中考数学习题精选:圆的基本性质
初三人教版圆的性质练习题

初三人教版圆的性质练习题圆是初中数学中的一个基本几何图形,对圆的性质的理解和掌握是提高数学能力的关键。
本文将为大家提供一些关于圆的性质的练习题,帮助大家巩固对圆的认识和应用。
练习题一:判断题1. 半径相等的两个圆一定是同心圆。
()2. 圆的直径等于其半径的两倍。
()3. 圆的周长是它的直径的两倍。
()4. 圆的面积与其半径的平方成正比。
()5. 切线是与圆相切且过圆心的直线。
()练习题二:填空题1. 圆的一个扇形的弧长是5cm,圆心角为60°,则这个圆的半径为_________。
2. 已知圆的周长为24π cm,则其半径为_________。
3. 圆的直径是10cm,那么它的面积是_________。
4. 圆的周长是8π cm,则它的直径为_________。
练习题三:应用题1. 一个圆的半径为7cm,一只蚂蚁从圆的某一点出发,顺着圆的边界行走,最后回到出发点所经过的距离是多少?2. 一个球的直径为18cm,求该球的表面积和体积。
解答:练习题一:判断题1. 正确。
同心圆是指有同一个圆心的两个或多个圆。
2. 错误。
直径等于半径的两倍,即直径=2×半径。
3. 错误。
圆的周长是其直径的π倍,即周长=π×直径。
4. 正确。
圆的面积等于半径的平方乘以π,即面积=π×半径²。
5. 错误。
切线与圆只有一个交点,并且与圆相切。
练习题二:填空题1. 该圆的半径为5cm。
由圆心角的定义可知,弧长的长度等于圆心角的弧度数(单位为弧度)乘以圆的半径。
2. 该圆的半径为6cm。
已知圆的周长为2πr,其中r为半径。
3. 该圆的面积为75π cm²。
圆的面积等于半径的平方乘以π。
4. 该圆的直径为8cm。
圆的周长等于直径的π倍。
练习题三:应用题1. 蚂蚁行走的距离等于圆的周长,即2π×半径=2π×7=14π cm。
2. 该球的表面积为4π×半径²=4π×9²=36π cm²,体积为(4/3)π×半径³=(4/3)π×9³=972π cm³。
中考数学复习之圆的基本性质(含答案)

中考数学复习之圆的基本性质(含答案)1.如图,点A、B、C是⊙O上的点,∠AOB=70°,则∠ACB的度数是()A. 30°B. 35°C. 45°D. 70°2.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A. 58°B. 60°C. 64°D. 68°3.如图,⊙O的弦AC与半径相等,点B是优弧上一点,则∠ABC的度数为()A. 20°B. 30°C. 45°D. 60°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5 cm,CD=8 cm,则AE=()A. 8 cmB. 5 cmC. 3 cmD. 2 cm5.如图,⊙A过点O(0,0),C(3,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A. 15°B. 30°C. 45°D. 60°6.如图,⊙O 的半径为5,AB 为弦,点C 为AB ︵的中点.若∠ABC =30°,则弦AB 的长为( ) A. 12 B. 5 C. 532 D. 5 37. 如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、O C.若∠BAC 与∠BOC 互补,则弦BC 的长为( )A. 3 3B. 4 3C. 5 3D. 6 38.已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M , 且AB =8 cm ,则AC 的长为( )A. 2 5 cmB. 4 5 cmC. 2 5 cm 或4 5 cmD. 2 3 cm 或43cm 9.如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_______°.10. 如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E ,∠ACE 的度数为________.11. 如图,AB 是半圆O 的直径,E 是半圆上一点,且OE ⊥AB ,点C 为BE ︵的中点,则∠A =________°.12.如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,F C.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.参考答案:1-4 BABA 5-8 BDBC9.n10. 30°11. 22.512. (1)证明:∵AB为半圆的直径,∴∠AEB=90°,∵AB=AC,∴CE=BE,又∵EF=AE,∴四边形ABFC是平行四边形,又∵AB=AC,(或∠AEB=90°)∴平行四边形ABFC是菱形;(2)解:∵AD=7,BE=CE=2,设CD=x,则AB=AC=7+x,如解图,连接BD,∵AB为半圆的直径,∴∠ADB=90°,∴AB2-AD2=CB2-CD2,∴(7+x)2-72=42-x2,解得x1=1或x2=-8(舍去).。
中考专题复习-圆的基本性质

圆的基本性质|夯实基础|1.[2019·凉山州]下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数为 ()A.1B.2C.3D.4图K26-1 图K26-2 图K26-3 图K27-22.[2019·宜昌]如图K26-1,点A,B,C均在☉O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°3.[2018·威海]如图K26-2,☉O的半径为5,AB为弦,点C为AB⏜的中点,若∠ABC=30°,则弦AB的长为()A.12B.5 C.5√32D.5√34.[2019·天水]如图K26-3,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连结AC,AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°5.[2019·益阳]如图K27-2,P A,PB为圆O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.P A=PBB.∠BPD=∠APDC.AB⊥PDD.AB平分PD6.[2018·成都]如图K28-2,在▱ABCD中,∠B=60°,☉C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.[2018·杭州]如图K26-5,AB是☉O的直径,点C是半径OA的中点,过点C作DE⊥AB,交☉O于D,E两点,过点D作直径DF,连结AF,则∠DF A=.图K28-2 图K26-5 图K26-6 图K27-4 图K27-5⏜所对的圆心角∠8.[2019·海南]如图K27-4,☉O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BDBOD的大小为度.9.[2019·大兴一模]将一块含30°角的三角板如图K28-6放置,三角板的一个顶点C落在以AB为直径的半圆上,⏜的长为(结果保留π).斜边恰好经过点B,一条直角边与半圆交于点D,若AB=2,则BD图K28-610.[2019·台州]如图K26-6,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连结AE,若∠ABC=64°,则∠BAE的度数为.11.[2019·黄石]如图K27-5,在Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C,D两点的☉O分别交AC,BC于点E,F,AD=√3,∠ADC=60°,则劣弧CD的长为.12.[2018·绍兴]等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.13.如图K26-7,在△ABC中,AB=AC,以AC为直径的☉O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.图K26-714.[2019·常德]如图K27-8,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O 的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.图K27-815.[2019·广东]在如图K28-10所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三⏜与BC相切于点D,分别交AB,AC于点E,F.个顶点均在格点上,以点A为圆心的EF(1)求△ABC三边的长;⏜所围成的阴影部分的面积.(2)求图中由线段EB,BC,CF及FE16.[2019·安徽]筒车是我国古代发明的一种水利灌溉工具.如图K26-8,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图②,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB的长为6米,∠OAB=41.3°.若点C为运行轨道的最高点(C,O的连线垂直于AB).求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)图K26-8一、单选题1.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A B .32C D .2.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( ) A .AD=2OBB .CE=EOC .∠OCE=40°D .∠BOC=2∠BAD第2题 第3题 第4题 第5题3.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( ) A .20°B .25°C .30°D .50°4.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( ) A .30B .36︒C .60︒D .72︒5.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .23π- B .23π-C .43πD .43π-6.如图,⊙A 过点O (0,0),C 0),D (0,1),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°第6题 第7题 第8题 第10题7.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若 105BAD ∠=︒,则DCE ∠的大小是( )A .25B .65C .75D .1058.如图,以等边ABC ∆的一边AB 为直径的半圆O 交AC 于点D ,交BC 于点E ,若4AB =,则阴影部分的面积是( )A .B .CD .29.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( ) A .90°B .120°C .150°D .180°10.如图,ABC 的边AC 与O 相交于,C D 两点,且经过圆心O ,边AB 与O 相切,切点为B .若30A ∠︒=,则C ∠的大小是( ) A .60︒B .45︒C .30D .20︒11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8B .6C .12D .10第11题 第12题12.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上60°刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数为( ) A .60° B .65°C .70°D .75°二、填空题13.△ABC 内接于圆O ,且AB =AC ,圆O 的半径等于6cm ,O 点到BC 距离等于2cm ,则AB 长为_____cm . 14.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).15.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A ,然后过点A 作AB 与残片的内圆相切于点D ,作CD ⊥AB 交外圆于点C ,测得CD =15cm ,AB =60cm ,则这个摆件的外圆半径是_____cm .16..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.17.如图,已知半圆的直径4㎝,点C 、D 是这个半圆的三等分点,则弦AC 、AD 和弧CD 围成的阴影部分面积为 .18.如图,⊙O 中OA ⊥BC ,∠CDA=25°,则∠AOB 的度数为________.19.