两个角是互补关系.故填“相等或互补”.【点评】本题考查全等三角形的性质,应注意的是,两边相等不一定角相等,解题时要多方面考虑.17.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(共29分)18.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.19.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【考点】全等三角形的性质.【专题】证明题.【分析】(1)根据△EFG≌△NMH,∠F与∠M是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN和HG的长度.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF;(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.【点评】本题考查了全等三角形全等的性质及比较线段的长短,熟练找出两个全等三角形的对应角、对应边是解此题的关键.20.如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.【考点】全等三角形的应用.【专题】计算题;作图题.【分析】根据BC=CD,∠CED=∠CAB,∠ACB=∠ECD,即可求证△ABC≌△EDC,根据全等三角形对应边相等的性质可以求得AB=DE.【解答】解:∵DE∥AB,∴∠CED=∠CAB,∴△ABC≌△EDC(AAS),∴AB=ED,答:DE的长就是A、B之间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中正确的求证△ABC≌△EDC是解题的关键.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】根据AB∥DE,BC∥EF,可证∠A=∠EDF,∠F=∠BCA;根据AD=CF,可证AC=DF.然后利用ASA即可证明△ABC≌△DEF.【解答】证明:∵AB∥DE,BC∥EF∴∠A=∠EDF,∠F=∠BCA又∵AD=CF∴AC=DF∴△ABC≌△DEF.(ASA)【点评】此题主要考查学生对全等三角形的判定的理解和掌握,此题难度不大,属于基础题.四、解答题(共20分)22.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【考点】全等三角形的判定与性质.第21页(共22页)【专题】证明题.【分析】(1)根据已知利用HL 即可判定△BEC ≌△DEA ;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D ,从而不难求得DF ⊥BC .【解答】证明:(1)∵BE ⊥CD ,BE=DE ,BC=DA ,∴△BEC ≌△DEA (HL );(2)∵△BEC ≌△DEA ,∴∠B=∠D .∵∠D+∠DAE=90°,∠DAE=∠BAF ,∴∠BAF+∠B=90°.即DF ⊥BC .【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.23.已知:如图,在四边形ABCD 中,E 是AC 上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.【考点】全等三角形的判定与性质.【专题】证明题.【分析】因为∠1=∠2,∠3=∠4,AC=CA ,根据ASA 易证△ADC ≌△ABC ,所以有DC=BC ,又因为∠3=∠4,EC=CE ,则可根据SAS 判定△CED ≌△CEB ,故∠5=∠6.【解答】证明:∵,∴△ADC ≌△ABC (ASA ).∴DC=BC .又∵,∴△CED≌△CEB(SAS).∴∠5=∠6.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.第22页(共22页)。

人教版 八年级数学上册 第12章全等三角形复习题(含答案)

人教版 八年级数学上册 第12章全等三角形复习题(含答案)

人教版 八年级上册数学 第12章全等三角形复习题(含答案)例1 全等图形及全等三角形的定义(1)下列图形:①两个正方形;②每边长都是的两个四边形;③每边都是的两个三角形;④半径1cm 2cm 都是的两个圆.其中是一对全等图形的是( )1.5cm A .1个B .2个C .3个D .4个(2)下列说法正确的是( )A .形状相同的两个三角形全等B .面积相同的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等.【答案】(1)B ;(2)C .例2 全等三角形的性质(1)如图,已知,下列结论:①AC =DB ;②AB =DC ;③;④;⑤ACE DBF∆∆≌12∠=∠AE DF ;⑥BC =AE ;⑦BF =EC . 正确的个数有( ).ACE DBF S S ∆∆=A .4个 B .5个 C .6个 D.7个(2)如图,,若,,则 .ABC ADE ∆∆≌120BAE ∠=︒40BAD ∠=︒CAD ∠=(3)已知,,且的周长为,,则的边等于DEFABC △≌△AB AC =ABC △23cm 4cm BC =DEF △DE ________.(4)如图,和是分别是沿着,边翻折形成的,若,则ABE △ACD △ABC △AB AC 180°150BAC ∠=° 的度数是________度.DFB ∠F EDCB A【答案】(1)C ;(2)40°;(3);(4)19cm22260DFB FBC FCB ABC ACB ∠=∠+∠=∠+∠=︒例3 “边边边”的判定应用(1)下列命题中正确的是( )A .两边和第三边上的中线对应相等的两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C .腰和底边对应相等的两个等腰三角形全等D .有两条边相等的两个三角形全等【答案】C(2)如图,已知AC ,BD 相交于点O ,且AB =DC ,AC =DB ,求证:∠A =∠D.C【答案】连接BC ,再证△ABC ≌△DCB (SSS )例4 “边角边”的判定应用(1)如图,已知,,.求证:.AB AD =AC AE =12∠=∠ABC ADE △≌△21EC DBA 【答案】12BAC DAC DAC DAE∠=∠+∠=∠+∠=∠又∵,,∴AB AD =AC AE =ABC ADE △≌△(2)如图,中,,、分别是、的中点,图中全等三角形有( )ABC △AB AC =D E AB AC ED CBAA .3对B .4对C .5对D .6对【答案】A例5 “边角边”判定进阶如图所示,AD 、EF 、BC 相交于点,且,,.求证:.O AO OD =BO OC =EO OF =AEB DFC ∆∆≌【答案】证得,则有:AB=CD ;()AOB DOC SAS ∆∆≌再由得:BE=CF ;()EOB FOC SAS ∆∆≌由得:AE=DF()EOA FOD SAS ∆∆≌由“边边边”定理得:AEB DFC∆∆≌例6 “角边角”的判定应用(1)如图所示,已知,,那么要得到,还应给出的条件是( )A D ∠=∠12∠=∠ABC DEF△≌△A .B .C .D .E B ∠=∠ED BC =AB EF =AF CD=(2)如图,有两个三角锥、,其中甲、乙、丙、丁分别表示、、、ABCD EFGH ABC △ACD △EFG △.若,,EGH △70ACB CAD EFG EGH ∠=∠=∠=∠=°50BAC ACD EGF EHG ∠=∠=∠=∠=°则下列选项叙述正确的是()A .甲、乙全等,丙、丁全等B .甲、乙全等,丙、丁不全等C .甲、乙不全等,丙、丁全等D .甲、乙不全等,丙、丁不全等(3)如图,在中,,在上取一点E ,使,过点ERt ABC △90,2cm ,ACB BC CD AB ∠=︒=⊥AC EC BC =作交的延长线于点F .若则_______cm .EF AC ⊥CD 5cm ,EF =AE=O FE DCBA【答案】(1)D ;(2)B ;(3)3例7 “角角边”的判定应用(1)如图,,于,于,、交于点,则下列结论中不正确的是AB AC =BE AC ⊥E CF AB ⊥F BE CF D ( )DFECBAA .B .点在的平分线上ABE ACF △≌△D BAC ∠C .D .点是的中点BDF CDE △≌△D BE 【答案】D(2)如图,已知,.求证:.123∠=∠=∠AB AD =BC DE =【答案】∵∴ ∴ 12∠=∠12CAD CAD ∠+∠=∠+∠BAC DAE ∠=∠∵ 且∴32AOD C E ∠=∠+∠=∠+∠32∠=∠C E ∠=∠又∵∴∴AB AD=()ABC ADE AAS ∆∆≌BC DE=例8 “HL”的判定应用(1)如图,AB =AD ,那么添加下列一个条件后,仍无法判定的是( ).ABC ADC ∆∆≌A .CB =CDB .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒(2)如图,用三角尺可按下面方法画角平分线:在已知的的两边上分别取点、,使AOB ∠M N ,再分别过点、作、的垂线,交点为,画射线.可证得OM ON =M N OA OB P OP ,平分.以上依画法证明根据的是( )POM PON △≌△OP AOB ∠POM PON△≌△321O EDCBAPMNB OAA .B .C .D .SSS SAS AAS HL【答案】(1)C ;(2)D例9 全等三角形的综合判定(1)考查下列命题:①有两边及一角对应相等的两个三角形全等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④有两角及一边对应相等的两个三角形全等.其中正确命题的个数有_________个,是_________.(2)在和中,①;②;③;④;ABC △'''A B C △''AB A B =''BC B C =''AC A C ='A A ∠=∠⑤;⑥,不能保证成立的一组是( )'B B ∠=∠'C C ∠=∠'''ABC A B C △≌△A .②⑤⑥B .①③⑤C .①②③D .①②⑤(3)如图,已知,,,则图中全等三角形的总对数是( )AB DC ∥AD BC ∥BE DF =A .3B .4C .5D .6FDBEAC(4)如图,在中,平分交的延长线于F ,E 为ABC △,90,AC BC ACB AD =∠=︒,BAC BE AD ∠⊥AC 垂足,则结论:①;②;③;④;⑤.AD BF =CF CD =AC CD AB +=BE CF =2BF BE =其中正确结论的个数是( )A.1B.2C.3D.4【答案】(1)3,②③④;(2)B;(3)D;(4)D练1(1)如图,,和,和是对应边.若,,则等ABC DEF △≌△DF AC FE CB 100A ∠=︒47F ∠=︒DEF ∠于( )图 1F E DCBAA .B .C .D .100︒53︒47︒33︒(2)如图,△ABC≌△BAD,点A 和点B ,点C 和点D 是对应点,如果AB =8cm ,BC =4cm ,AC =6cm ,那么BD +AD 的长是______.(3)已知,的面积是12,,,________.ABC DEF △≌△ABC △DM EF ⊥6DM =EF =【答案】(1)D ;(2)10cm ;(3)4练2 如图,,相交于点,,请你补充一个条件,使得.你补充的条件AC BD O AD CB =AOD BOC △≌△是________________.【答案】或AC BD =ADC BCD∠=∠练3如图,AB=AE, ∠1=∠2,∠C=∠D. 求证:ABC AED△≌△【答案】∵∠1=∠2, ∴ ∴12EAC EAC ∠+∠=∠+∠BAC EAD ∠=∠ 又∵∠C=∠D,AB=AE∴()ABCAED AAS △≌△练4如图,已知AB=CD ,∠B=∠C,AC 和BD 相交于点O ,E 是AD 的中点,连接OE. 求∠AEO 的度数.OACDB【答案】易证,得:OA=OD()AOBDOC AAS ∆△≌又∵AE=ED,OE=OE ∴所以∠AEO=90°()AOEDOE SSS ∆△≌练5 如图,AB 、CD 相交于点O ,OA =OB ,E 、F 为CD 上两点,,CE =DF .AEBF 求证:.ACBD【答案】△AOE≌△BOF(ASA )∴AE=BF,∠AEC=∠BFD 又∵CE=DF∴△AEC≌△BFD(SAS )∴∠D=∠C ∴ACBD。