在平面直角坐标系中有A ,B ,C 三点,()1,3A ,()3,3B ,()5,1C .现在要画一个圆同时经过这三点,则圆心坐标为_______.20.如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD =3,BD =4,则△ABC 的面积为_____. 三、解答题21.如图,AB 是O 的直径,AC 是弦,D 是弧BC 的中点,过点D 作EF 垂直于直线,AC 垂足为F ,交AB 的延长线于点E .()1求证:EF 是O 的切线;()2若6,8AF EF==,求O的半径.22.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在格点上.(1)在所给的网格中画出与△ABC相似(相似比不为1)的△A1B1C1(画出一个即可);(2)在所给的网格中,将△ABC绕点C顺时针旋转90°得到△A2B2C,画出△A2B2C,并直接写出在此旋转过程中点A经过的路径长.23.如图,CD是⊙O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2=AD•AC,OE∥BD交直线AB于点E,OE与BC相交于点F.(1)求证:直线AE是⊙O的切线;(2)若⊙O的半径为3,cos A=45,求OF的长.24.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系,并说明理由;(2)若AC=16,tanA=34,求⊙O的半径.25.如图,△AB.C内接于⊙0,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)判断直线CD与⊙0的位置关系,并说明理由(2)若⊙0的半径为1,求阴影部分面积.26.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.。
圆的基本性质(解答题)

21.圆的基本性质(解答题)三、解答题85.(2009柳州)如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE 于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.【关键词】圆证明:(1)连结AC,如图。
∵C是弧BD的中点∴∠BDC=∠DBC又∠BDC=∠BAC在三角形ABC中,∠ACB=90°,CE⊥AB∴ ∠BCE=∠BAC∠BCE=∠DBC∴ CF=BF因此,CF=BF.(2)证法一:作CG⊥AD于点G,∵C 是弧BD 的中点∴ ∠CAG=∠BAC , 即AC 是∠BAD 的角平分线.∴ CE=CG ,AE =AG在Rt△BCE 与Rt△DCG 中,CE =CG , CB =CD∴Rt△BCE≌Rt△DCG∴BE=DG∴AE=AB-BE =AG =AD+DG即 6-BE =2+DG∴2BE=4,即 BE =2又 △BCE∽△BAC∴ 212BC BE AB ==·32±=BC (舍去负值) ∴32=BC(2)证法二:∵AB 是⊙O 的直径,CE⊥AB∴∠BEF=︒=∠90ADB ,在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠∴ADB △∽FEB △,则BF AB EF AD = 即BFEF 62=, ∴EF BF 3= 又∵CF BF =, ∴EF CF 3=利用勾股定理得:EF EF BF BE 2222=-=又∵△EBC∽△ECA则CE BE AE CE =,即则BE AE CE ⋅=2 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF ∴3222=+=CE BE BC .86.(2009年四川省内江市)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E 、F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC.求证:(1)CD ⊥DF ;(2)BC =2CD【关键词】三角形全等的判定.【答案】证:(1)设∠DFC =θ,则∠BAD =2θ在△ABD 中,∵AB =AD , ∴∠ABD =∠ADB∠ABD =12(180°-∠BAD )=90°-θ又∠FCD =∠ABD =90°-θ∴∠FCD+∠DFC =90°∴CD ⊥DF(2)过F 作FG ⊥BC 于G在△FGC 和△FDC 中 ,∠FCG =∠ADB =∠ABD =∠FCD∠FGC =∠FDC =90°,FC =FC∴△FGC ≌△FDC∴GC =CD 且∠GFC =∠DFC又∠BFC =2∠DFC∴∠GFB =∠GFC∴BC =2GC , ∴BC =2CD.87.(2009年甘肃庆阳)(10分)如图,在边长为2的圆内接正方形ABCD 中,AC 是对角线,P 为边CD 的中点,延长AP 交圆于点E .(1)∠E = 度; (2)写出图中现有的一对不全等的相似三角形,并说明理由; (3)求弦DE 的长.【关键词】圆周角和圆心角;相似三角形【答案】本小题满分10分解:(1)45.(2)△ACP∽△DEP.理由:∵∠AED=∠ACD,∠APC=∠DPE,∴ △ACP∽△DEP.(3)方法一: ∵ △ACP∽△DEP, ∴ .AP AC DP DE = 又 AP =522=+DP AD ,AC =2222=+DC AD ,∴ DE=5102.方法二:如图2,过点D 作DF AE ⊥于点F .在Rt ADP △中, AP 225,AD DP +又1122ADP S AD DP AP DF ==△, ∴ DF=552.∴ 51022==DF DE .88.(2009年衢州)如图,AD 是⊙O 的直径.(1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是 ,∠B 2的度数是 ;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2, ∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).【关键词】开放性试题【答案】解:(1) 22.5°,67.5°(2) ∵ 圆周被6等分,∴ 11B C =12C C =23C C =360°÷6=60°.∵ 直径AD ⊥B 1C 1,∴ 1AC =1211B C =30°,∴ ∠B 1m =121AC =15°. ∠B 2m =122AC =12×(30°+60°)=45°, ∠B 3m =123AC =12×(30°+60°+60°)=75°. (3) 11360360[(1)]2222n B n n n ︒︒∠=⨯+-⨯(9045)n n-︒=. (或3604590908n B n n︒︒∠=︒-=︒-)89. (2009年广州市)如图,在⊙O 中,∠ACB =∠BDC=60°,AC =cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长【关键词】圆【答案】90.(2009年广西钦州)(2)已知:如图2,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 15.求⊙O 1的半径.B A O图2 x y A BO 1O【关键词】垂径定理、勾股定理、坐标系【答案】(2)解:过点O 1作O 1C ⊥AB ,垂足为C ,则有AC =BC . B A O图2 x yA BO 1O C由A (1,0)、B (5,0),得AB =4,∴AC =2.在1Rt AO C △中,∵O 15,∴O 1C 5.∴⊙O 1的半径O 1A 22221(5)2O C AC ++3.91.(2009年南充)如图8,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.P BCE A【关键词】圆的性质,三角形相似的性质【答案】解:AB 是半圆的直径,点C 在半圆上,90ACB ∴∠=°.在Rt ABC △中,22221068AC AB BC =-=-= (2)PE AB ⊥,90APE ∴∠=°.90ACB ∠=°,APE ACB ∴∠=∠.又PAE CAB ∠=∠,AEP ABC ∴△∽△,PE AP BC AC∴= 110268PE ⨯∴= 301584PE ∴==.92.(2009年哈尔滨)如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD =BE . 点C 为弧AB 上一点,连接CD 、CE 、CO ,∠AOC=∠BOC.求证:CD =CE .【关键词】圆的半径,圆心角【答案】此题证明△OCD 与△OCE 全等即可,给出了一对角相等,再利用半径相等的性质即可得证OA OB AD BE ==,,OA AD OB BE ∴-=-,即OD OE =.93.(2009年中山)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13. (2)如图2,若DOE ∠保持120°角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.【关键词】圆的内接三角形【答案】(1)如图1,连结OA OC ,,因为点O 是等边三角形ABC 的外心,所以Rt Rt Rt OFC OGC OGA △≌△≌△.2OFCG OFC OAC S S S ==△△,因为13OAC ABC S S =△△, 所以13OFCG ABC S S =△. (2)解法一:连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠,不妨设OD 交BC 于点F ,OE 交AC 于点G ,3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,35∴∠=∠.在OAG △和OCF △中,1235OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, OAG OCF ∴△≌△,13OFCG AOC ABC S S S ∴==△△.解法二:不妨设OD 交BC 于点F ,OE 交AC 于点G ,作OH BC OK AC ⊥⊥,,垂足分别为H K 、,在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°,360909060120HOK ∴∠=-︒-︒=︒°-?,即12120∠+∠=°.又23120GOF ∠=∠+∠=°,13∴∠=∠.AC BC =, OH OK ∴=,OGK OFH ∴△≌△,13OFCG OHCK ABC S S S ∴==△.在ODC △ 和OEC △中,OD OE DOC EOC OC OC =⎧⎪∠=∠⎨⎪=⎩ODC OEC ∴△≌△.CD CE ∴=.94.(2009年广州市)如图,在⊙O 中,∠ACB =∠BDC=60°,AC =cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长【关键词】圆【答案】95. (2009年株洲市)(本题满分10分)如图,点A 、B 、C 是O 上的三点,//AB OC .(1)求证:AC 平分OAB ∠.(2)过点O 作OE AB ⊥于点E ,交AC 于点P . 若2AB =,30AOE ∠=︒,求PE 的长.【关键词】与圆有关的综合题【答案】(1)∵//AB OC , ∴C BAC ∠=∠;∵OA OC =,∴C OAC ∠=∠ ∴BAC OAC ∠=∠ 即AC 平分OAB ∠.(2)∵OE AB ⊥ ∴112AE BE AB === 又30AOE ∠=︒,90PEA ∠=︒∴60OAE ∠=︒∴1302EAP OAE ∠=∠=︒, ∴12PE PA =,设PE x =,则2PA x =,根据勾股定理得2221(2)x x +=,解得3x =tan PE EAP AE ∠=) 即PE 397.(2009年潍坊)如图所示,圆O 是ABC △的外接圆,BAC ∠与ABC ∠的平分线相交于点I ,延长AI 交圆O 于点D ,连结BD DC 、.(1)求证:BD DC DI ==;(2)若圆O 的半径为10cm ,120BAC ∠=°,求BDC △的面积.(1)证明:AI 平分BAC ∠BAD DAC BD DC ∴∠=∠∴=,BI 平分ABC ABI CBI ∠∴∠=∠,BAD DAC DBC DAC ∠=∠∠=∠,BAD DBC ∴∠=∠,又DBI DBC CBI DIB ABI BAD ∠=∠+∠∠=∠+∠, DBI DIB BDI ∴∠=∠∴,△为等腰三角形 BD ID BD DC DI ∴=∴==,(2)解:当120BAC ∠=°时,ABC △为钝角三角形,∴圆心O 在ABC △外,连结OB OD OC 、、,2120DOC BOD BAD ∴∠=∠=∠=°, 60DBC DCB ∴∠=∠=°,∴BDC △为正三角形.又知10cm OB =,32sin 60210103cm BD OB ∴==⨯⨯=° 223(103)753cm BDC S ∴=⨯=△.答:BDC △的面积为7532.98.(09湖北宜昌)已知:如图,⊙O 的直径AD =2,BC CD DE ==,∠BAE =90°.(1)求△CAD的面积;(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?【关键词】圆的基本性质、圆周角和圆心角【答案】解:(1)∵AD为⊙O的直径,∴∠ACD=∠BAE=90°.∵ BC CD DE==,∴ ∠BAC=∠CAD=∠DAE.∴∠BAC=∠CAD=∠DAE =30°.∵在Rt△ACD中,AD=2,CD=2sin30°=1, AC=2cos30°=3.∴S△ACD=1 2AC×CD =32.(2) 连BD,∵∠A BD=90°,∠BAD==60°,∴∠BDA=∠BCA=30°,∴BA=BC.作BF⊥AC,垂足为F,(5分)∴AF=12AC=32,∴BF=AFtan30°=12,∴S△ABC=12AC×BF =34,∴S ABCD=334.∵S⊙O=π ,∴P点落在四边形ABCD区域的概率=334π=334π.(2)解法2:作CM⊥AD,垂足为M.∵∠BCA=∠CAD(证明过程见解法),∴BC∥AD.∴四边形ABCD为等腰梯形.∵CM=ACsin30°=32,∴S ABCD=12(BC+AD)CM=334.∵S⊙O=π,∴P点落在四边形ABCD区域的概率=334π=334π.99.(2009年黄冈市)如图,已知AB是⊙O的直径,点C是⊙O上一点,连结BC,AC,过点C 作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连结BF,与直线CD交于点G.求证:BFBGBC⋅=2.【关键词】圆周角性质【答案】∵AB是⊙O的直径,∴∠ACB=90°又∵CD⊥AB于点D,∴∠BCD=90°-∠ABC=∠A=∠F∵∠BCD==∠F,∠FBC=∠CBG∴△FBC∽△CBG∴CBFBBGBC=∴BFBGBC⋅=2100. (2009襄樊市)如图12,已知:在O中,直径4AB=,点E是OA上任意一点,过E作弦CD AB⊥,点F是BC上一点,连接AF交CE于H,连接AC、CF、BD、OD.(1)求证:ACH AFC△∽△;(2)猜想:AH AF与AE AB的数量关系,并说明你的猜想;(3)探究:当点E 位于何处时,14?AEC BOD S S =△△::并加以说明.证明:(1)∵直径AB CD ⊥ ∴AC AD = ∴F ACH ∠=∠ 又CAF FAC ∠=∠ ∴ACH AFC △∽△(2)答:AH AF AE AB =,连接FB ∵AB 是直径,∴90AFB AEH ==︒∠∠ 又EAH FAB =∠∠ ∴Rt Rt AEH AFB △∽△∴AE AHAF AB =∴AH AF AE AB =(3)当32OE =(或12AE =)时,14AEC BOD S S =△△.::∵直径AB CD ⊥ ∴CE ED =∵1122AEC BOD S AE EC S OB ED ==△△,∴14AEC BOD S AE S OB ==△△∵O 的半径为2∴2124OE -= ∴32OE =101.(2009湖北省荆门市)如图,半径为25的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA·PB=PC·PD;(2)设BC中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.解:(1)∵∠A、∠C所对的圆弧相同,∴∠A=∠C.∴Rt△APD∽Rt△CPB,∴AP PDCP PB=,∴PA·PB=PC·PD;(2)∵F为BC中点,△BPC为Rt△,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°.∴EF⊥AD.(3)作OM⊥AB于M,ON⊥CD于N,由垂径定理:∴OM2=(52-42=4,ON2=(52-32=11又易证四边形MONP是矩形,2215OM ON+=.102. 44.(2009年泸州)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cosE的值.【关键词】三角函数及切线的判定. 【答案】(1)如图,连结OD 、BD. ∵AB 是⊙O 的直径, ∴∠ADB =90°,∴BD ⊥AC. ∵AB =BC,∴AD =DC. ∵OA =OB,∴OD ∥BC, ∵DE ⊥BC,OD ⊥DE, ∴直线DE 是⊙O 的切线.(2)作DH ⊥AB,垂足为H,则∠EDH+∠E =90°, 又∵DE ⊥OD,∴∠ODH+∠EDH =90°,∴∠E =∠ODH, ∵AD =DC,AC =8,∴AD =4. 在Rt △ADB 中,3452222=-=-=AD AB BD ,由三角形面积公式得:AB ·DH =DB ·DA,即5DH =4×3,解得512=DH , 在Rt △ODH 中,cos ∠ODH =5.2512=2524,∴cosE =2524.103. (2009年常德市)如图,△ABC 内接于⊙O,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.【关键词】圆 【答案】△ABE 与△ADC 相似.理由如下: 在△ABE 与△ADC 中∵AE 是⊙O 的直径, ∴∠ABE=90o, ∵AD 是△ABC 的边BC 上的高, ∴∠ADC=90o, ∴∠ABE=∠ADC.又∵同弧所对的圆周角相等, ∴∠BEA=∠DCA. ∴△ABE ~△ADC.104.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC = 60︒,AB 与PC 交于Q 点. (1)判断△ABC 的形状,并证明你的结论; (2)求证:QBAQPB AP =; (3)若∠ABP = 15︒,△ABC 的面积为43,求PC 的长.解:(1) 证明:∵ ∠ABC =∠APC = 60︒,∠BAC =∠BPC = 60︒,∴ ∠ACB = 180︒-∠ABC -∠BAC = 60︒, ∴ △ABC 是等边三角形.(2)如图,过B 作BD ∥PA 交PC 于D ,则 ∠BDP =∠APC = 60︒.又 ∵ ∠AQP =∠BQD , ∴ △AQP ∽△BQD ,BDAPQB AQ =. ∵ ∠BPD =∠BDP = 60︒, ∴ PB = BD . ∴PBAPQB AQ =. (3)设正△ABC 的高为h ,则 h = BC · sin 60︒.∵21BC · h = 43, 即21BC · BC · sin 60︒ = 43,解得BC = 4.连接OB ,OC ,OP ,作OE ⊥BC 于E .由△ABC 是正三角形知∠BOC = 120︒,从而得∠OCE = 30︒, ∴ 3430cos =︒=CE OC .由∠ABP = 15︒ 得 ∠PBC =∠ABC +∠ABP = 75︒,于是 ∠POC = 2∠PBC = 150︒. ∴ ∠PCO =(180︒-150︒)÷2 = 15︒.如图,作等腰直角△RMN ,在直角边RM 上取点G ,使∠GNM = 15︒,则∠RNG = 30︒,作GH ⊥RN ,垂足为H .设GH = 1,则 cos ∠GNM = cos15︒ = MN . ∵ 在Rt △GHN 中,NH = GN · cos30︒,GH = GN · sin30︒. 于是 RH = GH ,MN = RN · sin45︒,∴ cos15︒ =462+. 在图中,作OF ⊥PC 于E ,∴ PC = 2FD = 2 OC ·cos15︒ =36222+.105.(2009年福建省泉州市)已知:直线y =kx(k ≠0)经过点(3,-4).(1)求k 的值;(2)将该直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相离(点O 为坐标原点),试求m 的取值范围.【关键词】直线与⊙O 相离【答案】解:(1)依题意得:-4=3k ,∴k =34-(2)由(1)及题意知,平移后得到的直线l 所对应的函数关系式为y =34-x+m(m >0) 设直线l 与x 轴、y 轴分别交于点A 、B ,(如图所示)当x =0时,y =m;当y =0时,x =43m. ∴A(43m,0),B(0,m),即OA =43m ,OB =m 在Rt △OAB 中,AB =22OB OA + 2=m m m 4516922=+ 过点O 作OD ⊥AB 于D ,∵S △ABO =21OD ·AB =21OA ·OB ∴21OD ·m 45=21·43m ·m ∵m >0,解得OD =53m依题意得:53m >6,解得m >10即m 的取值范围为m >10.。
中考数学复习之圆的基本性质,考点过关与基础练习题

32.圆的有关性质➢ 知识过关1. 圆有相关概念(1)圆:在一个平面内,线段OA 绕它固定的一个端点O 旋转_____,另一个端点A 所于形成的图形叫做圆,圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于____r 的点的集合.(2)弧、弦、等圆、等弧①弧:圆上任意_____的部分叫做弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧; ①弦:连接圆上任意两点的____叫做弦,经过_____的弦叫做直径. ①等圆:能够_____的两个圆叫做等圆;①等弧:在_____或等圆中,能够互相重合的弧叫做等弧. 2. 垂径定理及其推论 (1) 对称性:①圆是中心对称图形,其对称中心是圆心 ①圆是轴对称图形,其对称轴是_______. (2) 垂径定理及其推论①垂径定理:垂直于弦的直径______这条弦,并且平分这条弦所对的______; ①推论:平分弦(非直径)的直径______于弦,并且平分这条弦所对的两条弧.➢ 考点分类考点1 圆心角、弧、弦之间的关系例1如图所示,圆O 通过五边形OABCD 的四个顶点,若D AB=150°,A=65°,D=60°,则的度数为( )A.25°B.40°C.50°D.55°考点2垂径定理及简单应用例2如图所示,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m,则排水管内水的深度为_______m.考点3垂径定理与其他知识的综合运用例3如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是弧CBD 上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度; (2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE •HF 的值.➢ 真题演练1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,连接AO 并延长,交⊙O 于点E ,连接BE ,DE .若DE =3DO ,AB =4√5,则△ODE 的面积为( )A .4B .3√2C .2√5D .2√62.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 的长的最小值为( )A .3B .4C .6D .83.在正方形网格中,以格点O 为圆心画圆,使该圆经过格点A ,B ,并在点A ,B 的右侧圆弧上取一点C ,连接AC ,BC ,则sin C 的值为( )A .√32B .12C .1D .√224.如图,半径为5的⊙A 与y 轴交于点B (0,2)、C (0,10),则点A 的横坐标为( )A .﹣3B .3C .4D .65.如图,在⊙O 中,直径AB =10,CD ⊥AB 于点E ,CD =8.点F 是弧BC 上动点,且与点B 、C 不重合,P 是直径AB 上的动点,设m =PC +PF ,则m 的取值范围是( )A .8<m ≤4√5B .4√5<m ≤10C .8<m ≤10D .6<m <106.在⊙O 中内接四边形ABCD ,其中A ,C 为定点,AC =8,B 在⊙O 上运动,BD ⊥AC ,过O 作AD 的垂线,垂足为E ,若⊙O 的直径为10,则OE 的最大值接近于( )A .52B .5√23C .4D .57.如图,点A ,B ,C 都在⊙O 上,B 是AC ̂的中点,∠OBC =50°,则∠AOB 等于 °.8.如图,将半径为rcm 的⊙O 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,已知弦AB 的长为4√15cm ,则r = cm .9.如图,AB是⊙O的直径,∠BOD=120°,C为弧BD的中点,AC交OD于点E,DE =1,则AE的长为.10.如图,AB为⊙O的直径,AE为⊙O的弦,C为优弧ABÊ的中点,CD⊥AB,垂足为D.若AE=8,DB=2,则⊙O的半径为.11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.➢课后练习1.