第12章 全等三角形 初中数学人教版八年级上册单元复习题(含解析)

第12章 全等三角形 初中数学人教版八年级上册单元复习题(含解析)

人教版八年级数学上册第十二章全等三角形单元复习题一、选择题1.关于全等图形的描述,下列说法正确的是( )A.形状相同的图形B.面积相等的图形C.能够完全重合的图形D.周长相等的图形2.已知△ABC≌△DEF,如果△DEF的周长为4,则△ABC的周长为( ) A.8B.6C.4D.2 3.已知.下面是“作一个角等于已知角,即作”的尺规作图痕迹.该尺规作图的依据是( )A.B.C.D.4.如图,在中,AD平分,若,,则( )A.25:16B.5:4C.16:25D.4:55.如图,沿直角边所在的直线向右平移得到,下列结论中错误的是( )A.≌B.C.D.6.如图,已知,与交于点O,添加一个适当的条件后,仍不能使得成立的是()A.B.C.D.7.如图,是上一点,交于点,,,,,则的长度为( )A.2B.2.5C.4D.5 8.如图,在和中,,,添加一个条件后,仍然不能证明,这个条件可能是( )A.B.C.D.9.甲、乙、丙共同完成这样一道题目:“直线,相交于点,平分,,垂足为(如图所示).若,请用含的代数式表示,,中任意两个角的度数.”甲的结果是,;乙的结果是,;丙的结果是,.下列判断正确的是( )A.甲对乙错B.甲和乙都错C.乙和丙都对D.乙对丙错10.如图,在中,以点为圆心,适当长为半径作弧,交于点,交于点,分别以点,为圆心,大于长为半径作弧,两弧在的内部交于点,作射线交于点.若,,则的长为( )A.B.1C.D.2二、填空题11.如图,已知△ACE≌△DBF,∠A=66°,∠E=78°,则∠FBD的度数为 12.如图,在中,D为边上一点,且平分,过A作于点若,,,,则 .13.如图,在中,,,点D为上一点,连接.过点B作于点E,过点C作交的延长线于点F.若,,则的长度为 .14.已知点在第四象限角平分线上,则该点的坐标是 .三、解答题15.如图,已知平分,.求证:.16.如图,在中,,过点作,垂足为,延长至点使在边上截取,连接求证:.17.如图,已知,平分交的延长线于点E,平分交的延长线于点F,且与交于点G,求证:.四、综合题18.如图△ADF≌△BCE,∠B=40°,∠F=22°,BC=2cm,CD=1cm,求:(1)∠1的度数;(2)AC的长.19.如图,点、、、在直线上(、之间不能直接测量),点、在㫒侧,测得,,.(1)试说明:;(2)若,,求的长度.20.如图,交延长线于,于,,.(1)求证:平分;(2)直接写出与之间的数量关系.答案解析部分1.【答案】C【解析】【解答】A.形状相同的两个图形大小不一定相等,所以不是全等图形,故本选项不符合题意.B.面积相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项不符合题意.C.能够完全重合的两个图形是全等图形,故本选项符合题意.D.周长相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项不符合题意.故答案为:C.【分析】根据全等图形的定义逐项判断即可。

新人教版数学八年级上册第十二章全等三角形综合复习练习题精选

第十二章全等三角形综合复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

1.如图,例 4.如图,AB // CD , AD // BC ,求证: AB =CD 。

例5.如图,AP,CP 分别是 ABC 外角ZMAC 和/NCA 的平分线,它们交于点P 。

求证:BP 为乙MBN 的 平分线。

AC_CE , BD_DF , AE 二 BF , AC 二 BD 。

求证:. :ACF= . :BDE 。

2.如图, 在 ABC 中,例 连接 在JABC 中,3.如图, AE,EF 和CF 。

求证:BE 是/ ABC 的平分线, AD _ BE ,垂足为D 。

求证:AB =BC , . ABC =90;。

F 为 AB 延长线上一点,点 E 在 BC 上,BE=BF ,AE =CF 。

A,F, E,B 四点共线,B.2^/1 . C 。

MB C N例6.如图,AC =2AE。

D是JABC的边BC上的点,且CD =AB,. ADB =. BAD,AE是ABD的中线。

求证:例7.如图,在ABC中,AB AC , . 1^/2 , P为AD上任意一点。

求证:同步练习-、选择题:1.能使两个直角三角形全等的条件是()A.两直角边对应相等B. 一锐角对应相等C.两锐角对应相等D.斜边相等2•根据下列条件,能画出唯一厶ABC的是()A. AB =3,BC =4,CA =8B. AB = 4,BC = 3,A = 30;C. C =60,B = 45,AB = 4D. C 二90,AB = 63.如图,已知• 1 = • 2,AC二AD,增加下列条件:①AB = AE •,②BC二ED :③,C = D :④,B= E。