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为BĈ上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP−BP的值始终等于√32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错2.如图,在半径为5的⊙O 内有两条互相垂直的弦AB 和CD ,AB =8,CD =8,垂足为E .则tan ∠OEA 的值是( )A .1B .√63C .√156D .2√1593.如图,四边形ABCD 内接于半径为5的⊙O ,AB =BC =BE ,AB ⊥BE ,则AD 的长为( )A .5B .5√2C .5√3D .104.如图,点A ,B ,C 在⊙O 上,∠AOC =90°,AB =√2,BC =1,则⊙O 的半径为( )A .√3B .√52C .√102D .√2+125.下列说法正确的是( )A .同弧或等弧所对的圆心角相等B .所对圆心角相等的弧是等弧C .弧长相等的弧一定是等弧D .平分弦的直径必垂直于弦6.如图,A ,B 为圆O 上的点,且D 为弧AB 的中点,∠ACB =120°,DE ⊥BC 于E ,若AC =√3DE ,则BE CE的值为( )A .3B .2C .√33+1D .√3+17.如图所示,在⊙O 中,BC 是弦,AD 过圆心O ,AD ⊥BC ,E 是⊙O 上一点,F 是AE 延长线上一点,EF =AE .若AD =9,BC =6,设线段CF 长度的最小值和最大值分别为m 、n ,则mn =( )A .100B .90C .80D .708.如图,A ,B 是⊙O 上的点,∠AOB =120°,C 是AB̂的中点,若⊙O 的半径为5,则四边形ACBO 的面积为( )A .25B .25√3C .25√34D .25√329.如图,AB 是⊙O 的直径,点C 是半圆上的一个三等分点,点D 是AĈ的中点,点P 是直径AB 上一点,若⊙O 的半径为2,则PC +PD 的最小值是 .10.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .11.如图,在⊙O 中,点C 在弦AB 上,连接OB ,OC .若OB =5,AC =1,BC =5,则线段OC 的长为 .12.如图,以G(0,3)为圆心,半径为6的圆与x轴交于A,B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,点E在⊙G的运动过程中,线段FG的长度的最大值为.13.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为.14.如图,射线PE平分∠CPD,O为射线PE上一点,以O为圆心作⊙O,与PD边交于点A、点B,连接OA,且OA∥PC.(1)求证:AP=AO.(2)若⊙O的半径为10,tan∠OPB=12,求弦AB的长.15.如图,在⊙O中,直径AB与弦CD相交于点E,OF⊥CD,垂足为F.设已知BE=5,AE=12OE,OF=1,求CD的长.➢冲击A+在Rt①ABC中,①BAC=90°,(1)如图1,D、E分别在BC、BA的延长线上,①ADE=2①CAD,求证:DA=DE;(2)如图2,在(1)的条件下,点F在BD上,①AFB=①EFD,求证:①FAD=①FED(3)如图3,若AB=AC,过点C作CN||AB,连接AN,在AN上取一点G,使GA=AC,连接BG交AC于点H,连接CG,试探究CN、CH、GN之间满足的数量关系式,并给出证明;。
初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》好题集锦一、圆的有关线段和角1.如图所示,已知△ABC 内接于⊙O ,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点.(1)试求∠BAD 的度数; (2)求证:△ABC 为等边三角形.2.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ;(2)若AB =24,ON =1,求⊙O 的半径.3.已知,在⊙O 中,AB 是⊙O 的直径,点C .、P 在AB 的两侧,AC =21AB ,连接CP ,BP . (Ⅰ)如图①,若CP 经过圆心,求∠P 的大小;(Ⅱ)如图②,点D 是PB 上一点,CD ⊥PB ,若CP ⊥AB ,求∠BCD 的大小.4.如图,⊙P 的圆心的坐标为(2,0),⊙P 经过点)25,4(B .(1)求⊙P 的半径r ;(2)⊙P 与坐标轴的交点A ,E ,C ,F 的坐标;(3)点B 关于x 轴的对称点D 是否在⊙P 上,请说明理由.5.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若CD =6,AC =8,求CE 的长.6.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD . (1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)连接CD ,若CD =3,BD =4,求⊙O 的半径和DE 的长.7.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD =60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).二、圆与四边形8.如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC 的外接圆O于点E,连结A E.(1)求证:四边形AECD为平行四边形;(2)连结CO,求证:CO平分∠BCE.9.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.10.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.11.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有________.(2)如图1,在四边形ABCD中,AB=AD,且CB=CD①证明:四边形ABCD是“十字形”;②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.三、圆的综合运用12.已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD┴OP交圆O于点D.(1)如图1,当PD∥AB时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.13.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围(用含r的代数式表示).14.如图,有两条公路OM、ON相交成 30°角,沿公路OM方向离O点 80 米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心 50 米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为 18 千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.(1)求证:∠BFC=∠ABC.(2)若⊙O的半径为5,CF=6,求AF长.《圆的基本知识好题》参考答案1.解:(1)∵BD是⊙O的直径,∴∠BAD=90°(直径所对的圆周角是直角).(2)证明:∵∠BOC =120°,∴∠BAC =21∠BOC =60°.又∵AB =AC ,∴△ABC 是等边三角形. 2.(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD , ∴∠BAM =∠BAD ,,∴△ANE ≌△ADE (A S A ),∴AN =AD ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,解图,连接AO ,则AO =OD =2x -1,第2题解图3.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =21AB ,∴∠ABC =30°,∴∠A =90°-∠ABC =60°, ∴∠P =∠A =60°;(Ⅱ) ∵AB 是⊙O 的直径,AC =21AB , ∴∠A =60°,∴∠BPC =∠A =60°, ∵CD ⊥PB ∴∠PCD =90°-BPC =30°,∵CP ⊥AB ,AB 是⊙O 的直径, ∴BC =BP ,∴∠P =∠BCP =60°,∴∠BCD =∠BCP -∠PCD =60°-30°=30°.4..解:(1)过点B 作x 轴的垂线,交x 轴于点G ,连接BP . 则点G 坐标为(4,0).在Rt △PBG 中,PG =4-2=2,BG =25,斜边PB =241∴⊙P 的半径r =241.(2)点E 坐标为(2-241,0),点F 坐标为(2+241,0)∵点A 坐标的y 值=25,∴点A 坐标为(0,25).点C 坐标为(0,-25). (3)∵⊙P 关于x 轴对称,又∵B 与D 关于x 轴对称,∴D 在⊙P 上.5.证明:如图.∵AB 是⊙O 的直径,∴∠ACB =90°,又∵CE ⊥AB ,∴∠CEB =90°.∴∠2=90°-∠ACE =∠A . 又∵C 是弧BD 的中点,∴∠1=∠A .∴∠1=∠2,∴ CF =BF .(2)此时,CE =5246.(1)证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD , ∴∠DAC =∠DBA ;(2)证明:∵AB 为直径, ∴∠ADB =90°,∵DE ⊥AB 于E , ∴∠DEB =90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2, ∴PD =P A ,∵∠4+∠2=∠1+∠3=90°,且∠ADB =90°,∴∠3=∠4, ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点;(3)解:连接CD , ∵∠CBD =∠DBA ,∴CD =AD ,∵CD =3,∴AD =3, ∵∠ADB =90°,AB =5,⊙O 的半径为2.5,∵DE ×AB =AD ×BD ,∴5DE =3×4, ∴DE =2.4.即DE 的长为2.4.7.(1)证明:∠ABF =∠ADC =120°﹣∠ACD =120°﹣∠DEC =120°﹣(60°+∠ADE )=60°﹣∠ADE , 而∠F =60°﹣∠ACF , 因为∠ACF =∠ADE ,所以∠ABF =∠F ,所以AB =AF .(2)证明:四边形ABCD 内接于圆,所以∠ABD =∠ACD , 又DE =DC ,所以∠DCE =∠DEC =∠AEB , 所以∠ABD =∠AEB , 所以AB =AE . ∵AB =AF ,∴AB =AF =AE ,即A 是三角形BEF 的外心.8.(1)根据圆周角定理知∠E =∠B , 又∵∠B =∠D ,∴∠E =∠D .∵AD ∥CE ,∴∠D +∠DCE =180°, ∴∠E +∠DCE =180°,∴AE ∥DC ,∴四边形AECD 为平行四边形. (2)如图,连结OE ,OB ,由(1)得四边形AECD 为平行四边形, ∴AD =EC .又∵AD =BC ,∴EC =BC . ∵OC =OC ,OB =OE , ∴△OCE ≌△OCB (SSS ),∴∠ECO =∠BCO ,即OC 平分∠BCE .9.11.解:连接OB ,OC ,∵四边形ABCD 为正方形,∴∠BOC =90°,∴∠BPC =21∠BOC =45°;(2)解:过点O 作OE ⊥BC 于点E , ∵OB =OC ,∠BOC =90°,∴∠OBE =45°,∴OE =BE ,∵OE 2+BE 2=OB 2 , ∴BE = 24 ∴BC =2BE =2810.解析:(1)∵A B 是直径, ∴∠AEB =90°,∴AE ⊥BC , ∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形, ∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°, ∴AB2﹣AD2=CB2﹣CD2, ∴(7+x )2﹣72=42﹣x 2, 解得x=1或﹣8(舍弃)∴AC=8,BD=157822=-, ∴S 菱形ABF C=158. ∴S 半圆=ππ84212=⨯11.15. (1)菱形,正方形(2)解:①如图1,连接AC ,BD∵AB =AD ,且CB =CD∴AC 是BD 的垂直平分线,∴AC ⊥BD ,∴四边形ABCD 是“十字形”②如图,设AC 与BD 交于点O∵AB =AD ,AC ⊥BD∴∠BAO =∠BAD =30°同理可证∠BCO =45°在Rt △ABO 中,OB =1AO =AB ×cos30°=3OB =OC =1∴AC =AO +CO =1+3, BD =2∴ 四边形ABCD 的面积=21×AB ×BD =21×2×(1+3)=1+3(3)解:如图2∵∠ADB +∠CBD =∠ABD +∠CDB ,∠CBD =∠CDB =∠CAB ,∴∠ADB +∠CAD =∠ABD +∠CAB ,∴180°﹣∠AED =180°﹣∠AEB ,∴∠AED =∠AEB =90°,∴AC ⊥BD ,过点O 作OM ⊥AC 于M ,ON ⊥BD 于N ,连接OA ,OD ,∴OA =OD =1,OM 2=OA 2﹣AM 2 , ON 2=OD 2﹣DN 2 , AM =21AC ,DN = 21BD ,四边形OMEN 是矩形,∴ON =ME ,OE 2=OM 2+ME 2 ,∴OE 2=OM 2+ON 2=2﹣41(AC 2+BD 2) 设AC =m ,则BD =3﹣m ,∵⊙O 的半径为1,AC +BD =3,∴1≤m≤2,∴41423≤≤OE由图可知:以 50m 为半径画圆,分别交 ON 于 B ,C 两点,AD ⊥BC ,BD =CD =21BC ,OA =80m , ∵在 Rt △AOD 中,∠AOB =30°,AD = 21OA = 21×80=40m , 在 Rt △ABD 中,AB =50,AD =40,由勾股定理得:BD =30m , 故BC =2×30=60 米,即重型运输卡车在经过 BC 时对学校产生影响.∵重型运输卡车的速度为 18 千米/小时,即300 米/分钟,∴重型运输卡车经过 BC 时需要 60÷300=0.2(分钟)=12(秒).答:卡车 P 沿道路 ON 方向行驶一次给学校 A 带来噪声影响的时间为 12 秒.15.(1)连接PA ,如图1所示.∵PO ⊥AD ,∴AO =DO .∵AD =2,∴OA =.点P 坐标为(﹣1,0),∴OP =1.∴PA ==2.∴BP =CP =2. ∴B (﹣3,0),C (1,0). (2)连接AP ,延长AP 交⊙P 于点M ,连接MB 、MC .如图2所示,线段MB 、MC 即为所求作. 四边形AC MB 是矩形.理由如下∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH ⊥BC ,垂足为H ,如图2所示.在△MHP 和△AOP 中,∵∠MHP =∠AOP ,∠HPM =∠OPA ,MP =AP ,∴△MHP ≌△AOP .∴MH =OA =,PH =PO =1.∴OH =2.∴点M 的坐标为(﹣2,).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,BMC =90°.EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE =90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG .∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图3所示.∴∠MQG =2∠MBG .∵∠COA =90°,OC =1,OA =,∴tan ∠OCA =.∴∠OCA =60°.∴∠MBC =∠BCA =60°.MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.16.(1)证明:连结AD ,∵BD 是⊙O 的直径,∴∠BAD =90°,∵CF ⊥BD ,∴∠BEF =90°,∵∠ABD +∠ADB =90°,∠ABD +∠BFE =90°,∴∠BFC =∠ADB ,∵AB =AC ,∴∠ABC =∠ACB ,∵∠ACB =∠ADB ,∴∠BFC =∠ABC .(2)解:连结CD ,∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠BFC =∠ABC ,∴BC =CF =6,∵BD =10,∴CD =8在Rt △BCE 中,BE=518,CE =524,56 EF , ,∴AF =AB -BF =1059。
2024年中考数学总复习考点培优训练第六章第一节圆的基本性质

A. 40°
B. 50°
C. 60°
D. 70°
第1题图
第2题图
第一节 圆的基本性质
3. 数学文化 (2023岳阳)我国古代数学名著《九章算术》中有这 样一道题:“今有圆材,径二尺五寸,欲为方版,令厚七寸,
问广几何?”结合题图,其大意是:今有圆形材质,直径BD为
25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是( C )
第12题图
∵AB是⊙O的直径,
∴∠ACB=90°.
在Rt△ABC中,AC=8,BC=6,
∴AB= AC2 BC2 =10.
∵OD⊥AC,OA=OC,
∴AE=CE=
1 2
AC=4.
第10题解图
第一节 圆的基本性质
∵OA=OB,∴OE是△ABC的中位线,
∴OE=
1 2
BC=3.
由于PQ过圆心O,且PQ⊥AC,
48°,∠APD=80°,则∠B的度数为( A )
A. 32° B. 42°
C. 48° D. 52°
6. (2023泰安)如图,AB是⊙O的直径,D,C是⊙O上的点,
∠ADC=115°,则∠BAC的度数是( A )
A. 25°
B. 30° C. 35° D. 40°
7. (2023巴中)如图,⊙O是△ABC的外接圆,若∠C=25°,则
第9题图
第一节 圆的基本性质
10. (2022广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8, BC=6. (1)尺规作图:过点O作AC的垂线,交劣弧 AC于点D,连接CD( 保留作图痕迹,不写作法);
第10题图
第一节 圆的基本性质
【作法提示】 分别以点A,C为圆心,大于 1 AC为半径画弧,在
2024年中考数学一轮复习考点精析与真题精练—圆的基本性质

2024年中考数学一轮复习考点精析与真题精练—圆的基本性质→➊考点精析←一、圆的有关概念1.与圆有关的概念和性质1)圆:平面上到定点的距离等于定长的所有点组成的图形.2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.4)圆心角:顶点在圆心的角叫做圆心角.5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.6)弦心距:圆心到弦的距离.2.注意1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;2)3点确定一个圆,经过1点或2点的圆有无数个.3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定1)与圆只有一个公共点的直线是圆的切线(定义法).2)到圆心的距离等于半径的直线是圆的切线.3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、与圆有关的计算公式1.弧长和扇形面积的计算:扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.2)若圆锥的底面半径为r ,母线长为l ,则这个扇形的半径为l ,扇形的弧长为2πr ,圆锥的侧面积为S 圆锥侧=12ππ2l r rl ⋅=.圆锥的表面积:S 圆锥表=S 圆锥侧+S 圆锥底=πrl +πr 2=πr ·(l +r ).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.→➋真题精讲←题型一圆周角和圆心角1.(2023·云南·统考中考真题)如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.2.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B 【分析】根据圆周角定理求得60AOB ∠=︒,然后根据扇形面积公式进行计算即可求解.【详解】解:∵ AB AB =,30ACB ∠=︒,∴60AOB ∠=︒,∴260π66π360S =⨯=.故选:B.【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.3.(2023·四川自贡·统考中考真题)如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=︒,则ABC ∠的度数是()A.41︒B.45︒C.49︒D.59︒【答案】C【分析】由CD 是O 的直径,得出90DBC ∠=︒,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=︒,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=︒,∵ AD AD =,∴41ABD ACD ∠=∠=︒,∴904149ABC DBC DBA ∠=∠-∠=︒-︒=︒,故选:C.【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.4.(2023·四川宜宾·统考中考真题)如图,已知点A B C 、、在O 上,C 为 AB 的中点.若35BAC ∠=︒,则AOB ∠等于()A.140︒B.120︒C.110︒D.70︒【答案】A 【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为 AB 的中点,BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠, 35BAC ∠=︒,根据圆周角定理可知270BOC BAC ∠=∠=︒,2140AOB BOC ∴∠=∠=︒,故选:A.【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5.(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于O ,BC AD ∥,AC BD ⊥.若120AOD ∠=︒,AD =CAO ∠的度数与BC 的长分别为()A.10°,1C.15°,1【答案】C 【分析】过点O 作OE AD ⊥于点E ,由题意易得45CAD ADB CBD BCA ∠=∠=︒=∠=∠,然后可得30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,122AE AD ==,进而可得122CD CF CD ====,最后问题可求解.【详解】解:过点O 作OE AD ⊥于点E ,如图所示:∵BC AD ∥,∴CBD ADB ∠=∠,∵CBD CAD ∠=∠,∴CAD ADB ∠=∠,∵AC BD ⊥,∴90AFD ∠=︒,∴45CAD ADB CBD BCA ∠=∠=︒=∠=∠,∵120AOD ∠=︒,OA OD =,3AD =∴30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,1322AE AD ==∴15CAO CAD OAD ∠=∠-∠=︒,1cos30AE OA OC OD ====︒,105BCD BCA ACD ∠=∠+∠=︒,∴290,18030COD CAD CDB BCD CBD ∠=∠=︒∠=︒-∠-∠=︒,∴1222,22CD OC CF CD ====∴21BC CF ==;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.6.(2023·山东枣庄·统考中考真题)如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒【答案】A 【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A.【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.7.(2023·浙江杭州·统考中考真题)如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=()A.23︒B.24︒C.25︒D.26︒【答案】D 【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ ADB 所对的圆周角12701352ACB ∠=︒=︒,又 19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒-∠-∠=︒,故选:D.【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8.(2023·四川广安·统考中考真题)如图,ABC 内接于O ,圆的半径为7,60BAC ∠=︒,则弦BC 的长度为___________.