其中能使厶ABC三AED的条件有A. 4个B. 3个C. 2个AB _AC .PB _PC。

CD. 1个4.如图,• 1 =/2,- C =/D , AC, BD交于E点,下列不正确的是(A. DAE "CBEB. CE = DEC. DEA不全等于CBED. EAB是等腰三角形M题b5E2RGbCAP二、填空题:6. 如图,在ABC中,.C =90' , ABC的平分线BD交AC于点D ,且CD : AD =2 : 3 , AC =10cm ,则点D到AB的距离等于 ______________ cm ; X7. 如图,已知AB 二DC,AD 二BC,E,F 是BD 上的两点,且BE 二DF,:' .■―:'若NAEB =100(,厶ADB =30^,则土BCF = __________ ;/8. 将一张正方形纸片按如图的方式折叠,BC, BD为折痕,则.CBD的大:-小为__________ ;/ _________ /9.如图,在等腰Rt^ABC 中,C =90:,AC =BC,AD 平分.BAC 交BC 八C于D,DE丄AB于E,若AB =10 U ABDE的周长等于____________________10.如图,点D, E,F,B在同一条直线上, AB // CD , AE // CF,且AE £F贝y EF = ______ ;三、解答题:11.如图,「ABC为等边三角形,点M,N分别在BC,AC上,且BM -CN , AM与BN交于Q点。

人教版2020年秋季数学八年级上册第12章全等三角形单元卷(含答案) (2)

人教版2020年秋季数学八年级上册第12章全等三角形单元卷一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2D.AB=AD7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD=6,则图中阴影部分的面积为()A.12B.20C.24D.4810.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC≌△BAD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为cm.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为m.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣=BF﹣BE()即=在△ABC和△DEF中,所以△ABC≌△DEF().20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.参考答案一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°解:∵△ABC≌△A'B'C',∴∠C=∠C′=24°,∵∠A=36°,∴∠B=180°﹣24°﹣36°=120°,故选:B.2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC 解:A.在△ABC和△DCB中,∵,∴△ABC≌△DCB(SSS),故A选项不合题意;B.在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故B选项不合题意;C.∵BO=CO,∴∠ACB=∠DBC,在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故C选项不合题意;D.∵AB=DC,∠ACB=∠DBC,不能证明△ABC≌△DCB,故D选项符合题意;故选:D.3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直解:∵△ABC≌△CDE,∴AC=CE,∠A=∠BCD,∠B=∠D,∠ACB=∠E,∴∠ACB+∠BCD=∠ACB+∠A,当∠B=∠D≠90°时,∠ACB+∠BCD=∠ACB+∠A≠90°,则∠ACE≠90°,即AC和CE不互相垂直,故选:B.4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个解:如图所示:一共有6个符合题意的点.故选:C.6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2D.AB=AD解:A、添加∠B=∠D,由“AAS”可证△ABC≌△ADE,故选项A不合题意;B、添加BC=DE,由“SAS”可证△ABC≌△ADE,故选项B不合题意;C、添加∠1=∠2,由“ASA”可证△ABC≌△ADE,故选项C不合题意;D、添加AB=AD,不能证明△ABC≌△ADE,故选项D符合题意;故选:D.7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°解:∵AB=AC,∠A=50°,∴∠B=∠C=65°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠CDE=∠BFD,∵∠CDF=∠B+∠BFD=∠CDE+∠EDF,∴∠EDF=∠B=65°,故选:C.9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12B.20C.24D.48解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,BD=BC,∵BC=8,∴BD=4,∵S△BEF=S△CEF,AD=6,∴S阴影=S△ADB=.故选:A.10.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',可得:CD=C'D',A、下滑过程中,CC'与DD'不一定相等,说法错误;B、下滑过程中,当△OCD与△OD'C'全等时,CC'=DD',说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC'=DD',说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD'C'全等时,一定存在某个位置使得CC'=DD',说法正确;故选:D.二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件AC=BD就可以判断△ABC≌△BAD.解:添加AC=BD,理由:∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是7cm.解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.解:∵△ABC≌△ADE,∴∠D=∠B=40°,∴∠BED=∠A+∠D=60°+40°=100°,故答案为:100°.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为4cm.解:过点D作DE⊥AB于E,∵BD:DC=2:1,BC=12,∴DC=4,∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DE=DC=4,即D到AB的距离为4cm,故答案为:4.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为32.解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=32,故答案为:32.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是7.解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠FAC,∠FBC=∠EBC,在△ADC和△AFC中,∵,∴△ADC≌△AFC(AAS),∴AD=AF,在△CBE≌△CBF中,∵,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE=5+2=7,故答案为:7.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是3.解:∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵点D是BC中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF=3,故答案为:3.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为800m.解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=800.答:A,B之间的距离为800m.故答案是:800.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣BE=BF﹣BE(等式的性质)即BC=EF在△ABC和△DEF中,所以△ABC≌△DEF(ASA).解:因为CE=BF(已知),所以CE﹣BE=BF﹣BE(等式的性质),即BC=EF,在△ABC和△DEF中,所以△ABC≌△DEF(ASA).故答案为:BE;等式的性质;BC=EF;ASA.20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.解:CF=DE,理由:∵AE=BF,∴AF=BE.∵AC∥BD,∴∠A=∠B.在△ACF和△BDE中,,∴△ACF≌△BDE(SAS).∴CF=DE.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.【解答】证明:在△ABE和△DCE中,∵,∴△ABE≌△DCE(ASA).22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.【解答】(1)证明:∵∠CAB=∠EAF,∴∠CAB+∠CAE=∠EAF+∠CAE,∴∠BAE=∠CAF,在△BAE和△CAF中∴△BAE≌△CAF(SAS),∴BE=CF;(2)∵△BAE≌△CAF,∴∠EBA=∠FCA,即∠DBA=∠OCD,∵∠BDA=∠ODC,∴∠BAD=∠COD,∵∠BAC=70°,∴∠BAD=70°,∴∠COD=70°,即∠BOC=70°.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.【解答】证明:(1)∵∠BAE=∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠C=∠E;(2)∵△ABC≌△ADE,∴∠B=∠D,在△ABM和△ADN中,,∴△ABM≌△ADN(ASA),∴AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.解:(1)AD∥BE,理由:∵AB∥CD,∴∠B=∠DCE,∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE;(2)∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA).25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是PC=PD.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.。

第12章 全等三角形 人教版八年级上册数学 单元综合测试及答案(4份)