【答案】73【分析】连接,OB OC ,过点O 作OD BC ⊥于点D ,先根据圆周角定理可得2120BOC BAC ∠=∠=︒,再根据等腰三角形的三线合一可得60BOD ∠=︒,2BC BD =,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接,OB OC ,过点O 作OD BC ⊥于点D ,60BAC ∠=︒ ,2120BOC BAC ∴∠=∠=︒,,OB OC OD BC =⊥Q ,1602BOD BOC ∴∠=∠=︒,2BC BD =,∵圆的半径为7,7OB ∴=,7sin 6032BD OB ∴=⋅︒=,23BC BD ∴==故答案为:73【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.9.(2023·甘肃武威·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.【答案】35【分析】由同弧所对的圆周角相等,得55,A CDB ∠=∠=︒再根据直径所对的圆周角为直角,得90ACB ∠=︒,然后由直角三角形的性质即可得出结果.【详解】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.10.(2023·上海·统考中考真题)如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB ∠==.(1)求O 的半径;(2)求BAC ∠的正切值.【答案】(1)5(2)94【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【详解】(1)解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴ 的半径为152BD =.(2)解:如图,过点C 作CE AB ⊥于点E ,O 的半径为5,5OB ∴=,12OC OB =,31522BC OB ∴==,4cos 5ABC ∠=,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=-=,2292CE BC BE =-=,则BAC ∠的正切值为99224CE AE ==.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.题型二切线定理11.(2023·四川眉山·统考中考真题)如图,AB 切O 于点B ,连接OA 交O 于点C ,BD OA ∥交O 于点D ,连接CD ,若25OCD ∠=︒,则A ∠的度数为()A.25︒B.35︒C.40︒D.45︒【答案】C【分析】如图,连接OB ,证明90∠=︒ABO ,25CDB ∠=︒,可得250BOC BDC ∠=∠=︒,从而可得40A ∠=︒.【详解】解:如图,连接OB ,∵AB 切O 于点B ,∴90∠=︒ABO ,∵BD OA ∥,25OCD ∠=︒,∴25CDB ∠=︒,∴250BOC BDC ∠=∠=︒,∴40A ∠=︒;故选:C.【点睛】本题考查的是切线的性质,圆周角定理的应用,三角形的内角和定理的应用,掌握基本图形的性质是解本题的关键.12.(2023·重庆·统考中考真题)如图,AB 为O 的直径,直线CD 与O 相切于点C ,连接AC ,若50ACD ∠=︒,则BAC ∠的度数为()A.30︒B.40︒C.50︒D.60︒【答案】B 【分析】连接OC ,先根据圆的切线的性质可得90OCD ∠=︒,从而可得40OCA ∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B.【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.13.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在 BDC上,已知50A ∠=︒,则D ∠的度数是___________.【答案】65︒【分析】连接,CO BO ,根据切线的性质得出90ACO ABO ∠=∠=︒,根据四边形内角和得出130COB ∠=︒,根据圆周角定理即可求解.【详解】解:如图,CO BO ,∵AB ,AC 分别与O 相切于点B ,C ,∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050130COB ∠=︒-︒-︒-︒=︒,∵ BCBC =,∴1652D BOC ∠=∠=︒,故答案为:65︒.【点睛】本题考查了切线的性质,圆周角定理,求得130COB ∠=︒是解题的关键.14.(2023·湖南·统考中考真题)如图,AD 是O 的直径,AB 是O 的弦,BC 与O 相切于点B ,连接OB ,若65ABC ∠=︒,则BOD ∠的大小为__________.【答案】50︒【分析】证明90OBC ∠=︒,可得906525OBD ∠=︒-︒=︒,结合OB OA =,证明25A OBA ∠=∠=︒,再利用三角形的外角的性质可得答案.【详解】解:∵BC 与O 相切于点B ,∴90OBC ∠=︒,∵65ABC ∠=︒,∴906525OBD ∠=︒-︒=︒,∵OB OA =,∴25A OBA ∠=∠=︒,∴22550BOD ∠=⨯︒=︒,故答案为:50︒【点睛】本题考查的是圆的切线的性质,等腰三角形的性质,三角形的外角的性质,熟记基本图形的性质是解本题的关键.15.(2023·山东滨州·统考中考真题)如图,,PA PB 分别与O 相切于,A B 两点,且56APB ∠=︒.若点C 是O 上异于点,A B 的一点,则ACB ∠的大小为___________.【答案】62︒或118︒【分析】根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形内角和为360︒,得出AOB ∠,然后根据圆周角定理即可求解.【详解】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∴360909056124AOB ∠=︒-︒-︒-︒=︒∵ AB AB =,∴1622ACB AOB ∠=∠=︒,当点C '在 AB 上时,∵四边形AC BC '是圆内接四边形,∴180118C C '∠=︒-∠=︒,故答案为:62︒或118︒.【点睛】本题考查了切线的性质,圆周角定理,多边形内角和,熟练掌握切线的性质与圆周角定理是解题的关键.16.(2023·四川·统考中考真题)如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F ,设t PE =+,则t 的取值范围是_____.【答案】4t ≤≤+【分析】利用切线的性质以及等腰直角三角形的性质求得2CD DH ==,再求得t PE PQ EQ =+=,分两种情况讨论,画出图形,利用等腰直角三角形的性质即可求解.【详解】解:设O 与ACB ∠两边的切点分别为D 、G ,连接OG OD 、,延长DO 交CB 于点H ,由90OGC ODC OGH ∠=∠=∠=︒,∵45ACB ∠=︒,∴45OHC ∠=︒,∴OH ==∴2CD DH ==,如图,延长EP 交CB 于点Q ,同理2PQ PF =,∵2t PE PF =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,连接OP ,∵D 、E 都是切点,∴90ODE DEP OPE ∠=∠=∠=︒,∴四边形ODEP 是矩形,∵OD OP =,∴四边形ODEP 是正方形,∴t 的最大值为224EQ CE CD DE ==+=+;如图,同理,t 的最小值为22EQ CE CD DE ==-=;综上,t 的取值范围是4t ≤≤.故答案为:4t ≤≤.【点睛】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得t EQ =是解题的关键.17.(2023·浙江绍兴·统考中考真题)如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD =根据OC AE ∥,可得CD OD CE OA=,进而即可求解.【详解】(1)解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.(2)∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴225CD OD OC =-=.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =532CE =,∴253CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.18.(2023·湖南张家界·统考中考真题)如图,O 是ABC 的外接圆,AD 是O 的直径,F 是AD 延长线上一点,连接CD CF ,,且DCF CAD ∠=∠.(1)求证:CF 是O 的切线;(2)若直径310,cos 5AD B ==,求FD 的长.【答案】(1)详见解析(2)907【分析】(1)根据直径所对的圆周角是直角,余角的性质即可求得结论;(2)根据已知条件可知FCD FAC ∽,再根据正切的定义和相似三角形的性质得到线段的关系即可求得线段FD 的长度.【详解】(1)证明:连接OC ,∵AD 是O 的直径,∴90ACD ∠=︒,∴90ADC CAD ∠+∠=︒,又∵OC OD =,∴ADC OCD ∠=∠,又∵DCF CAD ∠=∠,∴90DCF OCD ∠+∠=︒,即OC FC ⊥,∴FC 是O 的切线;(2)解:∵3,cos 5B ADC B ∠=∠=,∴3cos 5ADC ∠=,∵在Rt ACD 中,3cos ,10,5CD ADC AD AD∠===∴3cos 106,5CD AD ADC =⋅∠=⨯=∴8AC =,∴34CD AC =,∵FCD FAC F F ∠=∠∠=∠,,∴FCD FAC ∽,∴34CD FC FD AC FA FC ===,设3FD x =,则4310FC x AF x ==+,,又∵2FC FD FA =⋅,即2(4)3(310)x x x =+,解得307x =(取正值),∴9037FD x ==,【点睛】本题考查了圆周角的性质,切线的判定定理,正切的定义,相似三角形的性质和判定,找出正切的定义与相似三角形相似比的关联是解题的关键.19.(2023·辽宁·统考中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF 与O 相切;(2)若41sin 5BF AFE =∠=,,求BC 的长.【答案】(1)见解析(2)245BC =【分析】(1)利用圆周角定理得到2EOB EAB ∠=∠,结合已知推出CAB EOB ∠=∠,再证明OFE ABC ∽△△,推出90OEF C ∠=∠=︒,即可证明结论成立;(2)设O 半径为x ,则1=+OF x ,在Rt OEF △中,利用正弦函数求得半径的长,再在Rt ABC △中,解直角三角形即可求解.【详解】(1)证明:连接OE ,∵ =BEBE ,∴2EOB EAB ∠=∠,∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴245BC ==.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.题型三垂径定理20.(2023·四川凉山·统考中考真题)如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,,则OC =()A.1B.2C.D.4【答案】B 【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE ==,在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒ ,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,113322CE BE BC ===⨯在Rt OCE 中,603COE CE ∠=︒,32sin 6032CE OC ∴==︒,故选:B.【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.21.(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥.“会圆术”给出 AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当4OA =,60AOB ∠=︒时,则l 的值为()A.1123-B.113-C.823-D.843-【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=︒,∴OAB 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴(22441144MN l AB OA-=+=+=-故选:B.【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.22.