第十二章全等三角形章末综合测试一.选择题1.如图,已知两个三角形全等,那么∠1的度数是()A.72°B.60°C.58°D.50°2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.下列条件中不能判定两个直角三角形全等的是()A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.如图,在△ABC中,点D、E分别在边AB、AC上,BE与CD相交于点O,如果已知∠ABC=∠ACB,那么还不能判定△ABE≌△ACD,补充下列一个条件后,仍无法判定△ABE ≌△ACD的是()A.AD=AE B.BE=CD C.OB=OC D.∠BDC=∠CEB 5.如图,AD=AE,BD=CE,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40°D.∠C=30°6.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′7.在Rt△ABC中,∠ACB=90°,E是AB上一点,且BE=BC,过D作DE⊥AB交AC 于E,如果AC=5cm,则AD+DE为()A.3cm B.4cm C.5cm D.6cm8.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.49.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE=2,AB=4,则AC的长为()A.3B.4C.5D.610.如图,AE是△ABC的角平分线,AD⊥BC于点D,点F为BC的中点,若∠BAC=104°,∠C=40°.则有下列结论:①∠BAE=52°;②∠DAE=2°;③EF=ED;④S△ABF=S△ABC.其中正确的有()A.1个B.2个C.3个D.4个二.填空题11.如果△ABC≌△DEF,AB=2,AC=4,△DEF的周长为偶数,则EF的长为.12.如图,△ABC≌△DCB,若AB=4cm,BC=6cm,AC=5cm,则DC=cm.13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.14.如图,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件为.(注:把你认为正确的答案序号都填上)15.如图,在正方形组成的网格中,△ABC的三个顶点在格点上,现以△ABC的一边再作一个三角形,使所得的三角形与△ABC全等,且其顶点也在格点上,则这样的三角形有个.16.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.17.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于.18.△ABC中,∠B,∠C的平分线交于点O,如果点O到BC边的距离为5,则点O到AB 边的距离为.19.如图,点P是∠AOB的角平分线上的一点,过点P作PC∥OA交OB于点C,PD⊥OA,若∠AOB=60°,OC=6,则PD=.20.如图已知,∠BAC=30°,D为∠BAC平分线上一点,DF∥AC交AB于F,DE⊥AC 于E,若DE=2,则DF=.三.解答题21.已知:如图,AB=CD,AC=BD,AC、BD交于点E,过点E作EF⊥BC于点F.求证:BF=CF.22.如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足AB=CD,AE=DF,CE=BF,连接AF;(1)∠B与∠C相等吗?请说明理由.(2)若∠B=40°,∠DFC=20°,若AF平分∠BAE时,求∠BAF的度数.23.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.24.已知:如图,AD∥BC,DB平分∠ADC,CE平分∠BCD,交AB于点E,BD于点O.求证:点O到EB与ED的距离相等.参考答案1.解:∵两个三角形全等,∴∠2=∠1=180°﹣58°﹣72°=50°,故选:D.2.解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选:D.3.解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用边角边或HL判定两三角形全等,不符合题意;D、可以利用角角边判定两三角形全等,不符合题意.故选:A.4.解:添加A选项中条件可用SAS判定两个三角形全等;添加B选项以后是SSA,无法证明三角形全等;添加C选项中条件首先根据等边对等角得到∠OBC=∠OCB,再由等式的性质得到∠ABE =∠ACD,最后运用ASA判定两个三角形全等;添加D选项中条件首先根据等角的补角相等可得∠ADC=∠AEB,再由AAS判定两个三角形全等;故选:B.5.解:A、正确.∵AD=AE∴∠ADE=∠AED∵BD=CE∴BD+DE=CE+DE,即BE=CD∴△ABE≌△ACD(SAS)B、正确.∵△ABE≌△ACD∴AB=AC,∠B=∠C∵BD=CE∴△ABD≌△ACE(SAS)C、错误.∵∠ADB=∠AEC=100°∴∠ADE=∠AED=80°∴∠DAE=20°D、正确.∵∠BAE=70°∴∠BAD=50°∵∠ADB=∠AEC=100°∴∠B=∠C=30°故选:C.6.解:A中两边夹一角,满足条件;B中两角夹一边,也可证全等;C中∠B并不是两条边的夹角,C不对;D中两角及其中一角的对边对应相等,所以D也正确,故选:C.7.解:∵DE⊥AB,AC⊥BC,BE=BC,BD=BD ∴△DEB≌△DCB∴DE=DC∴AD+DE=AD+DC=AC∵AC=5cm∴AD+DE=5cm故选:C.8.解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∴S△ABC=AC•BC=×AB•OE+AC•OD+BC•OM,∴=+•OM+,∴OM=2,故选:B.9.解:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE=2,∵S△ABD+S△ACD=S△ABC,∴×2×4+×2×AC=7,∴AC=3.故选:A.10.解:AE是△ABC的角平分线,∠BAC=104°,∴∠BAE=∠CAE=52°,∴①正确;∵∠C=40°,AD⊥BC,∴∠CAD=50°,∴∠DAE=∠CAE﹣∠CAD=52°﹣50°=2°,∴②正确;∵△AEF是斜三角形,△AED是直角三角形,∴△AEF和△AED不全等,∴EF≠ED,∴③错误;∵点F为BC的中点,∴BF=BC,∴S△ABF=S△ABC,∴④正确;故选:C.11.解:4﹣2<BC<4+22<BC<6.若周长为偶数,BC也要取偶数所以为4.又因为△ABC≌△DEF,所以BC=EF.所以EF的长也是4.故答案是:4.12.解:∵△ABC≌△DCB,∴AB=DC=4cm.故填4.13.解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.14.解:∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;又AC=AD;所以要判定△ABC≌△AED,需添加的条件为:①AB=AE(SAS);③∠C=∠D(ASA);④∠B=∠E(AAS).故填①、③、④.15.解:如图所示:以AB为边的有3个,以BC为边的有1个,以AC为边的有1个,共有5个,故答案为:5.16.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.17.解:过E作EF⊥BC于点F,∵CD是AB边上的高,BE平分∠ABC,∴BE=DE=5,∴S△BCE=BC•EF=×5×1=5,故答案为:5.18.解:∵△ABC中,∠B,∠C的平分线交于点O,∴点O到AB边的距离=点O到BC边的距离=5,故答案为:519.解:如图,过点P作PE⊥OB于E,∵OP是∠AOB的角平分线,PD⊥OA∴PE=PD,∵OP是∠AOB的角平分线,∠AOB=60°,∴∠AOP=∠BOP=30°,∵PC∥OA,∴∠OPC=∠AOP,∴∠BOP=∠OPC=30°,∴PC=OC=6,∠PCE=60°.∴PE=OC•sin60°=3.∴PE=PD=3故答案为:3.20.解:如图,过点D作DG⊥AB于G,∵AD是∠BAC的平分线,DE⊥AC∴DG=DE,∵DF∥AC,∴∠DFG=∠BAC=30°,在Rt△DFG中,DF=2DG=2×2=4.故答案为:4.21.证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),∴∠ACB=∠DBC,∴EB=EC,∵EF⊥BC,∴BF=CF.22.解:(1)∠B=∠C,理由如下:∵CE=BF,∴BE=CF,在△AEB和△DFC中,,∴△AEB≌△DFC(SSS),∴∠B=∠C;(2)∵△AEB≌△DFC,∴∠AEB=∠DFC=20°,∴∠EAB=180°﹣∠B﹣∠AEB=120°,∵AF平分∠BAE,∴∠BAF=∠BAE=60°.23.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC=S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC=AB+BC+AC,又∵△ABC的周长为16,∴S△ABC=16.24.证明:∵AD∥BC,∴∠ADC+∠BCD=180°,∵DB平分∠ADC,CE平分∠BCD,∴∠ODC+∠OCD=90°,∴∠DOC=90°,∴∠DOC=∠BOC,又∵CO=CO,∠DCO=∠BCO,∴△DCO≌△BCO(ASA)∴CB=CD,∴OB=OD,∴CE是BD的垂直平分线,∴EB=ED,又∠DOC=90°,∴EC平分∠BED,∴点O到EB与ED的距离相等.第十二章《全等三角形》单元过关训练题(二)一.选择题1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A.AB=A′B′,AC=A′C′,BC=B′C′B.∠A=∠A′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′,∠A=∠A′D.AB=A′B′,BC=B′C′,∠C=∠C′3.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处4.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BAC C.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC5.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A.SAS B.SSS C.ASA D.AAS6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B.CH=CE=EF C.AC=AF D.CH=HD8.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.69.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°10.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二.填空题11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC =7,DE=2,AB=4,则AC长是.12.已知图中的两个三角形全等,则∠α的度数是.13.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.14.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为厘米/秒.15.尺规作图中的平分已知角,其根据是构造两个三角形全等.由作法知,判定所构造的两个三角形全等的依据是.16.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有(填序号).三.解答题17.已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,试说明:(1)△ACE≌△BDF.(2)AE∥BF.18.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.19.在四边形ABCD中,E为BC边中点.已知:如图,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;20.如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上的点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.21.如图,△ABC中,DE⊥BC于点E,交∠BAC的平分线AD于点D,过点D作DM⊥AB 于点M,作DN⊥AC于点N,且BM=CN.求证:点E是BC的中点.22.如图,在△ABC中,点D是边BC的中点,连结AD并延长到点E,使DE=AD,连结CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.23.如图,AB∥CD,AD与BC相交于点E,AF平分∠BAD,交BC于点F,交CD的延长线于点G.(1)若∠G=29°,求∠ADC的度数;(2)若点F是BC的中点,求证:AB=AD+CD.参考答案一.选择题1.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.解:A、根据SSS可以判定两个三角形确定.本选项不符合题意.B、根据AAS可以判定两个三角形确定.本选项不符合题意.C、根据SAS可以判定两个三角形确定.本选项不符合题意.D、SSA不可以判定两个三角形确定.本选项符合题意.故选:D.3.解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.4.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.5.解:在△D′O′C′和△DOC中,,∴△D′O′C′≌△DOC(SSS),∴∠D′O′C′=∠DOC.则全等的依据为SSS.故选:B.6.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.7.解:A、∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故正确;B、∵CD⊥AB,EF⊥AB,∴EF∥CD∴∠AEF=∠CHE,∴∠CEH=∠CHE∴CH=CE=EF,故正确;C、∵角平分线AE交CD于H,∴∠CAE=∠BAE,又∵∠ACB=∠AFE=90°,AE=AE,∴△ACE≌△AEF,∴CE=EF,∠CEA=∠AEF,AC=AF,故正确;D、点H不是CD的中点,故错误.故选:D.8.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.9.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.10.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.二.填空题(共6小题)11.解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,=×4×2+AC•2=7,∴S△ABC解得AC=3.故答案为:3.12.解:∵两个三角形全等,∴α=50°.故答案为:50°.13.解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.14.解:∵AB=16cm,BC=10cm,点D为AB的中点,∴BD=×16=8cm,设点P、Q的运动时间为t,则BP=2t,PC=(10﹣2t)cm①当BD=PC时,10﹣2t=8,解得:t=1,则BP=CQ=2,故点Q的运动速度为:2÷1=2(厘米/秒);②当BP=PC时,∵BC=10cm,∴BP=PC=5cm,∴t=5÷2=2.5(秒).故点Q的运动速度为8÷2.5=3.2(厘米/秒).故答案为:2或3.2.15.解:在尺规作图中,平分已知角是通过构建三边对应相等的全等三角形来证得所作直线平分已知角的,因此由作法知其判定依据是SSS,即边边边公理.16.解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②④.三.解答题(共7小题)17.证明:(1)∵AD=BC,∴AC=BD,在△ACE与△BDF中,∴△ACE≌△BDF(SSS);(2)∵△ACE≌△BDF,∴∠A=∠B,∴AE∥BF.18.解:(1)∵AB=AC,∴∠C=∠B=36°,∵∠ADE=36°,∠BDA=128°,∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°,故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=36°,∴∠DEC+∠EDC=144°,∵∠ADE=36°,∴∠ADB+∠EDC=144°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=72°,∴∠BDA=∠DAE+∠C=72°+36°=108°;②当AD=AE时,∠AED=∠ADE=36°,∴∠DAE=108°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=36°,∴∠BDA=∠EAD+∠C=36°+36°=72°;综上所述,当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.19.(1)证明:∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS);(2)证明:由(1)知,△ABE≌△AFE,∴EB=EF,∠AEB=∠AEF,∵∠BEC=180°,∠AED=90°,∴∠AEB+∠DEC=90°,∠AEF+∠DEF=90°,∴∠DEC=∠DEF,∵点E为BC的中点,∴EB=EC,∴EF=EC,在△ECD和△EFD中,,∴△ECD≌△EFD(SAS),∴DC=DF,∵AD=AF+DF,AB=AF,∴AD=AB+CD.20.(1)证明:∵DB是高,∴∠ABE=∠DBC=90°.在△ABE和△DBC中,,∴△ABE≌△DBC.(2)解:BM=BN,MB⊥BN.证明如下:∵△ABE≌△DBC,∴∠BAM=∠BDN.在△ABM和△DBN中,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∴∠DBN+∠DBM=∠ABM+∠DBM=∠ABD=90°.∴MB⊥BN.21.证明:连接BD,CD,∵DM⊥AB,DN⊥AC,AD平分∠BAC,∴DM=DN,∠DMB=∠DNC=90°,又∵BM=CN,∴△BMD≌△CND(SAS),∴BD=CD,∵DE⊥BC,∴E是BC的中点.22.证明:(1)∵D是BC中点,∴BD=CD,在△ABD与△CED中,∴△ABD≌△ECD(SAS);(2)在△ABC 中,D 是边BC 的中点,∴S △ABD =S △ADC ,∵△ABD ≌△ECD ,∴S △ABD =S △ECD ,∵S △ABD =5,∴S △ACE =S △ACD +S △ECD =5+5=10,答:△ACE 的面积为10.23.证明:(1)∵AB ∥CD ,∴∠BAG =∠G ,∠BAD =∠ADC .∵AF 平分∠BAD ,∴∠BAD =2∠BAG =2∠G .∴∠ADC =∠BAD =2∠G .∵∠G =29°,∴∠ADC =58°;(2)∵AF 平分∠BAD ,∴∠BAG =∠DAG .∵∠BAG =∠G ,∴∠DAG =∠G .∴AD =GD .∵点F 是BC 的中点,∴BF =CF .在△ABF 和△GCF 中, ∵∴△ABF ≌△GCF (AAS ),∴AB =GC .∴AB=GD+CD=AD+CD.第12章《全等三角形》单元选择题必练题型(一)1.下列语句中正确的是()A.有两边及一个角对应相等的两个三角形全等B.有两角及一边相等的两个三角形全等C.有三个角对应相等的两个三角形全等D.有两边及其中一边上的中线对应相等的两个三角形全等2.如图,△ABC≌△EDF,DF=BC,AB=ED,AF=20,EC=10,则AE等于()A.5 B.8 C.10 D.153.下列条件中,不能证明△ABC≌△A′B′C′的是()A.∠A=∠A′,∠B=∠B′,AC=A′C′B.∠A=∠A′,∠B=∠B′,AB=A′B′C.AB=A′B′,∠A=∠A′,AC=A′C′D.∠A=∠A′,AB=A′B′,BC=B′C′4.如图∠1=∠2,PM⊥OA于点M,则P点到OB的距离等于()A.OA的长B.OP的长C.PM的长D.都不正确5.如图,已知AC=AB,∠1=∠2,则下列结论不一定成立的是()A.BD=CD B.AC=BD C.∠B=∠C D.∠BDA=∠CDA 6.如图,△ABC≌△A′B′C,∠BCB′=40°,则∠ACA′=()A.30°B.40°C.120°D.150°7.若△ABC≌△A′B′C′,且△ABC的周长为20,AB=5,BC=8,则A′C′的长为()A.5 B.8 C.7 D.5或88.已知:如图,点A、E、F、D在同一条直线上,AE=DF,AB=CD,BF⊥AD,CE⊥AD,垂足分别为F、E,则△ABF≌△DCE的依据是()A.SSS B.SAS C.ASA D.HL9.与如图所示的正方形图案全等的图案是()A.B.C.D.10.如图,已知AB=AC,要使△ABD≌△ACD,需要添加的条件是()A.∠B=∠C B.BD=CD C.∠BDA=∠DAC D.BD=AC11.如图点A、D、C、E在同一条直线上,AB∥EF,AB=EF,AD=EC,AE=10,AC=7,则CD的长为()A.3 B.4.5 C.4 D.5.512.如图,用直尺和圆规作出∠AOB的角平分线OC的依据是()A.(SSS)B.(SAS)C.(ASA)D.(AAS)13.如图所示,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,若DC:DB=3:5,则点D到AB的距离是()A.40 B.15 C.25 D.2014.如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D 15.如图,已知A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.BC∥EF B.∠B=∠F C.AD=CF D.∠A=∠EDF 16.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=4cm,则点D 到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm17.如图,△ABC≌△DEF,点B、E、C、F在同一条直线上,且CA=CB,AC与DE相交于点P,图中与∠EPC相等的角有()A.2个B.3个C.4个D.5个18.如图,已知AB=AC,点D、E分别在AC、AB上,BD与CE相交于点O,欲使△ABD≌△ACE.甲、乙、丙三位同学分别添加下列条件:甲:∠BEC=∠CDB;乙:AE=AD;丙:OB=OC.其中满足要求的条件是()A.仅甲B.仅乙C.甲和乙D.甲乙丙均可19.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.AC=DC,∠B=∠E D.