(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28m C.35m D.40m【答案】B 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=-=-,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===,在Rt △ADO 中,222AD OD OA +=,()2223772R R ⎛⎫∴+-= ⎪⎝⎭,解得:156528m 56R =≈,故选:B.【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.23.(2023·四川南充·统考中考真题)如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.【答案】4【分析】根据圆周角定理得出90ACB ∠=︒,再由勾股定理确定13AB =,半径为132,利用垂径定理确定OM AC ⊥,且6AD CD ==,再由勾股定理求解即可.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵12,5AC BC ==,∴13AB =,∴11322AO AB ==,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ⊥,且6AD CD ==,∴52OD ==,∴4MD OM OD AO OD =-=-=,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.24.(2023·湖南永州·统考中考真题)如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .【答案】16【分析】过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,依题意,得出6OD =,进而在Rt AOD 中,勾股定理即可求解.【详解】解:如图所示,过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,∵水的最深处到水面AB 的距离为4cm ,O 的半径为10cm .∴1046OD =-=cm ,在Rt AOD 中,22221068AD AO OD =--cm∴216AB AD ==cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.25.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是________寸.【答案】26【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,AB=可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x 由6的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OA,AB=寸,,且10⊥AB CDAE BE∴==寸,5==,设圆O的半径OA的长为x,则OC OD xQ,CE=1OE x∴=-,1在直角三角形AOE中,根据勾股定理得:222x x--=,化简得:222125(1)5-+-=,x x xx=,即226∴=(寸).CD26故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.26.(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,A 与x 轴相切于点B ,与y 轴相交于点,C D .连接AB ,过点A 作AH CD ⊥于点H .(1)求证:四边形ABOH 为矩形.(2)已知A 的半径为4,OB ,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵A 与x 轴相切于点B ,∴AB x ⊥轴.∵,AH CD HO OB ⊥⊥,∴90AHO HOB OBA ∠=∠=∠=︒,∴四边形AHOB 是矩形.(2)如图,连接AC .四边形AHOB 是矩形,AH OB ∴==在Rt AHC 中,222CH AC AH =-,3CH ∴==.点A 为圆心,AH CD ⊥,2CD CH ∴=6=.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
COAB一、选择题1.(北京朝阳区二模)5.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )6 答案:D 2.(2018北京市朝阳区一模)如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,若∠ADE =110°,则∠AOC 的度数是(A )70° (B )110° (C )140° (D )160°答案C 3.(2018北京顺义区初三练习)如图所示圆规,点A 是铁尖的端点,点B 是铅笔芯尖的端点,已知点A 与点B 的距离是2cm ,若铁尖的端点A 固定,铅笔芯尖的端点B 绕点A 旋转一周,则作出的圆的直径..是 A .1 cm B .2 cm C .4 cm D . cm 答案:C4.(2018北京海淀区二模)如图,圆O 的弦GH ,EF ,CD ,AB 中最短的是A . GH B. EF C. CD D. AB答案:A5.(2018北京房山区一模)如图,在⊙O 中,AC 为⊙O 直径,B 为圆上一点,若∠OBC =26°,则∠AOB 的度数为A .26°B .52°C .54°D .56°答案B6.(2018北京市大兴区检测)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=6,则CD 的长为 A.3 B.32C.6D. 62答案D7.(2018年北京昌平区第一学期期末质量抽测)如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°答案:D8.(2018北京朝阳区第一学期期末检测)如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =7.则∠BDC 的度数是(A) 15° (B) 30° (C) 45° (D) 60°答案:B9.(2018北京大兴第一学期期末)如图,点A ,B ,P 是⊙O 上的三点,若︒=∠40AOB , 则APB ∠的度数为A. ︒80B. ︒140C. ︒20D. ︒50答案:C接于M ,则M 的半径是10.(2018北京东城第一学期期末)边长为2的正方形内A .1B .2C .2D .22答案:C11.(2018北京房山区第一学期检测)7.如图,在⊙O 中,AB AC =,∠AOB=50°,则∠ADC 的度数是A .50°B .45°C .30°D .25°答案:D12.(2018北京丰台区第一学期期末)如图,A ,B 是⊙O 上的两点,C 是⊙O 上C AO D不与A ,B 重合的任意一点. 如果∠AOB =140°,那么∠ACB 的度数为 A .70° B .110° C .140°D .70°或110°答案:D13.(2018北京怀柔区第一学期期末)如图,⊙O 是△ABC 的外接圆,∠BOC =100°,则∠A 的大小为 ( ) A .40︒B .50︒C .80︒D .100︒答案:B14.(2018北京怀柔区第一学期期末)某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O ,再任意找出圆O 的一条直径标记为AB (如图1),测量出AB =4分米;②将圆环进行翻折使点B 落在圆心O 的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C 、D (如图2);③用一细橡胶棒连接C 、D 两点(如图3); ④计算出橡胶棒CD 的长度.小明计算橡胶棒CD 的长度为A .22 分米B . 23分米C .32 分米D .33分米答案:B15.(2018北京门头沟区第一学期期末调研试卷) 如图,DCE ∠是圆内接四边形ABCD 的一个外角,如果75DCE ∠=︒,那么BAD ∠的度数是A .65︒B .75︒C .85︒D .105︒ 答案:B16.(2018北京密云区初三(上)期末)如图,ABC ∆内接于O ,80AOB ∠=︒,则ACB ∠的大小为A. 20︒B. 40︒C. 80︒D. 90︒第7题图1 第7题图2 第7题图3OABDCEO答案:B17.(2018北京平谷区第一学期期末)如图,△AB C 内接于⊙O ,连结OA ,OB ,∠ABO =40°,则∠C 的度数是(A )100° (B )80° (C )50° (D )40°答案:C18.(2018北京石景山区第一学期期末)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若︒=∠25ACD ,则BOD ∠的度数为(A )︒100(B )︒120(C )︒130(D )︒150答案:C19.(2018北京石景山区第一学期期末)如图,在⊙O 中,弦AB 垂直平分半径OC .若⊙O 的半径为4,则弦AB 的长为(A )32 (B )34(C )52(D )54答案:B20.(2018北京顺义区初三上学期期末)如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为A B . C . D .10答案:B21.(2018北京通州区第一学期期末)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上.若︒=∠55ABD ,则O ABC DE BCD ∠的度数为( )A .︒25B .︒30C .︒35D .︒40 答案:C22.(2018北京通州区第一学期期末)如图,⊙O 的半径为4.将⊙O 的一部分沿着弦AB 翻折,劣弧恰好经过圆心O .则折痕AB 的长为( )A. 3B. 32C. 6D. 34 答案:D23.(2018北京西城区第一学期期末)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( ). A .34° B .46° C .56° D .66°答案:C24.(2018北京燕山地区第一学期初四年级期末)如图,圆心角 ∠AOB=25°,将 AB 旋转 n °得到 CD ,则∠ COD 等于A . 25°B . 25°+ n °C . 50°D . 50°+ n °答案: A.二、填空题25.(2018北京房山区二模)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE = .答案: 226.(2018北京东城区二模)如图,在△ABC 中,AB =AC ,BC =8.O 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.CAOBD答案: 227.. (2018北京西城区二模)如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若36C ∠=︒,则∠DOC= ︒.答案:5428.(2018北京朝阳区二模)如图,△ABC 内接于⊙O ,AB 是⊙O的直径,点D 在圆O 上,弧BD =弧CD ,AB=10,AC =6,连接OD 交BC 于点E ,DE = .答案:229.(2018北京昌平区二模)如图,在圆O 的内接四边形ABCD 中,AB =3,AD =5,∠BAD =60°,点C 为弧BD 的中点,则AC 的长是 .答案:330..(2018北京延庆区初三统一练习)如图,AB 是⊙O 的弦,∠AOC =42°,那么∠CDB 的度数为____________.答案:21°31..(2018北京西城区九年级统一测试)如图,AB 为⊙O 的直径,C 为AB上一点,50BOC ∠=︒,AD OC ∥,AD 交⊙O 于点D ,连接AC ,CD ,那么ACD ∠=__________.DCC答案:4032.(2018北京市朝阳区综合练习(一)) 如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD =度.答案15第13题图33. (2018北京门头沟区初三综合练习)如图,PC 是⊙O 的直径,PA 切⊙O 于点P ,AO 交⊙O 于点B ;连接BC ,若∠C =32°,则∠A =_____________ °. 答案26°34.(2018北京平谷区中考统一练习)如图,AB 是⊙O 的直径,AB ⊥弦CD 于点E ,若AB =10,CD =8,则BE = . 答案235.(2018北京石景山区初三毕业考试)如图,AB 是⊙O 的直径,CD 是弦,CD AB ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .BOPA C答案:236.(2018北京丰台区一模)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .如果∠A = 15°,弦CD = 4,那么AB 的长是 .答案837.(2018北京朝阳区第一学期期末检测)如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为3,则正六边形ABCDEF 的边长为 .答案:338.(2018北京大兴第一学期期末)如图,在半径为5cm 的⊙O 中,如果弦AB 的长为8cm ,OC ⊥AB ,垂足为C ,那么OC 的长为 cm .答案: 3.39.(2018北京东城第一学期期末)如图,AB 是O 的弦,C 是AB 的中点,连接OC 并延长交O 于点D .若CD =1,AB =4,则O 的半径是.答案: 2.540.(2018北京东城第一学期期末)O 是四边形ABCD 的外接圆,AC平分∠BAD ,则正确结论的序号是 .①AB =AD ; ②BC =CD ; ③AB AD =; ④∠BCA =∠DCA ; ⑤BC CD =A B答案:②⑤41.(2018北京房山区第一学期检测)如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是.答案:842.(2018北京丰台区第一学期期末)如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为.答案:143.(2018北京丰台区第一学期期末)在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为.答案:(2,0)44.(2018北京门头沟区第一学期期末调研试卷)如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=那么⊙O的半径为________.答案:245.(2018北京平谷区第一学期期末)13.“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是我国古代著名数学家刘徽在《九章算术注》中提到的“如何求圆的周长和面积”的方法,即“割圆术”.“割圆术”的主要意思是用圆内接正多边形去逐步逼近圆.刘徽从圆内接正六边形出发,将边数逐次加倍,并逐次得到正多边形的周长和面积.如图,AB 是圆内接正六边形的一条边,半径OB =1,OC ⊥AB 于点D ,则圆内接正十二边形的边BC 的长是 (结果不取近似值).=46.(2018北京石景山区第一学期期末)如图,在Rt △ABC 中,︒=∠90C ,AB =10.若以点C 为圆心,CB为半径的圆恰好经过AB 的中点D ,则AC =________.答案:3547.(2018北京通州区第一学期期末)⊙O 的半径为1,其内接ABC △的边2=AB ,则C ∠的度数为______________.答案:45°或135°48.(2018北京西城区第一学期期末)如图,⊙O 的半径等于4,如果弦AB 所对的圆心角等于120︒,那么圆心O 到弦AB 的距离等于 .答案:249.(2018北京西城区第一学期期末)如图,⊙O 的半径为3,A ,P 两点在⊙O 上,点B 在⊙O 内,4tan 3APB ∠=,AB AP ⊥.如果OB ⊥OP ,那么OB 的长为 .答案:150.(2018北京燕山地区第一学期初四年级期末)如图,AB 、AC 是⊙O 的弦,OM ⊥ AB ,ON ⊥ AC ,垂足分别为 M 、N .如果 MN=2.5,那么 BC=答案: 551.(2018北京丰台区二模)数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD ⊥BC 于点D .请借助直尺,画出△ABC 中∠BAC 的平分线. 晓龙同学的画图步骤如下: (1)延长OD 交BC 于点M ; (2)连接AM 交BC 于点N.所以线段AN 为所求△ABC 中∠BAC 的平分线.请回答:晓龙同学画图的依据是 .答案:垂径定理,等弧所对的圆周角相等52.(2018北京燕山地区第一学期初四年级期末)如图,量角器的直径与直角三角尺 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿 顺时针方向以每秒 3°的速度旋转,CP 与量角器的半圆弧交于 点 E ,则第 20 秒点 E 在量角器上对应的读数是 °答案 :120° 三、解答题53.(2018北京海淀区第二学期练习)如图,AB 是⊙O 的直径,弦EF AB ⊥于点C ,过点F 作⊙O 的切线交AB 的延长线于点D .(1)已知A α∠=,求D ∠的大小(用含α的式子表示); 30A ∠=︒,(2)取的中点M ,连接MF ,请补全图形;若MF =,求⊙O 的半径.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径, ∴DOF DOE =∠∠.∵2DOE A =∠∠,A α=∠,∴2DOF α=∠. ………………1分 ∵FD 为O 的切线, ∴OF FD ⊥.∴90OFD ︒=∠. ∴+90D DOF ︒=∠∠.902D α∴∠=︒-. ………………2分(2)图形如图所示.连接OM .∵AB 为O 的直径,∴O 为AB 中点, 90AEB ∠=︒. ∵M 为BE 的中点,DADADACOA D ∴OM AE ∥,1=2OM AE . ………………3分 ∵30A ∠=︒,∴30MOB A ∠=∠=︒. ∵260DOF A ∠=∠=︒ ,∴90MOF ∠=︒. ………………4分∴222+OM OF MF =. 设O 的半径为r .∵90AEB ∠=︒,30A ∠=︒,∴cos303AE AB r ︒=⋅=.∴1=32OM r . ………………5分 ∵=7FM ,∴2221(3)+(7)2r r =. 解得=2r .(舍去负根) ∴O 的半径为2.54.(2018年北京昌平区第一学期期末质量抽测)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AC ,BC .(1)求证:A BCD ∠=∠; (2)若AB =10,CD =8,求BE 的长.答案:(1)证明:∵ 直径AB ⊥弦CD ,∴弧BC =弧BD . …………………… 1分 ∴A BCD ∠=∠.…………………… 2分(2)解:连接OC∵ 直径AB ⊥弦CD ,CD =8, ∴CE =ED =4. …………………… 3分∵ 直径AB =10,∴CO =OB =5.在Rt △COE 中223OE CO CE =+=…………………… 4分∴2BE =.…………………… 5分55.(2018北京朝阳区第一学期期末检测)如图,四边形ABCD 是⊙O 的内接四边形,对角线AC 是⊙O 的直径,AB=2, ∠ADB =45°. 求⊙O 半径的长. 答案:18.解:∵AC 是⊙O 的直径,∴∠ABC =90°. ………………………………………………………………1分∵∠ADB =45°, ∴∠ACB =∠ADB =45°. …………………………………………………………2分 ∵AB=2,∴B C =A B =2. ……………………………………………………………………3分∴2222=+=BC AB AC .…………………………………………………………4分 ∴⊙O 半径的长为2. ………………………………………………………………5分O E DCA56.(2018北京大兴第一学期期末)已知: 如图,⊙O 的直径AB 的长为5cm ,C 为⊙O 上的一个点,∠ACB 的平分线交⊙O 于点D ,求BD 的长.答案:21. 解:∵ AB 为直径,∴ ∠AD B =90°, ……………………………… 1分 ∵ CD 平分∠ACB , ∴ ∠ACD =∠BCD ,∴ AD⌒ =BD ⌒ .………………………………… 2分 ∴ AD =BD ……………………………………… 3分 在等腰直角三角形ADB 中, BD =AB sin45°=5× 2 2 =52 2 ……………… 5分∴ BD =522 . 57.(2018北京大兴第一学期期末)已知:如图,AB 为半圆O 的直径,C 是半圆O 上一点,过点C 作AB的平行线交⊙O 于点E ,连接AC 、BC 、AE ,EB . 过点C 作CG ⊥AB 于点G ,交EB 于点H. (1)求证:∠BCG=∠E BG ; (2)若55sin =∠CAB ,求GB EC的值.答案: 证明:(1)∵AB 是直径,∴∠ACB =90°.………………………………………………..1分 ∵CG ⊥AB 于点G , ∴∠ACB=∠ CGB =90°.∴∠CAB =∠BCG . .………………………………………………..2分 ∵CE ∥AB , ∴∠CAB =∠ACE . ∴∠BCG =∠ACE 又∵∠ACE =∠EBG∴∠BCG =∠EBG . .………………………………………………..3分 (2)解:∵sin 5CAB ∠=∴1tan 2CAB ∠=,………………………………………………..4分由(1)知,∠HBG =∠EBG =∠ACE =∠CAB∴在Rt △HGB 中,1tan 2GH HBG GB ∠==.由(1)知,∠BCG =∠CABD在Rt △BCG 中,1tan 2GB BCG CG ∠==. 设GH=a ,则GB=2a ,CG=4a .CH =CG -HG =3a . ……………..6分 ∵EC ∥AB ,∴∠ECH =∠BGH ,∠CEH =∠GBH∴△ECH ∽△BGH .……………………………………………..7分 ∴33EC CH aGB GH a ===.…………………………………………8分58.(2018北京东城第一学期期末) 已知等腰△ABC 内接于O , AB =AC ,∠BOC =100°,求△ABC 的顶角和底角的度数.解:如图1,当点A 在优弧上时, ∠A =50°,∠ABC =∠ACB =65°;--------------------3分 如图2,当点A 在劣弧上时, ∠A =130°,∠ABC =∠ACB =25°. -------------------5分59.(2018北京密云区初三(上)期末)21. 如图,AB 是O 的弦,O 的半径OD AB ⊥ 垂足为C.若23AB = ,CD=1 ,求O 的半径长.答案:21.解:AB 是O 的弦,O 的半径OD AB ⊥ 垂足为C ,23AB =∴AC=BC=3 …………………………………………………..2分 连接OA.设O 半径为r ,则222OA AC OC =+图1 图2 OBACBA C即222(3)(r 1)r =+- …………………………………..4分解得:2r = …………………………………………………………………5分60.(2018北京平谷区第一学期期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠A =15°,AB =4.求弦CD 的长.答案:解:∵∠A =15°,∴∠COB =30°. ........................................................................................................... 1 ∵AB =4,∴OC =2. ..................................................................................................................... 2 ∵弦CD ⊥AB 于E ,∴CE =12CD ............................................................................................................... 3 在Rt △OCE 中,∠CEO =90°,∠COB =30°,OC =2, ∴CE =1. ...................................................................................................................... 4 ∴CD =2. (5)61.(2018北京顺义区初三上学期期末)已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .答案:证明: 延长CE 交⊙O 于点G .∵AB 为⊙O 的直径,CE ⊥AB 于E , ∴BC =BG ,∴∠ G =∠2,……………………………………………..2分 ∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G =∠F ,………………………………………..….5分 ∴∠1=∠2.…………………………………………….…6分(其它方法对应给分)62.(2018北京通州区第一学期期末)如图,ABC △内接于⊙O .若⊙O 的半径为6,︒=∠60B ,求AC 的长.答案:63.(2018北京燕山地区第一学期初四年级期末∠ B = 30°,求:弦 CD 的长。