∠B=∠E,∠BCE=∠ACD20.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.2对B.3对C.4对D.5对21.如图,在四边形ABCD中,AB=CD,AE⊥BD,CF⊥BD,垂足分别为E、F,AE=CF,则图中全等三角形共有()A.0对B.1对C.2对D.3对22.如图,AB、CD相交于点E,AE=CE,BE=DE,则下列结论错误的是()A.AD=CB B.AD∥BC C.∠EAD=∠ECB D.AC∥DB23.如图,在△ABC中,AB=AC,BE、CF是中线,则由()可得△AFC≌△AEB.A.SSS B.SAS C.AAS D.ASA24.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于点D,OE⊥AC 于点E,OF⊥AB于点F,且AB=13cm,BC=5cm,AC=12cm,则点O到三边AB,AC,BC的距离分别为()A.2cm,2cm,2cm B.3cm,3cm,3cmC.cm,cm,cm D.2cm,3cm,4cm25.如图,已知,∠BAD=120°,AC平分∠BAD,若∠ABC+∠ADC=180°,则如下结论一定正确的有()个①DC=BC;②AD+AB=AC;③S△ABC =3S△ACD;④∠ACB=3∠ACD.A.4 B.3 C.2 D.1参考答案1.解:A、有两边及一个角对应相等的两个三角形全等,说法错误;B、有两角及一边相等的两个三角形全等,说法错误;C、有三个角对应相等的两个三角形全等,说法错误;D、有两边及其中一边上的中线对应相等的两个三角形全等,说法正确;故选:D.2.解:∵△ABC≌△EDF,∴AC=EF,∴AC﹣EC=EF﹣EC,即AE=CF,∴AF=20,EC=10,∴AE=(20﹣10)=5.故选:A.3.解:A、根据全等三角形的判定定理AAS可以证得△ABC≌△A′B′C′,故本选项不符合题意;B、根据全等三角形的判定定理ASA可以证得△ABC≌△A′B′C′,故本选项不符合题意;C、根据全等三角形的判定定理SAS可以证得△ABC≌△A′B′C′,故本选项不符合题意;D、根据全等三角形的判定定理SSA不能证得△ABC≌△A′B′C′,故本选项符合题意;故选:D.4.解:∵∠1=∠2,PM⊥OA,∴P点到OB的距离等于PM的长.故选:C.5.解:如图,∵在△ACD与△ABD中,,∴△ACD≌△ABD(SAS),∴BD=CD(故A正确),∠B=∠C(故C正确),∠BDA=∠CDA(故D正确);当AB=BD时,AC=BD成立(故B错误).故选:B.6.解:∵△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠ACB′=∠A′CB′﹣∠ACB′,即∠ACA′=∠BCB′,∵∠BCB′=40°,∴∠ACA′=40°.故选:B.7.解:∵△ABC的周长为20,AB=5,BC=8,∴AC=20﹣5﹣8=7,∵△ABC≌△A′B′C′,∴A′C′=AC=7.故选:C.8.证明:∵AE=DF,∴AE+EF=DF+EF即AF=DE,∵BF⊥AD,CE⊥AD,∴∠AFB=∠DEC=90°,在△ABF和△DCE中,,∴△ABF≌△DCE(HL).故选:D.9.解:根据全等三角形的定义可得C和如图所示的正方形图案是全等的图案.故选:C.10.解:根据题目所给条件AB=AC,再加上公共边AD=AD可得有两条边对应相等,可以添加条件只能是两边的夹角或第三条边对应相等,A、C所给的角不是夹角,故错误,D所给的条件不是对应边,故错误,B所给的条件可利用SSS定理证明△ABD≌△ACD,故选:B.11.解:∵AB∥EF,∴∠A=∠E,∵AD=EC,∴AD+DC=EC+DC,即AC=ED,在△ABC和△EFD中,∴△ABC≌△EFD(SAS),∴AC=ED=7,∴CD=AC+ED﹣AE=7+7﹣10=4.故选:C.12.解:由作图知:OB=OA,BC=AC,OC=OC(公共边),即三边分别对应相等(SSS),△OBC≌△OAC,故选:A.13.解:∵BC=40,DC:DB=3:5,∴CD=×40=15,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=15,即点D到AB的距离是15.故选:B.14.解:A、∵AC=BD,∠CAB=∠DBA,AB=AB,∴根据SAS能推出△ABC≌△BAD,故本选项错误;B、∵∠CAB=∠DBA,AB=AB,∠1=∠2,∴根据ASA能推出△ABC≌△BAD,故本选项错误;C、根据AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;D、∵∠C=∠D,∠CAB=∠DBA,AB=AB,∴根据AAS能推出△ABC≌△BAD,故本选项错误;故选:C.15.解:可添加条件AD=CF,理由:∵AD=CF,∴AD+CD=CF+DC,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故选:C.16.解:∵∠C=90°,BD是∠ABC的平分线,DE⊥AB,∴DE=CD,∵CD=4cm,∴点D到AB的距离DE是4cm.故选:B.17.解:∵△ABC≌△DEF,∴∠A=∠D,∠B=∠DEF,∴AB∥DE,∴∠EPC=∠A,∵CA=CB,∴∠A=∠B,又∵∠EPC=∠APD(对顶角相等),∴与∠EPC相等的角有∠A、∠D、∠B、∠DEF、∠APD共5个.故选:D.18.解:∵∠BEC=∠A+∠C,∠CDB=∠A+∠B,∠BEC=∠CDB,∴∠B=∠C,在△ABD和△ACE中∴△ABD≌△ACE(ASA),∴甲正确;∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴乙正确;连接BC,∵OB=OC,AB=AC,∴∠OBC=∠OCB,∠ABC=∠ACB,∴∠ABC﹣∠OBC=∠ACB﹣∠OCB,即∠ABD=∠ACE,∴在△ABD和△ACE中∴△ABD≌△ACE(ASA),∴丙正确;故选:D.19.解:A、根据SAS能推出△ABC≌△DEC,正确,故本选项错误;B、根据SSS能推出△ABC≌△DEC,正确,故本选项错误;C、根据AC=DC,AB=DE和∠B=∠E不能推出△ABC≌△DEC,错误,故本选项正确;D、∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,即根据AAS能推出△ABC≌△DEC,正确,故本选项错误;20.解:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABO和△ADO中,,∴△ABO≌△ADO(SAS),∴BO=DO,△CBO和△CDO中,,∴△BCO≌△DCO(SSS).故选:B.21.解:全等三角形有△ABE≌△CDF,△AED≌△CFB,△ABD≌△CDB,共3对,故选:D.22.解:A、如图,在△AED与△CEB中,,则△AED≌△CEB(SAS),所以AD=CB,故本选项正确;B、由A知,△AED≌△CEB,则∠ADC=∠CBE,但是∠CBE=∠DAB不一定成立,故AD∥BC不一定成立,故本选项错误;C、由A知,△AED≌△CEB,则∠EAD=∠ECB,故本选项正确;D、∵AE=CE,∴∠EAC=∠ECA=90°﹣∠AEC.同理,∠CDB=∠ABD=90°﹣∠AEC,∴∠ACD=∠CDB,∴AC∥DB.故本选项正确;23.解:∵BE、CF是中线,∴AE=AC,AF=AB,∵AB=AC,∴AF=AE,在△AFC和△AEB中,∴△AFC≌△AEB(SAS),故选:B.24.解:∵AC2+BC2=122+52=169=132=AB2,∴△ABC是直角三角形,∵点O为△ABC三条角平分线的交点,∴OD=OE=OF,=×12×5=×(13+5+12)×OD,∴S△ABC解得OD=2,∴点O到三边AB,AC,BC的距离分别为2cm,2cm,2cm.故选:A.25.解:过C作CF⊥AB于F,CE⊥AM于E,∵AC平分∠BAD,∴CE=CF,∠CED=∠CFB=90°,∵∠ABC+∠ADC=180°,∠ADC+∠EDC=180°,∴∠CBF=∠EDC,在△EDC和△FBC中,,∴△EDC ≌△FBC (AAS ),∴CD =CB ,DE =FB ,∵CE =CF ,AC =AC ,∴由勾股定理得:AE =AF ,∵∠BAD =120°,AC 平分∠BAD ,∴∠CAF =60°,∴∠ACF =30°,∵∠AFC =90°,∴AC =2AF =AE +AF ,∵AD +AB =AD +AF +FB =AD +AF +DE =AE +AF =2AF ,∴AD +AB =AC ,∴①正确;②正确;当∠ABC =∠ADC =90°时,S △ADC =S △ABC ,∠ACB =∠ACD ,∴③④错误;故选:C .第十二章《全等三角形》检测试题(二)一.选择题1.下列条件中,能判定两个直角三角形全等的是( )A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条直角边对应相等2.如图,已知∠DCE =90°,∠DAC =90°,BE ⊥AC 于B ,且DC =EC ,若BE =7,AB =3,则AD 的长为( )A.3 B.5 C.4 D.不确定3.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.65.如图,用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS6.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°8.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB 9.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D 10.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS11.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC12.如图,AD为∠CAF的角平分线,BD=CD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确结论的序号有()A.①②③④B.②③④C.①②③D.①②④二.填空题13.已知△ABC≌△DEF,∠A=50°,∠B=60°,则∠F=.14.如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为4和9,则n的面积为.15.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.16.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.17.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.18.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.三.解答题19.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD =CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.21.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B =180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.22.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)。

人教版初中数学八年级上册《第12章 全等三角形》单元测试卷

人教新版八年级上学期《第12章全等三角形》单元测试卷一.选择题(共28小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.如图所示的图形是全等图形的是()A.B.C.D.3.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等4.下列各组的两个图形属于全等图形的是()A.B.C.D.5.如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°6.如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF 交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB 7.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或8.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°9.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F 10.如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 11.如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD12.如图,已知AB=DE,BE=CF,添加下列条件中哪一个能使△ABC≌△DEF()A.∠A=∠D B.AB∥DE C.BE=EC D.AC∥DF13.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC14.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等15.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个16.如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°17.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°18.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=5,BF=3,EF=2,则AD的长为()A.4B.5C.6D.719.如图,∠ACB=90°,AC=BC=4,AD⊥CE,BE⊥CE,垂足分别是点D、E,若DC =1,则DE的长是()A.B.﹣1C.﹣1D.20.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS21.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS22.如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,他想了一想,结果带第3片去.理由是根据三角形全等的判定方法中()A.SSS B.SAS C.ASA D.AAS23.如图,OB平分∠MON,A为OB的中点,AE⊥ON,垂足为点E,EA=3,D为OM上的一个动点,C是DA的延长线与BC的交点,BC∥OM,则CD的最小值为()A.6B.8C.10D.1224.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2B.2:3C.1:4D.4:925.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()A.1个B.2个C.3个D.4个26.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5°27.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm28.有下列画图语句:①画出线段A,B的中点;②画出A,B两点的距离;③延长射线OP;④连接A,B两点,其中正确的个数是()A.1B.2C.3D.4二.填空题(共1小题)29.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.三.解答题(共9小题)30.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.31.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.32.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.33.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.34.如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE 于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.35.如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.36.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.37.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.38.如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.人教新版八年级上学期《第12章全等三角形》2019年单元测试卷参考答案与试题解析一.选择题(共28小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.【点评】本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.2.如图所示的图形是全等图形的是()A.B.C.D.【分析】根据能够完全重合的两个图形叫做全等形可得答案.【解答】解:如图所示的图形是全等图形的是B,故选:B.【点评】此题主要考查了全等图形,关键是掌握全等形的定义.3.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.4.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.5.如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据全等三角形的性质和三角形内角和解答即可.【解答】解:∵,△ABC≌△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查全等三角形的性质,关键是根据全等三角形的性质和三角形内角和解答.6.如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF 交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB【分析】根据全等三角形的性质和外角的性质即可得到结论.【解答】解:∵△ABC≌△DEF,∴∠ACB=∠DFE,∵∠AMF=∠ACB+∠DFE,∴∠AMF=2∠ACB,故选:B.【点评】本题考查了全等三角形的性质,三角形的外角的性质,熟练正确全等三角形的性质是解题的关键.7.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x﹣2与5是对应边,或3x﹣2与7是对应边,计算发现,3x﹣2=5时,2x﹣1≠7,故3x﹣2与5不是对应边.【解答】解:∵△ABC与△DEF全等,当3x﹣2=5,2x+1=4,x=,把x=代入2x+1中,2x﹣1≠4,∴3x﹣2与5不是对应边,当3x﹣2=4时,x=2,把x=2代入2x+1中,2x+1=5,故选:A.【点评】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.8.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°【分析】依据△ABC≌△AED,即可得到∠AED=∠B,AE=AB,∠BAC=∠EAD,再根据等腰三角形的性质,即可得到∠B的度数,进而得出∠AED的度数.【解答】解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE中,∠B==70°,∴∠AED=70°,故选:A.【点评】本题考查的是全等三角形的性质、等腰三角形的性质,掌握全等三角形的对应角相等是解题的关键.9.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F【分析】根据全等三角形的判定定理,结合各选项的条件进行判断即可.【解答】解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,∴当AC=DF时,满足SSA,无法判定△ABC≌△DEF,故B不能;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B可以;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故C可以;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.如图,已知AD∥BC,那么添加下列一个条件后,仍无法确定△ABC≌△CDA的是()A.∠B=∠D B.AB∥DC C.AB=CD D.BC=AD【分析】根据全等三角形的判定的方法进行解答即可.【解答】解:A、∵AD∥BC,∴∠DAC=∠BCA,由得出△ABC≌△CDA,不符合题意;B、∵AD∥BC,∴∠DAC=∠BCA,∵AB∥DC,∴∠BAC=∠DCA,由得出△ABC≌△CDA,不符合题意;C、由AB=CD,AC=CA,∠DAC=∠BCA无法得出△ABC≌△CDA,符合题意;D、∵AD∥BC,∴∠DAC=∠BCA,由得出△ABC≌△CDA,不符合题意;故选:C.【点评】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ABC≌△CDA的另一个条件.12.如图,已知AB=DE,BE=CF,添加下列条件中哪一个能使△ABC≌△DEF()A.∠A=∠D B.AB∥DE C.BE=EC D.AC∥DF【分析】根据条件求出BC=EF,再根据全等三角形的判定定理判断即可.【解答】解:∵BE=CF,∴BE+CE=CF+CE,∴BC=EF,当AB∥DE时,∠B=∠DEF,依据SAS即可得到△ABC≌△DEF;当∠A=∠D或BE=EC或AC∥DF时,不能使△ABC≌△DEF;故选:B.【点评】本题全等三角形的判定的应用,全等三角形的5种判定方法中,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.14.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等B.两个锐角对应相等C.一锐角和斜边对应相等D.两条直角边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、符合判定HL,故本选项正确,不符合题意;B、全等三角形的判定必须有边的参与,故本选项错误,符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定SAS,故本选项正确,不符合题意.故选:B.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个【分析】先运用SAS证明△ABD≌△ACD,再得(1)△ABD≌△ACD正确;(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD(4)AD是△ABC的角平分线.即可找到答案.【解答】解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,及全等三角形性质的运用.16.如图,在△P AB中,P A=PB,D、E、F分别是边P A,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【解答】解:∵P A=PB,∴∠A=∠B,在△ADF和△BFE中,,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=34°,∴∠P=180°﹣∠A﹣∠B=112°,故选:A.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.17.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°【分析】作DG⊥AB于G,DH⊥BC于H,根据角平分线的性质得到DH=DG,证明Rt △DEG≌Rt△DFH,得到∠DEG=∠DFH,根据互为邻补角的性质得到答案.【解答】解:作DG⊥AB于G,DH⊥BC于H,∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,∴DH=DG,在Rt△DEG和Rt△DFH中,,∴Rt△DEG≌Rt△DFH(HL),∴∠DEG=∠DFH,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD的度数=180°﹣140°=40°,故选:A.【点评】本题考查的是全等三角形的判定和性质以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=5,BF=3,EF=2,则AD的长为()A.4B.5C.6D.7【分析】由题意可证△ABF≌△CDF,可得BF=DE=3,CE=AF=5,可求AD的长.【解答】证明:∵AB⊥CD,CE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∴∠A=∠C,且AB=CD,∠AFB=∠CED,∴△ABF≌△CDF(AAS)∴BF=DE=3,CE=AF=5,∵AE=AF﹣EF=5﹣2∴AE=3∴AD=AE+DE=6故选:C.【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.19.如图,∠ACB=90°,AC=BC=4,AD⊥CE,BE⊥CE,垂足分别是点D、E,若DC =1,则DE的长是()A.B.﹣1C.﹣1D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=.∴DE=EC﹣CD=﹣1故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.20.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.21.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点评】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22.如图,某同学把三角形玻璃打碎成三片,现在他要去配一块完全一样的,他想了一想,结果带第3片去.理由是根据三角形全等的判定方法中()A.SSS B.SAS C.ASA D.AAS【分析】根据全等三角形的判定定理即可得到结论.【解答】解:理由是根据三角形全等的判定方法中的ASA.故选:C.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.23.如图,OB平分∠MON,A为OB的中点,AE⊥ON,垂足为点E,EA=3,D为OM上的一个动点,C是DA的延长线与BC的交点,BC∥OM,则CD的最小值为()A.6B.8C.10D.12【分析】根据两条平行线之间的距离可知当CD⊥OM时,CD取最小值,利用全等三角形的判定和性质得出AC=AD=AE=3,进而解答即可.【解答】解:由题意可得,当CD⊥OM时,CD取最小值,∵OB平分∠MON,AE⊥ON于点E,CD⊥OM,∴AD=AE=3,∵BC∥OM,∴∠DOA=∠B,∵A为OB的中点,∴AB=AO,在△ADO与△ABC中,∴△ADO≌△ABC(SAS),∴AC=AD=3,∴CD=AC+AD=3+3=6,故选:A.【点评】此题考查全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC=AD=AE=3.24.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2B.2:3C.1:4D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S即可求得.△ABE【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.【点评】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.25.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解答】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选:B.【点评】本题主要考查了角平分线的性质,是一道结论开放性题目,考查了学生利用角平分线的性质解决问题的能力,有利于培养发散思维能力.26.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5°【分析】利用全等直角三角形的判定定理HL证得Rt△ACD≌Rt△AED,则对应角∠ADC =∠ADE;然后根据已知条件“DE平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【解答】解:∵在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,∴CD=ED.在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴∠ADC=∠ADE(全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE平分∠ADB,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B.【点评】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.27.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm【分析】根据直线、射线、线段的性质即可一一判断.【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.【点评】本题考查作图﹣尺规作图,解题的关键是熟练掌握基本概念,属于中考基础题.28.有下列画图语句:①画出线段A,B的中点;②画出A,B两点的距离;③延长射线OP;④连接A,B两点,其中正确的个数是()A.1B.2C.3D.4【分析】根据尺规作图的定义及其要求判断可得.【解答】解:①画出线段AB的中点,线段表示错误;②A,B两点的距离只能测量,此语句错误;③射线不能顺向延长,只能反向延长,此语句错误;④连接A,B两点,此语句正确;故选:A.【点评】本题主要考查尺规作图的定义,解题的关键是掌握直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度.二.填空题(共1小题)29.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“HL”.【分析】需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.【解答】解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.【点评】本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.三.解答题(共9小题)30.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.31.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(2)已知BC=7,AD=5,求AF的长.【分析】(1)由ASA证明△ABD≌△COD即可;(2)理由全等三角形的性质即可解决问题;∵【解答】(1)证明:证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA),(2)∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.【点评】此题考查了全等三角形的判定与性质的应用,证明三角形全等是解决问题的关键,属于中考常考题型.32.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.33.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.【分析】(1)已知C是线段AB的中点,所以有AC=BC,又因为CD平分∠ACE,CE 平分∠BCD,所以∠ACD=∠BCE,故可根据SAS判定两三角形全等.(2)由△ACD≌△BCE,得到∠D=∠E,根据平角的定义得到∠1+∠2+∠3=180°由∠1=∠2=∠3,得到∠1=∠2=∠3=60°,求得∠B=180°﹣∠3﹣∠E=70°.【解答】(1)证明:∵C是线段AB的中点∴AC=BC∵CD平分∠ACE,CE平分∠BCD,∴∠ACD=∠ECD,∠BCE=∠ECD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).(2)解:∵△ACD≌△BCE,∴∠D=∠E=50°,∵∠1+∠2+∠3=180°,∠1=∠2=∠3,∴∠1=∠2=∠3=60°,∴∠B=180°﹣∠3﹣∠E=70°.【点评】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.34.如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE 于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.【分析】(1)根据已知,利用SAS判定△ACF≌△ADF,从而得到对应角相等,再根据同位角相等两直线平行,得到DF∥BC;(2)已知DF∥BC,AC⊥BC,则GF⊥AC,再根据角平分线上的点到角两边的距离相等得到FG=EF.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠DAF.∵,∴△ACF≌△ADF(SAS).∴∠ACF=∠ADF.∵∠ACB=90°,CE⊥AB,∴∠ACE+∠CAE=90°,∠CAE+∠B=90°,∴∠ACF=∠B,∴∠ADF=∠B.∴DF∥BC.②证明:∵DF∥BC,BC⊥AC,∴FG⊥AC.∵FE⊥AB,又AF平分∠CAB,∴FG=FE.【点评】本题考查全等三角形的判定和性质、平行线的判定、角平分线的定义等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.35.如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.【分析】先根据全等三角形的判定定理得出Rt△BDE≌Rt△CDF,进而得出DE=DF,由角平分线的判定可知AD是∠BAC的平分线.【解答】证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形,∵,∴DE=DF,∴AD是∠BAC的平分线.【点评】本题考查的是角平分线的判定及全等三角形的判定与性质,熟知到角的两边的距离相等的点在角的平分线上是解答此题的关键.36.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.【分析】(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算.【解答】解:(1)过点D作DH⊥AB,垂足为点H,∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=5,∵,∴,∴,即CD=;(2),∵BD=2DE,∴,∴.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.37.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.【分析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论.【解答】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.38.如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.【分析】(1)过E作EH⊥AB于H,EF⊥BC于F,EG⊥AD于G,求出∠HAE=∠CAD,根据角平分线性质求出EH=EG,EF=EH,即可得出答案;(2)根据角平分线性质求出∠ADE=∠CDE,根据三角形外角性质得出即可.【解答】(1)证明:过E作EH⊥AB于H,EF⊥BC于F,EG⊥AD于G,∵AD平分∠BAC,∠BAC=120°,∴∠BAD=∠CAD=60°,∵∠CAH=180°﹣120°=60°,∴AE平分∠HAD,∴EH=EG,∵BE平分∠ABC,EH⊥AB,EF⊥BC,∴EH=EF,∴EF=EG,∴点E到DA、DC的距离相等;(2)解:∵由(1)知:DE平分∠ADC,∴∠EDC=∠DEB+∠DBE,∴=∠DEB+∠ABC,∴∠DEB=(∠CDA﹣∠ABC)=∠BAD=30°.【点评】本题考查了角平分线性质,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,到角的两边距离相等的点在角的平分线上;角平分线上的点到角两边的距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档